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Abstract: In a multiple linear regression model, the ordinary least squares estimator is inefficient
when the multicollinearity problem exists. Many authors have proposed different estimators to
overcome the multicollinearity problem for linear regression models. This paper introduces a new
regression estimator, called the Dawoud–Kibria estimator, as an alternative to the ordinary least
squares estimator. Theory and simulation results show that this estimator performs better than
other regression estimators under some conditions, according to the mean squares error criterion.
The real-life datasets are used to illustrate the findings of the paper.
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1. Introduction

Consider the following linear regression model:

y = Xβ+ ε, (1)

where y is an n× 1 vector of the dependent variable, X is a known n× p full rank matrix of explanatory
variables, and β is a p× 1 vector of unknown regression parameter. The ordinary least squares estimator
(OLS) of β in (1) is defined by

β̂ = S−1X′y, (2)

where S = X′X and ε is an n × 1 vector of disturbances with zero mean and variance–covariance
matrix, Cov(ε) = σ2In; In is an identity matrix of order nxn. Under the normality assumption of the
disturbances, β̂ follows N

(
β, σ2S−1

)
distribution.

In a multiple linear regression model, it is assumed that the explanatory variables are independent.
However, in real-life situations, there may be strong or near-to-strong linear relationships among the
explanatory variables. This causes the problem of multicollinearity. In the presence of multicollinearity,
it is difficult to estimate the unique effect of individual variables in the regression equations. Moreover,
the OLS estimator becomes unstable or inefficient and may produce the wrong sign (see Hoerl and
Kennard) [1]. To overcome these problems, many authors have introduced different kinds of one- and
two-parameter estimators: to mention a few, Stein [2], Massy [3], Hoerl and Kennard [1], Mayer and
Willke [4], Swindel [5], Liu [6], Akdeniz and Kaçiranlar [7], Ozkale and Kaçiranlar [8], Sakallıoglu and
Kaçıranlar [9], Yang and Chang [10], Roozbeh [11], Akdeniz and Roozbeh [12], Lukman et al. [13,14],
and, very recently, Kibria and Lukman [15], among others.
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The objective of this paper is to introduce a new class of two-parameter estimator for the regression
parameter when the explanatory variables are correlated and then to compare the performance of
the new estimator with the OLS estimator, the ordinary ridge regression (ORR) estimator, the Liu
estimator, the Kibria–Lukman (KL) estimator, the two-parameter (TP) estimator proposed by Ozkale
and Kaciranlar [8], and the new two-parameter (NTP) estimator that is proposed by Yang and
Chang [10].

Some Alternative Biased Estimators and the Proposed Estimator

The canonical form of Equation (1) is as follows:

y = Zα+ ε, (3)

where Z = XP and α = P′β. Here, P is an orthogonal matrix such that
Z′Z = P′X′XP = Λ = diag(λ1,λ2, . . . ,λp). The OLS estimator of α is as follows:

α̂ = Λ−1Z′y, (4)

and the mean squared error matrix (MSEM) of α̂ is given by

MSEM(α̂) = σ2Λ−1. (5)

The ORR of α [1] is given by
α̂(k) = W(k)α̂, (6)

where W(k) = [Ip + kΛ−1]
−1

, k is the biasing parameter, and

MSEM (α̂(k)) = σ2W(k)Λ−1W(k) + (W(k) − Ip)αα
′(W(k) − Ip)

′. (7)

The Liu estimator of α [6] is given by

α̂(d) = F(d)α̂, (8)

where F(d) = [Λ + Ip]
−1[Λ + dIp], d is the biasing parameter of Liu estimator, and

MSEM (α̂(d)) = σ2F(d)Λ−1F′(d) + (1− d)2(Λ + Ip)
−1αα′(Λ + Ip)

−1. (9)

The KL estimator of α [15] is given by

α̂KL = W(k)M(k)α̂, (10)

where M(k) = [Ip − kΛ−1] and

MSEM (α̂KL) = σ2W(k)M(k)Λ−1M′(k)W′(k)
+[W(k)M(k) − Ip]αα′[W(k)M(k) − Ip]′

(11)

The two-parameter (TP) estimator of α (Ozkale and Kaçiranlar [8]) is given by

α̂TP = Rα̂, (12)

where R = (Λ + kIp)
−1(Λ + kdIp), k and d are the biasing parameters, and

MSEM(α̂TP) = σ2RΛ−1R′ + [R− Ip]αα
′[R− Ip]

′. (13)
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The new two-parameter (NTP) estimator of α (Yang, H.; Chang [10]) is given by

α̂NTP = F(d)W(k)α̂, (14)

MSEM(α̂NTP) = σ2F(d)W(k)Λ−1W′(k)F′(d) + [F(d)W(k) − Ip]αα
′[F(d)W(k) − Ip]

′ (15)

The proposed new class of two-parameter estimator of α is obtained by minimizing (y−Zα)′(y−
Zα), subject to (α+ α̂)′(α+ α̂) = c, where c is a constant,

