
����������
�������

Citation: La Rocca, M.; Perna, C.

Opening the Black Box:

Bootstrapping Sensitivity Measures

in Neural Networks for Interpretable

Machine Learning. Stats 2022, 5,

440–457. https://doi.org/10.3390/

stats5020026

Academic Editor: Fulvia Mecatti

Received: 29 March 2022

Accepted: 23 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Opening the Black Box: Bootstrapping Sensitivity Measures in
Neural Networks for Interpretable Machine Learning
Michele La Rocca and Cira Perna *

Department of Economics and Statistics, University of Salerno, 84084 Fisciano, Italy; larocca@unisa.it
* Correspondence: perna@unisa.it

Abstract: Artificial neural networks are powerful tools for data analysis, particularly in the context
of highly nonlinear regression models. However, their utility is critically limited due to the lack
of interpretation of the model given its black-box nature. To partially address the problem, the
paper focuses on the important problem of feature selection. It proposes and discusses a statistical
test procedure for selecting a set of input variables that are relevant to the model while taking into
account the multiple testing nature of the problem. The approach is within the general framework
of sensitivity analysis and uses the conditional expectation of functions of the partial derivatives of
the output with respect to the inputs as a sensitivity measure. The proposed procedure extensively
uses the bootstrap to approximate the test statistic distribution under the null while controlling the
familywise error rate to correct for data snooping arising from multiple testing. In particular, a pair
bootstrap scheme was implemented in order to obtain consistent results when using misspecified
statistical models, a typical characteristic of neural networks. Numerical examples and a Monte Carlo
simulation were carried out to verify the ability of the proposed test procedure to correctly identify
the set of relevant features.

Keywords: interpretable machine learning; neural networks; bootstrap; sensitivity analysis;
multiple testing

1. Introduction

Feedforward artificial neural networks (ANNs) are widely used and well-established
tools for modelling (possibly) highly nonlinear, complex relationships between a set of
inputs and a set of outputs. A large part of the literature highlights their advantages,
especially in terms of predictive accuracy and flexibility with respect to more traditional,
alternative modelling strategies.

Under very general conditions, ANNs provide an arbitrarily accurate approximation
of an unknown function of interest. Furthermore, within particular classes of functions,
the form of approximation does not suffer the so-called “curse of dimensionality” of
being less sensitive to the increasing dimensions of the data space. Therefore, they may
deliver good predictive accuracy [1], along with the ability to implicitly detect complex
nonlinear relationships between dependent and independent variables without a strong
theoretical framework.

However, the complexity of ANNs hinders obtaining information on how the model
uses the input variables to predict the target. In other words, despite the good properties
of ANN models, they suffer from a lack of interpretability, since the relationship-related
information of data and models is hidden in these systems, effectively transforming them
into black boxes. Although such neural modelling strategies are routinely applied to
many complex problems, they are considered to be unable to provide much insight into the
analysis of the underlying system. In particular, the black-box nature of ANNs greatly limits
their usefulness, complicating interpreting and identifying which variables (predictors)
are the most important and related to the output. The problem is the hyperparameterized

Stats 2022, 5, 440–457. https://doi.org/10.3390/stats5020026 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5020026
https://doi.org/10.3390/stats5020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-8768-4606
https://orcid.org/0000-0001-8496-0321
https://doi.org/10.3390/stats5020026
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5020026?type=check_update&version=2

Stats 2022, 5 441

structure of ANNs, which creates complex functions from the input that can approximate an
observed outcome with minimal error. These issues require rendering systems explainable,
turning the black box into a white box, and allowing for a transparent exploration of the
various aspects of the underlying relationships captured by the model.

This significant shortcoming of neural-network modelling methods is the focus of
research in many studies on the topic, especially in the applicative context. Recently, in [2],
ANNs were employed to predict clinical outcomes, and some tools were introduced to
facilitate a better understanding of the model. The authors in [3] introduced a variant of
the traditional ANN to render the open-box learning network transparent when applied to
predict bubble-point pressure from a pressure–volume–temperature dataset.

Finding methods for extracting information on how input variables affect the response
variable is a recurring topic of research in neural networks. That problem can be ap-
proached in the general context of global sensitivity analysis, frequently aimed to analyze
the influence of input variables or factors in both in machine and statistical learning, and to
assess their relative importance in determining the value of an assigned output variable
(see [4,5] and references therein). In this context, identifying relevant features can improve
the estimated models’ generalized performance, and can give a better understanding and
insights to the black-box nature of the model.

Various proposed approaches can be grouped into five broad classes.
The first class includes methods that measure variable importance by using some

functions of neural network weights considering both their magnitude and their sign [6].
However, the number of weights in a neural network can be very large and even huge,
somewhat complicating computation. More importantly, single weights have no clear
interpretation, and different weight configurations might lead to the same network output,
hindering their usage for measuring variable importance.

The second group includes approaches based on forward stepwise addition or back-
ward stepwise elimination, where an input neuron is included or excluded along with
its weights. An appropriate metric can be used to highlight that effect by measuring the
relative importance of the corresponding input [7]. These methods are computationally
demanding and might produce different results depending on the order in which the inputs
are included in or excluded from the training process. Moreover, the dependence of the
final result from the initial training conditions of each model may negatively affect the
overall procedure.

The third group includes approaches based on some sieve interpretable model-agnostic
explanations. The behavior of a complex neural network model is locally approximated
with a simpler and more interpretable model, such as a linear regression or a decision
tree model [8]. Sieve approximators and local linearization deliver a measure of the input
variable importance just in specific regions of the dataset without giving any insight on the
quantitative importance of a given variable for the entire dataset.

The fourth group includes input perturbation methods where a small amount of
white noise is added to each input variable while keeping other inputs constant. The
importance of each input variable is measured by the resulting change in a proper chosen
error metric [7].

The last group includes approaches where sensitivity analysis is based on partial
derivatives. They perform sensitivity analysis by computing the partial derivatives of
ANN outputs with regard to input neurons evaluated on samples of the training dataset
(see [9–16]).

Global sensitivity based on partial derivatives may overcome the drawbacks of other
approaches. In this case, the effect of each input on the output is calculated in both mag-
nitude and sign, taking into account the values of optimal connection weights, activation
functions, and the values of each input. By using the complete dataset and the estimated
neural network model, the effect of the input variables in the response is calculated for real
values of the data, avoiding information loss due to considering just a subsample of the
data, a subset of the weights, or the use of a different type of local sieve approximators.