(y−Zα)′(y−Zα) + k(1 + d)[(α+ α̂)′(α+ α̂) − c]. (16)

Here, k and 1 + d are the Lagrangian multipliers.
The solution of minimizing the objective function

(y−Zα)′(y−Zα) + k[(α+ α̂)′(α+ α̂) − c]

is obtained by Kibria and Lukman [15] for getting the KL estimator and defined in Equation (10).
Now, the solution to (16) gives the proposed estimator as follows:

α̂DK = (Z′Z + k(1 + d)Ip)
−1(Z′Z− k(1 + d)Ip)α̂ = W(k, d)M(k, d)α̂, (17)

where W(k, d) = [Ip + k(1 + d)Λ−1]
−1

and M(k, d) = [Ip − k(1 + d)Λ−1].
The proposed estimator will be called the Dawoud–Kibria (DK) estimator and is denoted by α̂DK.
Moreover, the proposed DK estimator is also obtained by augmenting

−
√

k
√

1 + dα̂ =
√

k
√

1 + dα + ε′ to (3) and then using the OLS estimate. The MSEM of the
DK estimator is given by

MSEM (α̂DK) = σ2W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)
+[W(k, d)M(k, d) − Ip]αα′[W(k, d)M(k, d) − Ip]′

(18)

The main differences between the KL estimator and the proposed DK estimator are as follows:

- The KL is a one-parameter estimator, while the proposed DK is a two-parameter estimator.
- The KL estimator is obtained based on the objective function (y−Zα)′(y−Zα) + k[(α+ α̂)′(α+

α̂) − c], while the proposed DK estimator is obtained from a different objective function, which is
(y−Zα)′(y−Zα) + k(1 + d)[(α+ α̂)′(α+ α̂) − c].

- The KL estimator is a function of the shrinkage estimator k, while the proposed DK estimator is a
function of k and d.

- Since the KL estimator has one parameter and the proposed DK estimator has two parameters,
their MSEs are different.

- In the KL estimator, shrinkage parameter k needs to be estimated, while in the proposed DK
estimator, both k and d need to be estimated.

- The KL estimator is a special case of the proposed DK estimator when d = 0, so the proposed
DK estimator is the general estimator.

The following lemmas will be used to make some theoretical comparisons among estimators in
the following section.

Lemma 1 [16]. Let n× n matrices N > 0 and B > 0 (or B ≥ 0), then N > B if and only if λmax(BN−1) < 1 ,
where λmax(BN−1) is the maximum eigenvalue of matrix BN−1.

Lemma 2 [17]. Let B be an n× n positive definite matrix that is B > 0 and α be some vector, then B− αα′ > 0
if and only if α′B−1α < 1.
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Lemma 3 [18]. Let αi = Biy, i = 1, 2 be two linear estimators of α. Suppose that D = Cov(α̂1)−Cov(α̂2) >
0, where Cov(α̂i)i = 1, 2 is the covariance matrix of α̂i and bi = Bias(α̂i) = (BiX − I)α, i = 1, 2.
Consequently,

∆(α̂1 − α̂2) = MSEM(α̂1) −MSEM(α̂2) = σ2D + b1b′1 − b2b′2 > 0 (19)

if and only if b′2[σ2D + b′1b1]b2 < 1, where MSEM(α̂i) = Cov(α̂i) + bib′i.

The rest of this article is organized as follows: In Section 2, we give the theoretical comparisons
among the abovementioned estimators and derive the biasing parameters of the proposed DK estimator.
A simulation study is conducted in Section 3. Two numerical examples are illustrated in Section 4.
Finally, some concluding remarks are given in Section 5.

2. Comparison among the Estimators

2.1. Theoretical Comparisons among the Proposed DK Estimator and the OLS, ORR, Liu, KL, TP,
and NTP Estimators

Theorem 1. The proposed estimator α̂DK is superior to estimator α̂ if and only if

α′[W(k, d)M(k, d) − Ip]′[σ2(Λ−1
−W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))]

[W(k, d)M(k, d) − Ip]α < 1.
(20)

Proof. The difference of the dispersion matrices is given by

D(α̂) −D(α̂DK) = σ2(Λ−1
−W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))

= σ2diag
{

1
λi
−

(λi−k(1+d))2

λi(λi+k(1+d))2

} p

i = 1

(21)

where
Λ−1
−W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

will be positive definite (pd) if and only if

(λi + k(1 + d))2
− (λi − k(1 + d))2 > 0.

We observed that for k > 0 and 0 < d < 1,

(λi + k(1 + d))2
− (λi − k(1 + d))2 = 4k(1 + d)λi > 0.

Consequently, Λ−1
−W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d) is positive definite. �

Theorem 2. When λmax(HG−1) < 1, the proposed estimator α̂DK is superior to estimator α̂(k) if and only if

α′[W (k, d)M (k, d) − Ip]′[V1 + (W (k) − Ip)αα′(W (k) − Ip)′]

[W (k, d)M (k, d) − Ip]α < 1
(22)

λmax(HG−1) < 1, (23)

where
V1 = σ2(W(k)Λ−1W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)),

H = W(k, d)ΛW′(k, d) + k2(1 + d)2W(k, d)Λ−1W′(k, d),
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G = W(k)ΛW′(k) + 2k(1 + d)W(k, d)W′(k, d).