Stats 2022, 5 442

The partial derivatives can be considered to be a more robust diagnostic tool since they
depend on the capability of the neural network model in predicting the output. In other
words, if an ANN can accurately predict the output, the partial derivatives of the output
with respect to each input remain unchanged regardless of both training conditions and
the topology of the network [2].

The aim of the paper is to propose and discuss a statistical procedure for extracting
information on how the input features of an ANN model affect the response variable. The
approach from a strong inferential statistical perspective allows for the identification of
a set of relevant variables and gives some insights on the back-box nature of the ANN
model. The approach uses as a sensitivity measure, the conditional expectation of the
squared partial derivatives of the output with respect to the inputs. It is based on a joint
statistical test for the selection of a relevant set of input variables, and it extensively uses
bootstrap for the approximation of test statistic distributions under the null. As a side
product, the same bootstrap distribution can be used for the construction of confidence
intervals for the average absolute impact of the inputs on the output for those variables
that had been identified as relevant. As a resampling scheme, we propose using the
pair bootstrap since it delivers consistent results in a regression setup under general
assumptions. This is an essential requirement for neural networks that are intrinsically
misspecified statistical models.

The paper is organized as follows. Section 2 describes the structure of the data-
generating process and introduces the considered neural network model Section 3 discusses
the proposed multiple testing procedure and the bootstrap resampling scheme for the
inference on the input sensitivity measures. Section 4 reports the results of some numerical
examples and a small Monte Carlo experiment. Some remarks close the paper.

2. Neural Networks for Nonlinear Regression Models

Let zT = (Y, xT) be a random vector of order (d + 1) with joint distribution π, where
Y denotes the variable of interest, and x is a vector of order d of explanatory variables
with marginal distribution µ. The probabilistic relationship between x and Y is completely
summarized by the conditional probability law of Y given x. Certain aspects of that
conditional probability law play a crucial role in the application. In particular, conditional
expectation E(Y|x) gives the value of Y that is realized “on average”, given a particular
realization for x. Whenever E(Y|x) exists, it can solely be represented as a function of x,
that is,

g(x) = E(Y|x) (1)

for some mapping g : Rd → R.
The expected value for Y, given that we observe a realization of x, is g(x). This value

is only correct on average. The actual realization of Y almost always differs from g(x). We
can define a random error term as ε = Y− g(x). Since g(x) = E(Y|x), we can also write

Y = g(x) + ε.

where unknown deterministic regression function g(·) is continuously differentiable and
embodies the systematic part of the stochastic relation between and Y and x. Function
g(·) is the natural object of interest in many applications. By the definition of ε and
by the properties of conditional expectation, it follows that E(ε|x) = 0. That is, the
average error term given any realization of x is zero. As usual, we further assumed that
E(ε2|x) = σ2 < ∞.

Regression function g(·) can be approximated by using neural networks with a single
output and additive nodes, clarifying what is actually learned by the artificial neural
networks in a nonlinear regression framework. The class of used ANNs is defined as:

F =
{

f (x, w), x ∈ Rd, w ∈ W ⊂ Rm(d+2)+1
}

(2)

Stats 2022, 5 443

with:

f (x, w) = β0 +
m

∑
`=1

β`ψ
(

aT
` x + b`

)
where wT = (β0,β1, . . . , βm, aT

1 , aT
2 , . . . , aT

m, b1, . . . , bm), m is the hidden layer size, ψ(·) is
a monotone, bounded, differentiable, real function with non-negative derivative at each
point (sigmoidal activation function), {a`} are d dimensional vectors of weights for the
connections between input layer and hidden layer, {β`} are the weights of the link between
hidden layer and output, {b`} are the bias terms of the hidden neurons. Network weights
w are restricted here to lie in a compact set W of finite dimension given by total number of
weights m(d + 2) + 1.

Let X ≡ {zi, i = 1, 2, . . . , n}, with zT
i = (Yi, xT

i) a random sample of size n. Once the
neural network topology is fixed, the estimation of the network weights (learning) can be
obtained as:

ŵn = arg min
w∈W

n

∑
i=1

q(Yi, f (xi, w)) (3)

where q(·) is a proper chosen loss function.
Under general regularity conditions, vector ŵn exists and converges almost surely to

w0, given by:

w0 = arg min
w∈W

∫
q(y, f (x, w) dπ(z), (4)

if the integral exists and the optimization problem has a unique solution vector interior to
W. This latter condition is necessary to avoid numerous distinct weight vectors yielding
identical network outputs, which could be a severe challenge when dealing with this
kind of model. However, several authors [17] provided sufficient conditions to ensure
uniqueness of w0 in a suitable parameter space W for specific network configurations.

Generally, the stability of the network solution can be improved by considering a
regularized version of the optimization problem (3)

ŵn = arg min
w∈W

n

∑
i=1

q(Yi, f (xi, w)) +
λ

2
‖w‖2 (5)

where ‖·‖ is the L2-norm, and λ is a regularization parameter called weight decay, as it
forces weights to decay towards zero. Larger weight values of the ANN are more penalized
if the value of λ is large. Similarly, for a smaller value of λ, the regularization effect is
smaller. This parameter is usually fixed by cross-validation.

Aadvantages related to the use of ANNs are that, with sufficiently many hidden units
and properly adjusted parameters, they can approximate any regular function arbitrarily
well. Particularly, in [18], the authors gave conditions ensuring that multilayer feedforward
networks with a single hidden layer and an appropriately smooth hidden layer activation
function are capable of an arbitrarily accurate approximation to an arbitrary function and
its derivatives. Moreover, when compared to other nonparametric approaches, ANNs are
less sensitive to the “curse of dimensionality”, allowing for applications of that modelling
strategy even to sparse problems in a high dimension.

However, despite their proven theoretical capabilities of nonparametric universal ap-
proximation for a general class of nonlinear regression functions, ANNs face a challenging
issue related to the specification of the network topology in accordance with the underlying
structure of the data. This involves the specification of the size and design of the input
layer, the size of the hidden layer, and signal processing within nodes (i.e., the choice of the
activation function).

In this context, popular approaches are pruning, stopped training, and regularization.
However, these techniques generally focus on single weights rather than on single variables,
and consequently suffer from a lack of interpretability of which variable is relevant to the
model. Moreover, as already highlighted, they are often routinely applied and computation-

Stats 2022, 5 444

ally justified. They are often inserted into the “black-box” model without any possibility
again to evaluate the relevance and the influence of a variable on the model. Instead, it
would be interesting to look at the choice of the network topology by including it in global
sensitivity analysis.

To address the problem in the context of network design, it is helpful to underline
the different roles in the model of explanatory variables and hidden layer neurons. The
former relates to explanatory variables valid for the identification and interpretation of
the model; the latter, apparently without significance, plays the same role of smoothing
parameters in other nonparametric techniques, taking into account the trade-off between
bias and variability.