Proof.

V1 = σ2(W(k)Λ−1W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))
= σ2(W(k)Λ−1W′(k) −W(k, d)(Ip − k(1 + d)Λ−1)Λ−1(Ip − k(1 + d)Λ−1)W′(k, d))
= σ2Λ−1(W(k)ΛW′(k) + 2k(1 + d)W(k, d)W′(k, d)
−(W(k, d)ΛW′(k, d) + k2(1 + d)2W(k, d)Λ−1W′(k, d)))Λ−1

= σ2Λ−1(G−H)Λ−1.

It is clear that for k > 0 and 0 < d < 1, G > 0 and H > 0. It is obvious that G−H > 0 if and only if

λmax(HG−1) < 1,

where λmax(HG−1) is the maximum eigenvalue of the matrix HG−1. Consequently, V1 is positive
definite. �

Theorem 3. The proposed estimator α̂DK is superior to estimator α̂(d) if and only if

α′[W(k, d)M(k, d) − Ip]′[V2 + (1− d)2(Λ + Ip)
−1αα′(Λ + Ip)

−1]

[W(k, d)M(k, d) − Ip]α < 1
(24)

where V2 = σ2(F(d)Λ−1F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)).

Proof. Using the difference between the dispersion matrices

V2 = σ2(F(d)Λ−1F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))

= σ2diag
{

(λi+d)2

λi(λi+1)2 −
(λi−k(1+d))2

λi(λi+k(1+d))2

} p

i = 1

(25)

where
F(d)Λ−1F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

will be pd if and only if

(λi + k(1 + d))2(λi + d)2
− (λi − k(1 + d))2(λi + 1)2 > 0 or(λi + k(1 + d))(λi + d) − (λi − k(1 + d))(λi + 1) > 0.

So, if k > 0 and 0 < d < 1, (λi + k(1 + d))(λi + d) − (λi − k(1 + d))(λi + 1) = k(1 + d)(2λi + d +
1) + λi(d− 1) > 0. Consequently,

F(d)Λ−1F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

is positive definite. �

Theorem 4. The proposed estimator α̂DK is superior to estimator α̂KL if and only if

α′[W(k, d)M(k, d) − Ip]′[V3 + [W(k)M(k) − Ip]αα′[W(k)M(k) − Ip]′]

[W(k, d)M(k, d) − Ip]α < 1
(26)

where V3 = σ2(W(k)M(k)Λ−1M′(k)W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)).
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Proof. Using the difference between the dispersion matrices

V3 = σ2(W(k)M(k)Λ−1M′(k)W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))

= σ2diag
{

(λi−k)2

λi(λi+k)2 −
(λi−k(1+d))2

λi(λi+k(1+d))2

} p

i = 1
,

(27)

where
W(k)M(k)Λ−1M′(k)W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

will be pd if and only if

(λi + k(1 + d))2(λi − k)2
− (λi − k(1 + d))2(λi + k)2 > 0 or

(λi + k(1 + d))(λi − k) − (λi − k(1 + d))(λi + k) > 0.

Obviously, for k > 0 and 0 < d < 1,

(λi + k(1 + d))(λi − k) − (λi − k(1 + d))(λi + k) = 2kdλi > 0.

Consequently,

W(k)M(k)Λ−1M′(k)W′(k) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

is positive definite. �

Theorem 5. The proposed estimator α̂DK is superior to estimator α̂TP if and only if

α′[W(k, d)M(k, d) − Ip]
′[V4 + (R− Ip)αα

′(R− Ip)
′][W(k, d)M(k, d) − Ip]α < 1 (28)

where V4 = σ2(RΛ−1R′ −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)).

Proof.
V4 = σ2(RΛ−1R′ −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))

= σ2diag
{

(λi+kd)2

λi(λi+k)2 −
(λi−k(1+d))2

λi(λi+k(1+d))2

} p

i = 1
,

(29)

where
RΛ−1R′ −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

will be positive definite if and only if

(λi + kd)2(λi + k(1 + d))2
− (λi + k)2(λi − k(1 + d))2 > 0 or

(λi + kd)(λi + k(1 + d)) − (λi + k)(λi − k(1 + d)) > 0.

Clearly, for k > 0 and 0 < d < 1, (λi + kd)(λi + k(1 + d))− (λi + k)(λi − k(1 + d)) = λik(3d + 1) +
k2(1 + d)2 > 0. Consequently, RΛ−1R′ −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d) is pd. �

Theorem 6. The proposed estimator α̂DK is superior to estimator α̂NTP if and only if

α′[W(k, d)M(k, d) − Ip]′[V5 + (F(d)W(k) − Ip)αα′(F(d)W(k) − Ip)′]

[W(k, d)M(k, d) − Ip]α < 1
(30)

where V5 = σ2(F(d)W(k)Λ−1W′(k)F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)).

Proof.
V5 = σ2(F(d)W(k)Λ−1W′(k)F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d))

= σ2diag
{

λi(λi+d)2

(λi+1)2(λi+k)2 −
(λi−k(1+d))2

λi(λi+k(1+d))2

} p

i = 1
,

(31)
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where
F(d)W(k)Λ−1W′(k)F′(d) −W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d)

will be pd if and only if

λ2
i (λi + d)2(λi + k(1 + d))2

− (λi + 1)2(λi + k)2(λi − k(1 + d))2 > 0
or λi(λi + d)(λi + k(1 + d)) − (λi + 1)(λi + k)(λi − k(1 + d)) > 0.

Clearly, for k > 0 and 0 < d < 1,

λi(λi + d)(λi + k(1 + d)) − (λi + 1)(λi + k)(λi − k(1 + d)))
= λ2

i (k(1 + 2d) + d− 1) + λi(kd(2 + d + k) + k2) + k2(1 + d).

Consequently, F(d)W(k)Λ−1W′(k)F′(d)−W(k, d)M(k, d)Λ−1M′(k, d)W′(k, d) is positive definite.�

2.2. Determination of the Parameters k and d

Since both biasing parameters k and d are unknown and need to be estimated from the observed
data, we will give a short discussion on the estimation of the parameters in this subsection. The biasing
parameter k in the ORR estimator and the biasing parameter d in the Liu estimator were derived by
Hoerl and Kennard [1] and Liu [6], respectively. Different authors for different kinds of models have
proposed different estimators of k and d: to mention a few, Hoerl et al. [19], Kibria [20], Kibria and
Banik [21], Lukman and Ayinde [22], Mansson et al. [23], and Khalaf and Shukur [24], among others.

Now, we will discuss the estimation of the optimal values of k and d for the proposed DK estimator.
First, we assume that d is fixed, then the optimal value of k can be obtained by minimizing

MSEM(α̂DK) = E((α̂DK − α)
′(α̂DK − α)),

m(k, d) = tr(MSEM(α̂DK)),

m(k, d) = σ2
p∑

i = 1

(λi − k(1 + d))2

λi(λi + k(1 + d))2 + 4k2(1 + d)2
p∑

i = 1

α2
i

(λi + k(1 + d))2 (32)

Differentiating m(k, d) with respect to k and setting (∂m(k, d)/∂k) = 0, we obtain

k =
σ2

(1 + d)( σ2

λi
+ 2α2

i )
(33)

Since the optimal value of k in (33) depends on the unknown parameters σ2 and α2
i , we replace

them with their corresponding unbiased estimators. Consequently, we have

k̂ =
σ̂2

(1 + d)( σ̂2

λi
+ 2α̂2

i )
(34)

and

k̂min(DK) = min

 σ̂2

(1 + d)(σ̂2/λi + (2α̂2
i ))


p

i = 1

(35)

Furthermore, the optimal value of d can be obtained by differentiating m(k, d) with respect to d for
a fixed k and setting (∂m(k, d)/∂d) = 0, and we obtain

d =
σ2λi

m
− 1, (36)
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where m = k(σ2 + 2λiα
2
i ).

Additionally, the optimal d with known parameters is

d̂ =
σ̂2λi

m̂
− 1, (37)

where m̂ = k̂(σ̂2 + 2λiα̂
2
i ).

In addition,

d̂min(DK) =

 σ̂2λi

k̂min(DK)(σ̂2 + 2λiα̂2
i )
− 1


p

i = 1

(38)

The estimator determination of the parameters k and d in α̂DK is obtained iteratively as follows:
Step 1: Obtain an initial estimate of d using d̂ = min( σ̂

2

α̂2
i
).

Step 2: Obtain k̂min(DK) from (35) using d̂ in Step 1.
Step 3: Estimate d̂min(DK) in (38) by using k̂min(DK) in Step 2.
Step 4: In case d̂min(DK) is not between 0 and 1, use d̂min(DK) = d̂.
Additionally, Hoerl et al. [19] defined the biasing parameter k for the ORR estimator as

k̂ =
pσ̂2

p∑
i = 1

α̂2
i

(39)

The biasing parameter d is given by Ozkale and Kaciranlar [8] and adopted for the Liu estimator

d̂ = min

 σ̂2

α̂2
i +

σ̂2

λi

 (40)

Then, Kibria and Lukman [15] found the biasing parameter estimator for the KL estimator as

k̂min = min

 σ̂2

2α̂2
i +

σ̂2

λi

 (41)

In addition, k̂min of the KL estimator is also obtained when d = 0 in the derived biasing parameter
estimator k̂min(DK) for the proposed DK estimator.

3. Simulation Study

To support a theoretical comparison of the estimators, a Monte Carlo simulation study was
conducted to compare the performance of the estimators in this section. As such, this section will
contain (i) the simulation technique and (ii) a discussion of the results.