Here, we focus on input variables and propose the expectation of some function of
the derivatives of the ANN as a relevance measure to identify those inputs that play a
relevant role on the output. Pruning the estimated neural network model of those irrelevant
inputs improves the capability of the neural network to model the relationship between
response and explanatory variables, and consequently the quality of information that can
be extracted from the model. Moreover, the use of partial derivatives resembles the usual
approach used in linear and nonlinear parametric models, where they are expressed as a
function of the parameters, greatly improving the general interpretability of the model.

However, using the partial derivatives method has some disadvantages that cannot
be ignored. First, computing derivatives is a time-consuming process, especially when
considering complex networks with many hidden nodes and layers. Computing time
grows with the size of the network and the size of the sample used for training. Second,
input variables need to be normalized when using this approach, since the scale of each
variable may influence the value of the partial derivatives, producing possibly misleading
results. However, normalization steps are routinely used in ANN modelling in order
to improve the training process, so they are not specifically connected to the sensitivity
analysis step.

Variable selection procedures based on partial derivatives were proposed and dis-
cussed in a time series context in [11,12,15] using subsampling as a resampling scheme.
In this paper, we further explore those ideas in the more general framework of sensitivity
analysis and interpretable or explainable machine learning.

3. Bootstrap Inference for Input Sensitivity Measures

Given Model (1), the hypotheses that independent variable Xj has no effect on Y can
be written as:

∂g(x)
∂Xj

= 0, ∀x, j = 1, 2, . . . , d. (6)

Function g is unknown, but we equivalently investigate hypotheses

f j(x; w0) =
∂ f (x; w0)

∂Xj
= 0, ∀x, j = 1, 2, . . . , d. (7)

since f is known, and w0 can be closely approximated.
Function f j(x; w0) is a random variable, and a general formulation for any sensitivity

index derived from it is given by:

θh,j = E
[
h(f j(x, w0))

]
(8)

where h(·) is a proper chosen function, and E[·] is the expected value regarding probability
measure µ of the vector of the explanatory variables. Asymptotic results can be established
by assuming that function h(·) is continuously measurable and differentiable of order 2, as
in [11]. Those sufficient conditions are fulfilled if h(x) = x2 (squared average derivative)
and h(x) = x (average derivative). The mean squared derivative should be preferred
to the mean derivative. It does not retain any information on the sign of the effect of
the predictor on the output, but it avoids any cancelation effects that might be due to

Stats 2022, 5 445

compensation on average between negative and positive values of the derivatives. As
an alternative, to prevent cancelation effects, the absolute average derivative (h(x) = |x|)
might be considered as well. Even if it does not fulfil the previous assumption, Monte Carlo
simulation experiments show that it delivers good results in finite samples, comparable to
those obtained by using h(x) = x2.

Sensitivity Index (8) can be used for variable selection. On average, variable Xj has no
effect on output Y (i.e., it is not relevant to the model) if:

θh,j = 0

Given estimated network weights ŵn, an estimate of relevance measure θh,j is given by:

θ̂n,h,j = n−1
n

∑
i=1

h
(

f j(xi, ŵn)
)

(9)

so including the complete network structure, all observations, and all network weights.
Any further inference step requires the knowledge of the sampling distribution of

θ̂n,h,j, j = 1, 2, . . . , d. That is, for x ∈ Rd,

Gn,h(x) = Pr
{

θ̂n,h,1 ≤ x1, θ̂n,h,2 ≤ x2, . . . , θ̂n,h,d ≤ xd
}

(10)

An asymptotic approximation can be derived under appropriate regularity conditions
on function h(·), loss function L(·), and the data-generating process (see [9,11]). However,
given the analytic and probabilistic complexity of the neural network estimator, it is dif-
ficult to derive and use for inference purposes. Here, as an alternative, we propose the
use of pair bootstrap (see [19]) that can be easily implemented when applied to neural net-
works. This resampling scheme renders the overall procedure robust with respect to model
misspecification, an important point since neural networks are intrinsically misspecified
models. Moreover, it is able to deliver consistent results under general assumptions when
applied to nonlinear data structures. Unlike model-based bootstrap techniques, such as the
residual and wild bootstrap, the pair bootstrap consists of bootstrapping pairs or tuples of
the dependent and explanatory variables in the regression model.

In particular, the pair bootstrap runs as follows:

1. Let {(Y∗i , x∗Ti), i = 1, . . . , n} be an i.i.d. sample from set of tuples X .
2. Select m, the hidden layer size, and obtain the bootstrap counterpart of the neural

network weights:

ŵ∗n = arg min
w

=
n

∑
i=1
L(Y∗i , f (x∗i ; w)). (11)

3. Obtain θ̂∗n,h,j as the bootstrap counterpart of θ̂n,h,j, with j = 1, 2, . . . , d.

4. The probabilistic law of θ̂∗n,h,j, j = 1, 2, . . ., d, given observed sample X , can be used to

approximate the unknown sampling distribution of θ̂n,h,j, j = 1, 2, . . . , d, let’s say Ĝn,h.

As usual, bootstrap distribution can be approximated by Monte Carlo simulations, as
detailed in Algorithm 1.

Stats 2022, 5 446

Algorithm 1 Calculate bootstrap distribution Ĝ∗n,h.

Require: Sample X ≡
{
(Yi, xT

i), i = 1, 2, . . . , n
}

Require: Number of bootstrap runs B ≥ 1000
Require: Function h(·)

while b ≤ B do
Draw

{
(Yb

i , xbT
i), i = 1, 2, . . . , n

}
an i.i.d. sample from X

Compute ŵb
n = arg minw = ∑n

i=1 L
(

Yb
i , f
(

xb
i ; w

))
Compute θ̂b

n,h,j = n−1
n
∑

i=1
h
(

f j

(
xb

i , ŵb
n

))
, j = 1, 2, . . . , d

end while
Compute Monte Carlo bootstrap distribution as empirical cumulative distribution func-
tion (ECDF) of θ̂b

n,h,j, b = 1, 2, . . . , B, j = 1, 2, . . . , d, namely Ĝ∗n,h:

Ĝ∗n,h(u) = B−1
B

∑
b=1

I
{

θ̂b
n,h,1 ≤ u1, θ̂b

n,h,2 ≤ u2, . . . , θ̂b
n,h,d ≤ ud

}
(12)

where, as usual, I(·) denotes the indicator function.