3.1. Simulation Technique

Following Gibbons [25] and Kibria [20], we generated the explanatory variables using the
following equation:

xi j = (1− ρ2)
1/2

zi j + ρzi,p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p (42)

where zi j are independent standard normal pseudo-random numbers, and ρ represents the correlation
between any two explanatory variables and is considered here to be 0.90 and 0.99. We consider p = 3
in the simulation. These variables are standardized so that X′X and X′y are in correlation forms. The n
observations for the dependent variable y are determined by the following equation:
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yi = β1xi1 + β2xi2 + . . .+ βpxip + ei, i = 1, 2, . . . , n (43)

where ei are i.i.dN(0, σ2). The values of β are chosen such that β′β = 1 [26]. Since we aimed to compare
the performance of the DK estimator with OLS, ORR, Liu, KL, TP, and NTP estimators, we chose k (0.3,
0.6, 0.9) between 0 and 1, as did Wichern and Churchill [27] and Kan et al. [28], where ORR gives better
results and d (0.2, 0.5, 0.8). The replication of this simulation study is 1000 times for the sample sizes
n = 50 and 100 and σ2 = 1, 25, and 100. For each replicate, we computed the mean square error
(MSE) of the estimators by using the equation below:

MSE(α∗) =
1

1000

1000∑
j = 1

(α∗i j − αi)
′(α∗i j − αi) (44)

where α∗i j is the estimator values and αi is the true parameter values. The estimated MSEs of the
estimators are shown in Tables 1–4.

Table 1. Estimated MSE for ordinary least squares estimator (OLS), ordinary ridge regression (ORR),
Liu, Kibria–Lukman (KL), two-parameter (TP), new two-parameter (NTP), and Dawoud–Kibria (DK).

ρ = 0.90, n = 50

k d σ OLS ORR Liu KL TP NTP DK

0.3 0.2 1 0.2136 0.2005 0.1821 0.1879 0.2031 0.1711 0.1832
5 5.3394 5.0135 4.5507 4.6982 5.0778 4.2749 4.5799
10 21.357 20.054 18.203 18.793 20.311 17.099 18.319

0.5 1 0.2136 0.2005 0.1936 0.1879 0.2070 0.1818 0.1764
5 5.3394 5.0135 4.8388 4.6982 5.1751 4.5446 4.4080
10 21.357 20.054 19.355 18.793 20.700 18.178 17.632

0.8 1 0.2136 0.2005 0.2054 0.1879 0.2109 0.1929 0.1698
5 5.3394 5.0135 5.1361 4.6982 5.2734 4.8231 4.2427
10 21.357 20.054 20.544 18.793 21.093 19.292 16.970

0.6 0.2 1 0.2136 0.1887 0.1821 0.1655 0.1936 0.1611 0.1574
5 5.3394 4.7176 4.5507 4.1361 4.8388 4.0245 3.9308
10 21.357 18.870 18.203 16.544 19.355 16.098 15.723

0.5 1 0.2136 0.1887 0.1936 0.1655 0.2009 0.1712 0.1459
5 5.3394 4.7176 4.8388 4.1361 5.0235 4.2777 3.6422
10 21.357 18.870 19.355 16.544 20.094 17.110 14.568

0.8 1 0.2136 0.1887 0.2054 0.1655 0.2085 0.1816 0.1353
5 5.3394 4.7176 5.1361 4.1361 5.2118 4.5389 3.3748
10 21.357 18.870 20.544 16.544 20.847 18.155 13.498

0.9 0.2 1 0.2136 0.1780 0.1821 0.1459 0.1848 0.1521 0.1353
5 5.3394 4.4483 4.5507 3.6422 4.6197 3.7965 3.3748
10 21.357 17.793 18.203 14.568 18.479 15.186 13.498

0.5 1 0.2136 0.1780 0.1936 0.1459 0.1953 0.1615 0.1209
5 5.3394 4.4483 4.8388 3.6422 4.8832 4.0346 3.0101
10 21.357 17.793 19.355 14.568 19.533 16.138 12.039

0.8 1 0.2136 0.1780 0.2054 0.1459 0.2062 0.1713 0.1081
5 5.3394 4.4483 5.1361 3.6422 5.1544 4.2803 2.6846
10 21.357 17.793 20.544 14.568 20.617 17.121 10.736

Minimum mean squared error (MSE) value is bolded in each row.

3.2. Simulation Results Discussions

From Table 1, Table 2, Table 3. Table 4, it appears that as σ and ρ increase, the estimated MSE
values increase, while as n increases, the estimated MSE values decrease. As expected, when the
multicollinearity problem exists, the OLS estimator gives the highest MSE values and performs
the worst among all estimators. Additionally, the results show that the proposed DK estimator is
performing better than the rest of the estimators, followed by NTP and KL estimators, most of the
time for all conditions. The NTP estimator gives better results in MSE values when d and k are
near zero. The proposed DK estimator always performs better than the KL estimator. The NTP
estimator performance is between the KL and DK estimators most of the time, while the KL estimator
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performance is between the NTP estimator and the proposed DK estimator some of the time. Thus,
simulation results are consistent with the theoretical results.