Sensitivity measures along with bootstrap distribution can be used in a formal testing
procedure. Let us assume that h(x) = x2, in order to avoid any cancellation effect. The hy-
pothesis that a given set of variables {X1, X2, . . . , Xd} has no effect on Y can be formulated
in a multiple testing framework as:

Hj : θj,L2 = 0 vs H′j : θj,L2 > 0, j = 1, 2, . . . , d. (13)

where θj,L2 = E
[

f 2
j (x, w0)

]
, with symbol L2 denoting the use of a mean square function to

summarize sensitivities.
Each null Hj in (13) can be tested by using statistic

Tn,j = n−1
n

∑
i=1

f 2
j (xi, ŵn), (14)

and vector ŵn is a consistent estimator of unknown parameter vector w0. Large values of
the test statistics indicate evidence against hypothesis Hj.

The problem here is the large number of hypotheses to test, and the problem to
produce true rejections is the main issue. In this context of data snooping, when a significant
adjustment for multiple-hypothesis testing is necessary, the usual approach is to control
(asymptotically) the familywise error rate (FWE), the probability of producing one or more
false rejections. Several approaches are proposed in the literature, ranging from simple
techniques such as the Bonferroni method or Holms’ stepwise procedure to more complex
approaches that greatly use resampling techniques, such as the Reality Check [20] and the
StepM procedure [21,22]. The first two procedures are too conservative since they do not
take into account the dependence structure of individual p-values, while resampling-based
approaches are more suitable for the joint comparison of multiple misspecified models.
However, controlling the FWE could be too stringent when the number of hypotheses is
vast, rendering true rejections very difficult. In this context, it could be more appropriate to
control the probability of producing k or more false rejections for some integer k greater
than or equal to 1 (k-FWE). Here, we use the k-StepM procedure proposed in [23], which is
suitable for the joint comparison of several unspecified models while keeping the k-FWE
under control.

The procedure runs as follows.
Relabel the hypothesis from Hr1 to Hrd in redescending order with respect to the

value of test statistics Tn,j, that is Tn,r1 ≥ Tn,r2 ≥ . . . ≥ Tn,rd . Define cK(1− α, k, Gn,h) =

Stats 2022, 5 447

inf{x : Pr(k- maxs∈K(Tn,rs − θrs) ≤ x) ≥ 1− α)} where K ⊂ {1, · · · , d} and k- maxs∈K(xs)
is the k-th largest value of xs with s ∈ K.

The step-down procedure begins by testing the joint null hypothesis that all hypotheses
Hj are true. This hypothesis is rejected if Tn,r1 is large; otherwise, all hypotheses are
accepted. In other words, in the first step, the procedure constructs a rectangular joint
confidence region for vector

(
θr1 , . . . , θrd

)T , with nominal joint coverage probability 1− α.
The confidence region is of the form

[Tn,r1 − c1, ∞)× · · · ×
[
Tn,rd − c1, ∞

)
where common value c1 is chosen to ensure proper joint (asymptotic) coverage probabil-
ity. That is, c1 = c{1,··· ,d}(1− α, k, Gn,L2). If a particular individual confidence interval[

T̂n,rj − c1, ∞
)

does not contain zero, corresponding null hypothesis Hrs is rejected.
If the first R1 relabeled hypotheses are rejected in the first step, then d− R1 hypothe-

ses remain corresponding to labels rR1+1, . . . , rd. In the second step, a rectangular joint
confidence region for vector

(
θR1+1, . . . , θrd

)T is constructed with nominal joint coverage
probability 1− α again. The new confidence region has the form[

Tn,rR1+1 − c2, ∞
)
× · · · ×

[
Tn,rd − c2, ∞

)
where common constant c2 is chosen to ensure proper joint (asymptotic) coverage probabil-
ity. That is,

c2 = max
{

cK(1− α, k, Gn,L2) : K = I ∪ {R1 + 1, · · · , d}, I ⊂ {1, · · · , R1}, |I| = k− 1
}

.

Again, if a particular individual confidence interval
[

Tn,rj − c2, ∞
)

does not contain
zero, corresponding null hypothesis Hrj is rejected.

If no further hypotheses are rejected in the second step, the procedure stops. Otherwise,
the stepwise process continues until no further hypotheses are rejected.

The critical values in each step of the multiple testing scheme can be estimated using
the previously described pair bootstrap procedure, as detailed in Algorithm 2.

Algorithm 2 Calculate ĉj, j = 1, 2, . . . with pair bootstrap.

Require: Tb
n,1, Tb

n,2, . . . , Tb
n,d, with b = 1, 2, . . . , B

Require: K
while b ≤ B do

Compute kmaxb
n,K = k- maxs∈K

(
Tb

n,rs − Tn,rs

)
end while
Compute ĉK(1− α, k, Ĝn,L2), 1− α empirical quantile of

{
kmaxb

n,K, b = 1, 2, . . . , B
}

if j = 1 then
ĉ1 = ĉ1,...,d(1− α, k, Ĝn,L2)

end if
if j > 1 then

ĉj = max
{

ĉK(1− α, k, Ĝn,L2) : K = I ∪
{

Rj−1, · · · , d
}

, I ⊂
{

1, · · · , Rj−1
}

, |I| = k− 1
}

end if

The procedure can easily be modified for different choices of function h(·) with some
caution.

If h(x) is the identity function, θj = E
[

f j(x, w0)
]
, and θ̂n,j is the mean sensitivity,

that is, the arithmetic mean of first-order derivatives of the target variable with respect to
the input variable. This is a popular sensitivity measure used in many applications. In
that case, the testing procedure could in principle easily be adapted by considering two-

Stats 2022, 5 448

sided alternatives and including absolute values of the test statistics and of the bootstrap
replicates. However, if cancellation effects arise, the test procedure may be misleading.

The testing procedure remains basically the same, fully effective for any other function
h that avoids cancellation effects. A notable example is the mean absolute sensitivity mea-
sure where h(x) = |x|. Here, sensitivity is given by θj,L1 = E[| f j(x, w0)|] and estimated as

θ̂n,j,L1 = n−1
n

∑
i=1

∣∣ f j(x, ŵn)
∣∣.

Once the set of relevant variables is detected, a confidence interval for the average
absolute effect of a given input on the output can be easily derived, exploiting the same boot-
strap distribution used for the multiple testing procedure. More specifically, a confidence
interval of nominal level 1− α for θj,L1 is given by[

θ̂n,j,L1 − q̂(1− α/2), θ̂n,j,L1 − q̂(α/2)
]
,

where q̂(α) is the α quantile of the bootstrap distribution computed as ECDF of {θ̂b
n,j,L1

− θ̂n,j,
b = 1, 2, . . . , B}. The sign of the average impact is deduced by the sign of θj,L1 .