Table 2. Estimated MSE for OLS, ORR, Liu, KL, TP, NTP, and DK.

ρ = 0.99, n = 50

k d σ OLS ORR Liu KL TP NTP DK

0.3 0.2 1 1.9452 1.1258 1.0786 0.6261 1.5075 0.2548 0.5308
5 48.628 28.145 26.965 15.651 37.686 6.3689 13.268
10 194.51 112.58 107.86 62.607 150.74 25.475 53.074

0.5 1 1.9452 1.1258 1.5679 0.5308 1.7633 0.9083 0.1548
5 48.628 28.145 39.197 13.268 44.083 22.706 3.8693
10 194.51 112.58 156.79 53.074 176.33 90.826 15.477

0.8 1 1.9452 0.7349 0.6813 0.1072 0.9304 0.2612 0.0457
5 48.628 18.372 17.031 2.6782 23.258 6.5262 1.1386
10 194.51 73.489 68.124 10.712 93.034 26.105 4.5545

0.6 0.2 1 1.9452 0.7349 1.0786 0.1072 1.2672 0.4101 0.0109
5 48.628 18.372 26.965 2.6782 31.680 10.251 0.2678
10 194.51 73.489 107.86 10.712 126.72 41.006 1.0709

0.5 1 1.9452 0.7349 1.5679 0.1072 1.6565 0.5935 0.0178
5 48.628 18.372 39.197 2.6782 41.412 14.837 0.4391
10 194.51 73.489 156.79 10.712 165.65 59.348 1.7561

0.8 1 1.9452 0.5184 0.6813 0.0109 0.7302 0.1859 0.0108
5 48.628 12.958 17.031 0.2678 18.254 4.6442 0.2391

10 194.51 51.834 68.124 1.0709 73.017 18.576 1.0561

0.9 0.2 1 1.9452 0.5184 1.0786 0.0109 1.1169 0.2905 0.0108
5 48.628 12.958 26.965 0.2678 27.921 7.2590 0.2118
10 194.51 51.834 107.86 1.0709 111.68 29.036 1.0684

0.5 1 1.9452 0.5184 1.5679 0.0109 1.5863 0.4192 0.0107
5 48.628 12.958 39.197 0.2678 39.656 10.477 0.2540
10 194.51 51.834 156.79 1.0709 158.62 41.909 1.0611

0.8 1 1.9452 1.1258 1.0786 0.5308 1.5075 0.6261 0.2548
5 48.628 28.145 26.965 13.268 37.686 15.651 6.3689

10 194.51 112.58 107.86 53.074 150.74 62.607 25.475

Minimum MSE value is bolded in each row.

Table 3. Estimated MSE for OLS, ORR, Liu, KL, TP, NTP, and DK.

ρ = 0.90, n = 100

k d σ OLS ORR Liu KL TP NTP DK

0.3 0.2 1 0.1064 0.1032 0.0982 0.1000 0.1038 0.0952 0.0987
5 2.6611 2.5793 2.4538 2.4989 2.5956 2.3787 2.4678

10 10.644 10.317 9.8149 9.9956 10.382 9.5147 9.8709
0.5 1 0.1064 0.1032 0.1012 0.1000 0.1048 0.0981 0.0969

5 2.6611 2.5793 2.5305 2.4989 2.6200 2.4529 2.4218
10 10.644 10.317 10.121 9.9956 10.480 9.8116 9.6869

0.8 1 0.1064 0.1032 0.1043 0.1000 0.1058 0.1011 0.0951
5 2.6611 2.5793 2.6084 2.4989 2.6446 2.5284 2.3767

10 10.644 10.317 10.433 9.9956 10.578 10.113 9.5065

0.6 0.2 1 0.1064 0.1001 0.0982 0.0939 0.1013 0.0923 0.0916
5 2.6611 2.5015 2.4538 2.3471 2.5330 2.3072 2.2891

10 10.644 10.005 9.8149 9.3882 10.131 9.2287 9.1561
0.5 1 0.1064 0.1001 0.1012 0.0939 0.1032 0.0952 0.0882

5 2.6611 2.5015 2.5305 2.3471 2.5806 2.3791 2.2048
10 10.644 10.005 10.121 9.3882 10.322 9.5162 8.8190

0.8 1 0.1064 0.1001 0.1043 0.0939 0.1052 0.0981 0.0850
5 2.6611 2.5015 2.6084 2.3471 2.6287 2.4521 2.1238

10 10.644 10.005 10.433 9.3882 10.514 9.8084 8.4947

0.9 0.2 1 0.1064 0.0971 0.0982 0.0882 0.0989 0.0896 0.0850
5 2.6611 2.4273 2.4538 2.2048 2.4731 2.2391 2.1238

10 10.644 9.7090 9.8149 8.8190 9.8924 8.9561 8.4947
0.5 1 0.1064 0.0971 0.1012 0.0882 0.1017 0.0924 0.0804

5 2.6611 2.4273 2.5305 2.2048 2.5428 2.3087 2.0079
10 10.644 9.7090 10.121 8.8190 10.171 9.2347 8.0312

0.8 1 0.1064 0.0971 0.1043 0.0882 0.1045 0.0952 0.0761
5 2.6611 2.4273 2.6084 2.2048 2.6134 2.3795 1.8985

10 10.644 9.7090 10.433 8.8190 10.453 9.5178 7.5934

Minimum MSE value is bolded in each row.
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Table 4. Estimated MSE for OLS, ORR, Liu, KL, TP, NTP, and DK.

ρ = 0.99, n = 100

k d σ OLS ORR Liu KL TP NTP DK

0.3 0.2 1 0.9913 0.7446 0.5288 0.5341 0.7911 0.3990 0.4714
5 24.782 18.615 13.220 13.353 19.776 9.9738 11.784
10 99.128 74.463 52.882 53.412 79.107 39.895 47.136

0.5 1 0.9913 0.7446 0.6850 0.5341 0.8634 0.5158 0.3900
5 24.782 18.615 17.125 13.353 21.586 12.894 9.7508
10 99.128 74.463 68.502 53.412 86.343 51.577 39.003

0.8 1 0.9913 0.7446 0.8619 0.5341 0.9391 0.6480 0.3218
5 24.782 18.615 21.547 13.353 23.476 16.199 8.0436
10 99.128 74.463 86.188 53.412 93.905 64.796 32.174

0.6 0.2 1 0.9913 0.5811 0.5288 0.2824 0.6542 0.3125 0.2162
5 24.782 14.526 13.220 7.0598 16.354 7.8110 5.4042
10 99.128 58.107 52.882 28.239 65.419 31.243 21.616

0.5 1 0.9913 0.5811 0.6850 0.2824 0.7722 0.4033 0.1419
5 24.782 14.526 17.125 7.0598 19.306 10.081 3.5462
10 99.128 58.107 68.502 28.239 77.223 40.326 14.184

0.8 1 0.9913 0.5811 0.8619 0.2824 0.9003 0.5060 0.0901
5 24.782 14.526 21.547 7.0598 22.508 12.649 2.2524
10 99.128 58.107 86.188 28.239 90.031 50.598 9.0095

0.9 0.2 1 0.9913 0.4668 0.5288 0.1419 0.5557 0.2518 0.0901
5 24.782 11.668 13.220 3.5462 13.892 6.2937 2.2524
10 99.128 46.674 52.882 14.184 55.568 25.174 9.0095

0.5 1 0.9913 0.4668 0.6850 0.1419 0.7041 0.3245 0.0422
5 24.782 11.668 17.125 3.5462 17.601 8.1116 1.0520
10 99.128 46.674 68.502 14.184 70.406 32.446 4.2074

0.8 1 0.9913 0.4668 0.8619 0.1419 0.8704 0.4067 0.0182
5 24.782 11.668 21.547 3.5462 21.760 10.166 0.4524
10 99.128 46.674 86.188 14.184 87.040 40.667 1.8092

Minimum MSE value is bolded in each row

To see the effect of various parameters on MSE, we plotted MSE vs. the parameters in Figures 1–6.
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Figure 6. MSE values versus k values when d = 0.8.

It appears from Figure 1 that as ρ increases, the MSE values of the estimators increase for σ = 10,
n = 50, k = 0.9, and d = 0.8, and the proposed DK estimator has the smallest MSE value among
all estimators.

Figure 2 shows that as n increases, the MSE values of the estimators decrease for σ = 10, ρ = 0.99,
k = 0.9, and d = 0.8, and the proposed DK estimator has the smallest MSE value among all estimators.

Figure 3 shows the behavior of σ, where as σ increases, the MSE values of the estimators increase
for n = 100, ρ = 0.99, k = 0.9, d = 0.8, and for other values of these factors.

Figure 4 shows the behavior of the estimators for different values of d when k = 0.3. It is evident
from Figure 4 that the proposed DK estimator gives the smallest MSE values when d is greater than
0.3, while the NTP estimator gives better results when d is less than 0.3 for n = 100, ρ = 0.99, σ = 10,
and for other values of these factors.

Figure 5 shows the behavior of the estimators for different values of k when d = 0.5, such that the
proposed DK estimator gives the smallest MSE values among all other estimators for n = 100, ρ = 0.99,
σ = 10, and for other values of these factors.

Figure 6 shows the behavior of the estimators for different values of k when d = 0.8, such that the
proposed DK estimator gives the smallest MSE values among all other estimators for n = 100, ρ = 0.99,
σ = 10, and for other values of these factors.
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4. Application

4.1. Portland Cement Data

We use the Portland cement data, which was originally adopted by Woods et al. [29] to explain their
theoretical results. The data were analyzed by various researchers: to mention a few, Kaciranlar et al. [30],
Li and Yang [31], Lukman et al. [13], and, recently, Kibria and Lukman [15], among others.

The regression model for these data is defined as

yi = β0 + β1X1 + β2X2 + β3X3 + β4X4 + εi. (45)

For more details about these data, see Woods et al. [29].
The variance inflation factors are VIF1 = 38.50, VIF2 = 254.42, VIF3 = 46.87, and VIF4 = 282.51.