4. Numerical Examples and Simulations

To investigate and evaluate the performance and ability of the bootstrap proce-
dure to give insight into the black-box nature of ANNs from an explainable machine-
learning perspective, some numerical examples and a small Monte Carlo simulation were
implemented.

As the data generation process, three different models were used to generate synthetic data.
Model M1 was introduced in [24], where Y depends on 10 explicative variables

{X1, X2, . . . , X10}, but just variables {X3, X4, X5, X6} are relevant to the model. The specifi-
cation is

Y = 3ψ(2X3 + 4X4 + 3X5 + 3X6) + 3ψ(2X3 + 4X4 − 3X5 − 3X6) + ε,

where ψ(·) is the logistic activation function, {X3, X4, X5, X6}T is a vector of multivariate
Gaussian random variables with zero mean, unit variance and pairwise correlation equal to
0.5, and ε is Gaussian with zero mean and variance equal to 0.7. This gives a signal-to-noise
ratio roughly equal to 1.2. An ANN with a logistic activation function, four input neurons,
and two hidden neurons is a correctly specified model, and no misspecification is present.

Model M2 was introduced in [25], where Y depends on 10 explicative variables
{X1, X2, . . . , X10}, but just variables {X4, X5, X6} are relevant to the model. The specifica-
tion is

Y = cos
(

2π√
3

√
(X4 − 0.5)2 + (X5 − 0.5)2 + (X6 − 0.5)2

)
+ ε, (15)

where (X4, X5, X6)
T is randomly drawn from the unit hypercube. The regression function

is radially symmetric in these three variables, and ε is a Gaussian random variable with
zero mean and variance equal to 0.7. The number of the neurons in the hidden layer is
unknown, so the neural network model is by construction misspecified.

Model M3 was introduced in [26], where Y depends on 10 explicative variables
{X1, X2, . . . , X10}, but just variables {X3, X4, X5, X6, X7} are relevant. The specification is

Y =
(

10 sin(πX3X4) + 20(X5 − 0.5)2 + 10X6 + 5X7 + ε
)

/25 (16)

where all explicative variables are randomly drawn from the unit hypercube, and ε is a
Gaussian random variable with zero mean and variance equal to 0.7.

Those three models were nonparametrically approximated with neural networks.
For the training step, since the appropriate topology of the networks tends to not be too

Stats 2022, 5 449

complex, the optimization problem was treated as a nonlinear least-squares problem and
solved with a Broyden–Fletcher–Goldfarb–Shanno algorithm, which is more efficient and
requires little intervention from the user. That may be seen as an alternative learning
process with respect to the backpropagation algorithm, a first-order gradient method for
parameter optimization that suffers from slow convergence, local minima problems, and
high sensitivity to the choice of tuning parameters (learning rate, momentum, etc.). For the
resampling step, we used a local bootstrap scheme where, in each bootstrap, replicating the
training is initialized by using the estimated values of the weights. That strategy allows for
more efficient and stable convergence to the solution in each bootstrap run. For all cases,
hidden layer size and weight decay were identified by using 10-fold cross-validation, a
very effective approach for neural network topology design. Sample sizes were fixed at
n = 300 and n = 1000.

In Table 1 we report the result of the k-FWE testing procedure with k = 1 and α = 0.10
for a dataset generated from Model M1 (Tibishirani). Here, the hidden layer size was known,
so just weight decay was selected via 10-fold cross-validation. The testing procedure clearly
identified the true relevant variables set for both n = 300 and n = 1000 in just one step. A
plot of the sequential k-FWE test procedure, that is, a plot of the joint confidence regions in
each step, is reported in the left panels of Figures 1 and 2. In Table 2, we report values of
mean sensitivity and mean absolute sensitivity, and the limits of the bootstrap confidence
intervals with nominal level 1 − α = 0.90. Confidence intervals are only reported for
the relevant variables and depicted in the right panels of Figures 1 and 2, where different
colors identify the type of impact (positive or negative) that the given predictor had on the
dependent variable, identified with the sign of the corresponding mean sensitivity statistic.

0.0

0.2

0.4

0.6

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 Not relevant

0.0

0.2

0.4

0.6

0.8

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 1. Model M1 (Tibishirani). Case n = 300. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90 for those variable that are relevant
to the model.

Stats 2022, 5 450

0.00

0.25

0.50

0.75

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 Not relevant

0.0

0.2

0.4

0.6

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 2. Model M1 (Tibishirani). Case n = 1000. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90 for relevant variables to the model.

In Table 3, we report the result of the k-FWE testing procedure with k = 1 and α = 0.10
for a dataset generated from Model M2 (De Vleaux). Here, the number of neurons in the
hidden layer was not known, so both hidden layer size and weight decay were selected
via 10-fold cross-validation. In this case, the testing procedure could correctly identify
the true relevant variables set for both n = 300 and n = 1000 in just one step. A plot of
the sequential k-FWE test procedure is reported in the left panels of Figures 3 and 4. In
Table 4, we report values of mean sensitivity and mean absolute sensitivity, and the limits
of the bootstrap confidence intervals with nominal level 1− α = 0.90. Again, confidence
intervals are only reported for the relevant variables and depicted in the right panels of
Figures 3 and 4. There was some cancellation effect on the mean sensitivity measures with
values of the statistic very close to zero. However, both mean absolute sensitivity and
mean squared sensitivity correctly identified the relevant variables. In any case, in different
datasets, the sign of metrics very close to zero does not deliver unambiguous information.

0.0

0.4

0.8

1.2

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 Not relevant

0.00

0.25

0.50

0.75

1.00

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 3. Model M2 (De Vleaux). Case n = 300. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90 for relevant variables to the model.

Stats 2022, 5 451

0.00

0.25

0.50

0.75

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 Not relevant

0.00

0.25

0.50

0.75

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 4. Model M2 (De Vleaux). Case n = 1000. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90 for relevant variables to the model.

In Table 5, we report the result of the k-FWE testing procedure with k = 1 and α = 0.10
for a dataset generated from Model M3 (Friedman). Here, the number of neurons in the
hidden layer was again not known, so both hidden layer size and weight decay were
selected via 10-fold cross-validation. In this case, the test procedure could correctly identify
the true relevant variables set for both n = 300 and n = 1000, but it required two steps
for n = 300. A plot of the sequential k-FWE testing procedure is reported in the left
panels of Figures 5 and 6. In Table 6, we report the values of mean sensitivity and mean
absolute sensitivity, and the limits of the bootstrap confidence intervals with nominal level
1− α = 0.90. Again, confidence intervals are only reported for the relevant variables and
depicted in the right panels of Figures 5 and 6. There was some cancellation effect on the
mean sensitivity measures with values of the statistic very close to zero. However, both
mean absolute sensitivity and mean squared sensitivity correctly identified the relevant
variables. In any case, in different datasets, the sign of those metrics very close to zero does
not deliver unambiguous information.