Eigenvalues of S are λ1 = 44676.206, λ2 = 5965.422, λ3 = 809.952, and λ4 = 105.419, and the
condition number of S is approximately 20.58. The VIFs, the eigenvalues, and the condition number
all indicate that severe multicollinearity exists. The estimated parameters and the MSE values of the
estimators are presented in Table 5. It appears from Table 5 that the proposed DK estimator performs
the best among the mentioned estimators as it gives the smallest MSE value.

Table 5. The results of regression coefficients and the corresponding MSE values.

Coef. ^
α ^

α(
^
k)

^
α(

^
d)

^
αKL

(
^
kmin)

^
αTP

(
^
k,

^
d)

^
αNTP

(
^
k,

^
d)

^
αDK

(
^
kmin,

^
dmin)

α0 62.405 8.5871 27.665 27.627 32.386 3.8295 27.588
α1 1.5511 2.1046 * 1.9008 * 1.9088 * 1.8598 * 2.1459 * 1.9092 *
α2 0.5101 1.0648 * 0.8699 * 0.8685 * 0.8196 * 1.1157 * 0.8689 *
α3 0.1019 0.6680 * 0.4619 0.4678 0.4177 0.7126 * 0.4682
α4 −0.1440 0.3995 * 0.2080 0.2072 0.1592 0.4488 * 0.2076

k ———– 0.007676 - 0.000471 0.007676 0.007676 0.000471
d ———– ———– 0.442224 ———– 0.442224 0.442224 0.001536

MSE 4912.090 2989.820 2170.967 2170.9604 2222.682 3450.710 2170.9602

* Coefficient is significant at 0.05.

4.2. Longley Data

Longley data were originally used by Longley [32] and then by other authors (Yasin and Murat [33];
Lukman and Ayinde [22]). The regression model of this data is defined as

y = β1x1 + β2x2 + . . .+ β5x5 + β6x6 + ε (46)

For more details about these data, see Longley [32].
The variance inflation factors are VIF1 = 135.53, VIF2 = 1788.51, VIF3 = 33.62VIF4 = 3.59,

VIF5 = 399.15, and VIF6 = 758.98. Eigenvalues of S are as follows: 2.76779 × 1012, 7,039,139,179,
11,608,993.96, 2,504,761.021, 1738.356, 13.309, and the condition number of S is approximately 456,070.
The VIFs, the eigenvalues, and the condition number all indicate that severe multicollinearity exists.
The estimated parameters and the MSE values of the estimators are presented in Table 6. It appears
from Table 6 that the proposed DK estimator performs the best among the mentioned estimators as it
gives the smallest MSE value.
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Table 6. The results of regression coefficients and the corresponding MSE values.

Coef. ^
α ^

α(
^
k)

^
α(

^
d)

^
αKL

(
^
kmin)

^
αTP

(
^
k,

^
d)

^
αNTP

(
^
k,

^
d)

^
αDK

(
^
kmin,

^
dmin)

α1 −52.994 1.0931 −49.641 −5.0190 −7.7933 1.2529 −5.0188
α2 0.0711 * 0.0526 * 0.0704 * 0.0609 * 0.0556 * 0.0525 * 0.0609 *
α3 −0.4235 −0.6457 * −0.4316 −0.5426 −0.6092 * −0.6464 * −0.5427
α4 −0.5726 * −0.5611 −0.5745 −0.5985 * −0.5630 −0.5610 −0.5984 *
α5 −0.4142 −0.2062 −0.4083 −0.3266 −0.2404 −0.2056 −0.3267
α6 48.418 * 37.119 * 48.046 * 42.918 * 38.976 * 37.085 * 42.918 *

k ——— 262.88 ——— 9.5600 262.88 262.88 8.2110
d ——— ——— 0.1643 ——— 0.1643 0.1643 0.1643

MSE 17095 3190.6 15183 2915.1 2945.3 3204.1 2914.7

* Coefficient is significant at 0.05.

5. Summary and Concluding Remarks

In this paper, we introduced a new class of two-parameter estimator, namely, the Dawoud–Kibria
(DK) estimator, to solve the multicollinearity problem for linear regression models. We theoretically
compared the proposed DK estimator with some existing estimators, for example, the ordinary least
squares (OLS) estimator, the ordinary ridge regression (ORR) estimator, the Liu (1993) estimator, the
new modified ridge-type estimator of Kibria and Lukman (KL; 2020), the two-parameter (TP) estimator
of Ozkale and Kaciranlar (2007), and the new two-parameter (NTP) estimator of Yang and Chang
(2010), and derived the biasing parameters d and k of the proposed DK estimator. A simulation study
has been conducted to compare the performance of the OLS, ORR, Liu, KL, TP, NTP, and the proposed
DK estimators. It is evident from simulation results that the proposed DK estimator gives better results
than the rest of the estimators under some conditions. Real-life datasets were analyzed to illustrate the
findings of the paper. Hopefully, the paper will be useful for practitioners of various fields.
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