0.0

0.1

0.2

0.3

0.4

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 2 Not relevant

0.0

0.2

0.4

0.6

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 5. Model M3 (Friedman). Case n = 300. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90 for relevant variables to the model.

Stats 2022, 5 452

0.0

0.1

0.2

0.3

0.4

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
S

qu
ar

ed
 S

en
si

tiv
ity

StepRej 1 Not relevant

0.0

0.2

0.4

0.6

X01 X02 X03 X04 X05 X06 X07 X08 X09 X10

M
ea

n
A

bs
ol

ut
e

S
en

si
tiv

ity

Impact −1 0 1

Figure 6. Model M3 (Friedman). Case n = 1000. (left) Values of test statistic Tn and critical values
Tn − ĉ(1− α, k). (right) Values of mean absolute sensitivity along with bootstrap confidence limits
with B = 1999 bootstrap replicates and nominal level 1− α = 0.90, for relevant variables to the model.

A small Monte Carlo simulation was conducted to evaluate the impact of the choice of
hidden layer size and of the value of weight decay on the performance of the input selection
test procedure. The experimental design considered three data generating processes (Mod-
els M1, M2, and M3), two sample sizes (n = 300 and n = 1000), seven values for the hidden
layer sizes (m ∈ {2, 3, . . . , 8}), and three values for weight decay (λ ∈ {0.01, 0.05, 0.1}).

In Figure 7, we report the percentage of rejections for each variable in set {X01, X02, . . . ,
X10} for Model M1. The ideal plot is the one where those percentages are equal to 1 for
those variables that are relevant to the model ({X03, X04, X05, X06}), and equal to 0 for those
variables that are irrelevant. For m = 2 (the correct number of neurons in the DGP), the
procedure delivered excellent results for both n = 300 and n = 1000 in all considered
weight-decay cases. When the hidden layer size increases, some problems might arise
due to some overfitting effect, especially for smaller samples. However, by increasing
the weight decay, and thereby by reducing overfitting, the good properties of the input
selection testing procedure are recovered. Therefore, using a proper value of weight decay
renders the overall procedure somewhat robust with respect to the choice of the hidden
layer size. That is quite an interesting point to address, especially when comparing the
neural network estimator to other nonparametric regression estimators, where the choice
of the smoothing parameter is crucial.

In Figure 8, we report the percentage of rejections for each variable in set {X01, X02, . . . ,
X10} for Model M2. The ideal plot is one where those percentages are equal to 1 for those
variables that are relevant to model {X04, X05, X06}, and equal to 0 for those variables
that are irrelevant. In the case of serious underfitting (m = 2), the procedure clearly
failed to correctly identify the set of relevant variables, even by increasing both sample
size and weight-decay value. By increasing the hidden layer size, there were several
combinations of m and λ that produced excellent results, confirming the robustness of the
input identification testing procedure by controlling k-FWE. All relevant variables had a
radial structure, so the mean derivatives were close to zero due to cancellation effects. That
may hinder their identification in presence of heavy underfitting or overfitting. However,
underfitting can be easily solved by increasing the hidden layer size, while overfitting can
be avoided using several strategies. The use of a penalized training function is just one
example among many alternatives.

Stats 2022, 5 453

2 3 4 5 6 7 8

0.01
0.05

0.1

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

Figure 7. Model M1 (Tibishirani). Proportion of rejections of null hypothesis based on k-FWE test
with k = 1 for 10 input variables, different combinations of hidden layer sizes (m ∈ {2, 3, . . . , 8}), and
weight-decay values (λ ∈ {0.01, 0.05, 0.1}). Nominal FWE was fixed at α = 0.10, 500 Monte Carlo
runs, B = 999 bootstrap replicates, and n = 300 (in red) and n = 1000 (in blue).

2 3 4 5 6 7 8

0.01
0.05

0.1

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

Figure 8. Model M2 (DeVleaux). Proportion of rejections of null hypothesis based on k-FWE test with
k = 1 for 10 input variables, different combinations of hidden layer sizes (m ∈ {2, 3, . . . , 8}), and of
weight-decay values (λ ∈ {0.01, 0.05, 0.1}). Nominal FWE was fixed at α = 0.10, 500 Monte Carlo
runs, B = 999 bootstrap replicates, and n = 300 (in red) and n = 1000 (in blue).

In Figure 9, we report the percentage of rejections for each variable in set {X01, X02, . . . ,
X10} for Model M3. The ideal plot is one where those percentages are equal to 1 for
those variables that are relevant to model {X04, X05, X06, X07}, and equal to 0 for those
variables that are irrelevant. Again, the most difficult variable to identify was the one with

Stats 2022, 5 454

a radial structure (X05). In all other cases, the procedure again appeared to be quite robust,
delivering excellent performance for several combinations of m and λ.

2 3 4 5 6 7 8

0.01
0.05

0.1

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

X01
X02
X03
X04
X05
X06
X07
X08
X09
X10

Figure 9. Model M3 (Friedman). Proportion of rejections of null hypothesis based on k-FWE test with
k = 1, for 10 input variables, different combinations of hidden layer sizes (m ∈ {2, 3, . . . , 8}), and
weight-decay values (λ ∈ {0.01, 0.05, 0.1}). Nominal FWE was fixed at α = 0.10, 500 Monte Carlo
runs, B = 999 bootstrap replicates, and n = 300 (in red) and n = 1000 (in blue).

Table 1. Model M1 (Tibishirani), Test statistic Tn, k-FWE rejection step (Step Rej), lower limits of
bootstrap confidence region (Low = Tn − ĉ(1− α, k)) with B = 1999 replicates and nominal level
1− α = 0.90, for n = 300 and n = 1000 observations.

X
n = 300 n = 1000

Tn Step Rej Low Tn Step Rej Low

X01 0.001 Not relevant −0.008 0.000 Not relevant −0.002
X02 0.000 Not relevant −0.009 0.000 Not relevant −0.002
X03 0.189 1 0.058 0.237 1 0.160
X04 0.743 1 0.612 0.867 1 0.791
X05 0.152 1 0.021 0.228 1 0.152
X06 0.184 1 0.054 0.227 1 0.151
X07 0.000 Not relevant −0.009 0.000 Not relevant −0.002
X08 0.001 Not relevant −0.008 0.000 Not relevant −0.002
X09 0.004 Not relevant −0.005 0.000 Not relevant −0.002
X10 0.001 Not relevant −0.008 0.000 Not relevant −0.002

Stats 2022, 5 455

Table 2. Model M1 (Tibishirani), mean absolute sensitivity (MAS), mean sensitivity (MS), lower
(Low) and upper (Up) bootstrap confidence interval limits with B = 1999 replicates and nominal
level 1− α = 0.90, for n = 300, and n = 1000 observations. For those variables that were not relevant,
no confidence limits are reported.

X
n = 300 n = 1000

MAS MS Low Up MAS MS Low Up

X01 0.017 0.003 − − 0.008 −0.002 − −
X02 0.007 0.000 − − 0.009 −0.009 − −
X03 0.350 0.350 0.295 0.403 0.372 0.372 0.344 0.399
X04 0.698 0.698 0.621 0.762 0.712 0.712 0.673 0.751
X05 0.305 −0.206 0.247 0.358 0.357 −0.145 0.323 0.385
X06 0.336 −0.238 0.274 0.387 0.357 −0.176 0.321 0.385
X07 0.008 0.006 − − 0.006 −0.006 − −
X08 0.023 −0.023 − − 0.012 −0.012 − −
X09 0.052 0.052 − − 0.008 0.008 − −
X10 0.019 0.004 − − 0.004 0.002 − −

Table 3. Model M2 (De Vleaux), Test statistic Tn, k-FWE rejection step (Step Rej), lower limits of the
bootstrap confidence region (Low = Tn − ĉ(1− α, k)) with B = 1999 replicates and nominal level
1− α = 0.90, for n = 300, and n = 1000 observations.

X
n = 300 n = 1000

Tn Step Rej Low Tn Step Rej Low

X01 0.017 Not relevant −0.075 0.002 Not relevant −0.022
X02 0.012 Not relevant −0.081 0.002 Not relevant −0.022
X03 0.038 Not relevant −0.055 0.004 Not relevant −0.020
X04 1.242 1 0.819 0.855 1 0.590
X05 0.755 1 0.332 0.849 1 0.583
X06 1.098 1 0.675 0.816 1 0.551
X07 0.009 Not relevant −0.084 0.003 Not relevant −0.021
X08 0.022 Not relevant −0.071 0.001 Not relevant −0.023
X09 0.020 Not relevant −0.073 0.001 Not relevant −0.024
X10 0.031 Not relevant −0.062 0.002 Not relevant −0.022

Table 4. Model M2 (De Vleaux), mean absolute sensitivity (MAS), mean sensitivity (MS), lower (Low)
and upper (Up) bootstrap confidence interval limits with B = 1999 replicates and nominal level
1− α = 0.90, for n = 300, and n = 1000 observations. For those variables that were not relevant, no
confidence limits are reported.

X
n = 300 n = 1000

MAS MS Low Up MAS MS Low Up

X01 0.111 −0.039 − − 0.035 0.026 − −
X02 0.084 −0.052 − − 0.036 −0.009 − −
X03 0.154 −0.013 − − 0.054 0.000 − −
X04 0.911 0.061 0.771 1.000 0.811 −0.004 0.741 0.874
X05 0.733 −0.088 0.604 0.861 0.793 0.065 0.691 0.831
X06 0.872 0.084 0.705 0.995 0.787 0.015 0.688 0.832
X07 0.075 −0.057 − − 0.045 −0.019 − −
X08 0.118 −0.038 − − 0.029 0.000 − −
X09 0.114 0.106 − − 0.019 −0.015 − −
X10 0.148 0.022 − − 0.040 −0.008 − −

Stats 2022, 5 456

Table 5. Model M3 (Friedman), Test statistic Tn, k-FWE rejection step (Step Rej), lower limits of the
bootstrap confidence region (Low = Tn − ĉ(1− α, k)) with B = 1999 replicates and nominal level
1− α = 0.90, for n = 300, and n = 1000 observations.

X
n = 300 n = 1000

Tn Step Rej Low Tn Step Rej Low

X01 0.001 Not relevant −0.006 0.000 Not relevant −0.001
X02 0.003 Not relevant −0.004 0.000 Not relevant −0.001
X03 0.308 1 0.229 0.404 1 0.359
X04 0.365 1 0.285 0.392 1 0.346
X05 0.383 1 0.303 0.346 1 0.301
X06 0.344 1 0.264 0.354 1 0.308
X07 0.077 2 0.065 0.081 1 0.035
X08 0.001 Not relevant −0.006 0.000 Not relevant −0.001
X09 0.004 Not relevant −0.004 0.001 Not relevant −0.001
X10 0.001 Not relevant −0.007 0.000 Not relevant −0.001

Table 6. Model M3 (Friedman), mean absolute sensitivity (MAS), mean sensitivity (MS), lower (Low)
and upper (Up) bootstrap confidence interval limits with B = 1999 replicates and nominal level
1− α = 0.90, for n = 300, and n = 1000 observations. For those variables that were not relevant, no
confidence limits are reported.

X
n = 300 n = 1000

MAS MS Low Up MAS MS Low Up

X01 0.032 0.003 − − 0.016 0.011 − −
X02 0.043 −0.001 − − 0.012 −0.008 − −
X03 0.460 0.375 0.411 0.500 0.531 0.372 0.503 0.558
X04 0.506 0.400 0.458 0.552 0.521 0.342 0.492 0.545
X05 0.555 −0.045 0.502 0.622 0.529 −0.011 0.499 0.568
X06 0.577 0.577 0.548 0.600 0.590 0.590 0.578 0.604
X07 0.272 0.272 0.251 0.300 0.282 0.282 0.270 0.295
X08 0.021 0.007 − − 0.009 0.003 − −
X09 0.045 0.038 − − 0.022 −0.003 − −
X10 0.021 0.008 − − 0.014 −0.004 − −

5. Concluding Remarks

Explainable machine learning is the focus of an increasing number of papers in both
theoretical and applied research. In this framework, we proposed and discussed a pro-
cedure for analyzing the influence and relative importance of input variables in neural
network modelling. In the general context of sensitivity analysis, the proposed approach
identifies the number and the type of input variables by using a solid inferential statistical
perspective based on a formal test procedure. It addresses the problem of data snooping
that might arise when a dataset is used more than once for inference and model selection.
Moreover, the approach extensively uses a pair bootstrap resampling technique to over-
come analytical and probabilistic difficulties related to estimating the sampling distribution
of the involved test statistics. Simulated datasets and a Monte Carlo study showed that the
overall procedure delivers good results and appears to be robust for model misspecification,
network topology identification, and tuning-parameter choice. The proposed method can
be extended to time-series data when considering pure nonlinear autoregressive depen-
dence structures. In this latter case, the pair bootstrap can deliver consistent estimators for
the involved sampling distribution in the inferential steps [27]. This is part of a different
line of research that is still under investigation.

Author Contributions: Conceptualization, M.L.R. and C.P.; methodology, M.L.R. and C.P.; writing—
original draft preparation, M.L.R. and C.P.; writing—review and editing, M.L.R. and C.P. All authors
have read and agreed to the published version of the manuscript.

Stats 2022, 5 457

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank three anonymous referees for their careful reading and
valuable comments and suggestions that greatly improved the final version of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hastie, T.; Tibishirani, R.; Frieman, J. The Elements of Statistical Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008.
2. Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H. Opening the black box of neural networks: Methods for

interpreting neural network models in clinical applications. Ann. Translactional Med. 2018, 6, 216–226. [CrossRef] [PubMed]
3. Wood, D.A.; Choubineh, A. Transparent open-box learning network and artificial neural network predictions of bubble-point

pressure compared. Petroleum 2020, 6, 375–384. [CrossRef]
4. Hart, J.L.; Bessac, J.; Constantinescu, E.M. Global Sensitivity Analysis for Statistical Model Parameters. SIAM/ASA J. Uncertain.

Quantif. 2019, 7, 67–92. [CrossRef]
5. Naik, D.L.; Kiran, R. A novel sensitivity-based method for feature selection. J. Big Data 2021, 8, 1–16. [CrossRef]
6. Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable importance in artificial neural

networks using simulated data. Ecol. Model. 2004, 178, 389–397. [CrossRef]
7. Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neural

network models. Ecol. Model. 2003, 160, 249–264. [CrossRef]
8. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You? Explaining the Predictions of Any Classifier. arXiv 2016,

arXiv:1602.04938.
9. White, H.; Racine, J. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates.

IEEE Trans. Neural Netw. 2001, 12, 657–673. [CrossRef]
10. Refenes, A.P.; Zapranis, A.D. Neural model identification, variable selection and model adequacy. J. Forecast. 1999, 18, 299–332.

[CrossRef]
11. La Rocca, M.; Perna, C. Variable selection in neural network regression models with dependent data: A subsampling approach.

Comput. Stat. Data Anal. 2005, 48, 415–429. [CrossRef]
12. La Rocca, M.; Perna, C. Neural network modeling by subsampling. In Computational Intelligence and Bioinspired Systems; Cabestany,

J., Prieto, A., Sandoval, F., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; p. 3512.
13. Giordano, F.; La Rocca, M.; Perna, C. Input variable selection in neural network models. Commun. Stat.-Theory Methods 2014, 43,

735–750. [CrossRef]
14. La Rocca, M.; Perna, C. Designing neural networks for modeling biological data: A statistical perspective. Math. Biosci. Eng. 2014,

11, 331. [CrossRef] [PubMed]
15. La Rocca, M.; Perna, C. Model selection for neural network models: A statistical perspective. In Computational Network Theory:

Theoretical Foundations and Applications; Dehmer, M., Emmert-Streib, F., Pickl, S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2015; pp. 1–27.

16. Pizarroso, J.; Portela, J.; Muñoz, A. NeuralSens: Sensitivity analysis of neural networks. arXiv 2020, arXiv:2002.11423.
17. Ossen, A.; Rügen, S.M. An analysis of the metric structure of the weight space of feedforward networks and its application to

time series modelling and prediction. In Proceedings of the 4th European Symposium on Artificial Neural Networks (ESANN96),
Bruges, Belgium, 24–26 April 1996; pp. 315–322.

18. Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer
feedforward networks. Neural Netw. 1990, 3, 551–560. [CrossRef]

19. Freedman, D.A. Bootstrapping regression models. Ann. Stat. 1981, 9, 1218–1228. [CrossRef]
20. White, H. A reality check for data snooping. Econometrica 2000, 68, 1097–1126. [CrossRef]
21. Romano, J.P.; Wolf, M. Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing. J. Am. Stat. Assoc. 2005, 100,

94–108. [CrossRef]
22. Romano, J.P.; Wolf, M. Stepwise multiple testing as formalized data snooping. Econometrica 2005, 73, 1237–1282. [CrossRef]
23. Romano, J.P.; Shaikh, A.M.; Wolf, M. Formalized data snooping based on generalized error rates. Econom. Theory 2008, 24, 404–447.

[CrossRef]
24. Tibshirani, R. A comparison of some error estimates for neural network models. Neural Comput. 1996, 8, 152–163. [CrossRef]
25. De Vleaux, R.D.; Schumi, J.; Schweinsberg, J.; Ungar, L.H. Prediction intervals for neural networks via nonlinear regression.

Technometrics 1998, 40, 273–282. [CrossRef]
26. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
27. Gonçalves, S.; Kilian, L. Bootstrapping autoregressions with conditional heteroskedasticity of unknown form. J. Econom. 2004,

123, 89–120. [CrossRef]

http://doi.org/10.21037/atm.2018.05.32
http://www.ncbi.nlm.nih.gov/pubmed/30023379
http://dx.doi.org/10.1016/j.petlm.2018.12.001
http://dx.doi.org/10.1137/17M1161397
http://dx.doi.org/10.1186/s40537-021-00515-w
http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013
http://dx.doi.org/10.1016/S0304-3800(02)00257-0
http://dx.doi.org/10.1109/72.935080
http://dx.doi.org/10.1002/(SICI)1099-131X(199909)18:5<299::AID-FOR725>3.0.CO;2-T
http://dx.doi.org/10.1016/j.csda.2004.01.004
http://dx.doi.org/10.1080/03610926.2013.804567
http://dx.doi.org/10.3934/mbe.2014.11.331
http://www.ncbi.nlm.nih.gov/pubmed/24245721
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1214/aos/1176345638
http://dx.doi.org/10.1111/1468-0262.00152
http://dx.doi.org/10.1198/016214504000000539
http://dx.doi.org/10.1111/j.1468-0262.2005.00615.x
http://dx.doi.org/10.1017/S0266466608080171
http://dx.doi.org/10.1162/neco.1996.8.1.152
http://dx.doi.org/10.1080/00401706.1998.10485556
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1016/j.jeconom.2003.10.030

	Introduction
	Neural Networks for Nonlinear Regression Models
	Bootstrap Inference for Input Sensitivity Measures
	Numerical Examples and Simulations
	Concluding Remarks
	References

