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Abstract: In the field of electrical machine design, excellent performance for multiple objectives,
like efficiency or torque density, can be reached by using contemporary optimization techniques.
Unfortunately, highly optimized designs are prone to be rather sensitive regarding uncertainties
in the design parameters. This paper introduces an approach to rate the sensitivity of designs
with a large number of tolerance-affected parameters using cumulative distribution functions
(CDFs) based on finite element analysis results. The accuracy of the CDFs is estimated using the
Dvoretzky–Kiefer–Wolfowitz inequality, as well as the bootstrapping method. The advantage of
the presented technique is that computational time can be kept low, even for complex problems.
As a demanding test case, the effect of imperfect permanent magnets on the cogging torque of
a Vernier machine with 192 tolerance-affected parameters is investigated. Results reveal that for this
problem, a reliable statement about the robustness can already be made with 1000 finite element
calculations.
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quantile; reliability; robust design; tolerances

1. Introduction

With the rise of modern optimization techniques in combination with continuously increasing
computational power, it is becoming more and more likely to find outstanding solutions to certain
design tasks, even if such optima are hidden in the narrowest design-space gaps [1,2]. In the field of
electrical machine design, usual optimization targets are performance measures, like efficiency, cost,
or torque ripple [3]. A common problem of highly optimized designs is that a small deviation of the
design parameters from the ideal values may lead to a significant deterioration of the performance—the
design is thus sensitive to parameter tolerances. To obtain designs which are not prone to a significant
performance degradation in the presence of inevitable tolerances, some measure describing this
resistance has to be incorporated into the (multi-objective) optimization process. A design which has
a certain resistance against tolerances is usually called a robust design, and an optimization which
takes into account the effect of tolerances is called a robust optimization. In this paper, a method is
presented on how to evaluate the robustness of a design that has a large number of tolerance-affected
parameters. The application of the method within the scope of an optimization will be dealt with in
future work.

In the field of electrical machine design, intensive research is being carried out on the topic of
robust design. A huge number of publications deal with the effect of tolerances, especially considering
the cogging torque change caused by permanent magnet uncertainties, such as in [4–7]. The different
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influences of size, positioning, or magnetization strength and direction are often investigated by
applying two or three discrete tolerance levels and searching for worst-case combinations. To reduce
the inherent computational burden associated with finite element analyses, symmetry conditions
with semi-analytical methods [5] or surrogate models [7,8] are often utilized. Besides searching
for worst-case configurations based on discrete tolerance levels, stochastic approaches, like the six
sigma quality method [9–11], are also investigated to predict the behavior of systems subject to
tolerances. Using stochastic measures like the standard deviation σ might be preferable compared
to the worst-case method [12]. For example, when designing an airplane propulsion, the worst-case
measure might definitely be the proper method, since each single failure can have tremendous
consequences; whereas for a standard industrial electric machine, this leads to an over-designed, and
thus over-priced system which is not competitive.

An overview of different robustness criteria applied in the field of electrical machine design was
recently presented in [13], where a quantile measure based on the evaluation of cumulative distribution
functions (CDFs) was also introduced for a problem with four tolerance-affected design parameters.
The capability of CDFs for large-scale tolerance analysis of problems showing a huge number of
parameters and the feasibility of predicting their confidence bounds is presented in this paper by
focusing on electric machine applications. The chosen test problem will be presented in Section 2,
followed by an introduction to the cumulative distribution function and a theoretical method for
confidence estimation in Section 3. In Section 4, the calculation of the sample data is described and the
evolution of the CDF with increasing number of samples is illustrated. For a data-based estimation
of the CDFs‘ confidence, the bootstrap method [14–16] was utilized (Section 5). Finally, we discuss
benefits and limitations of the presented method and give a short outlook and conclusion.

2. Test Case Definition

To show the capabilities of using CDFs as a robustness measure for large-scale tolerance analysis,
an outer rotor Vernier motor is used as a striking example. Such motors modulate the flux created
by a low pole count winding system to an air gap field with major higher harmonic components.
As a consequence, an appropriate high number of magnets has to be arranged on the outer rotor
to interact with the corresponding air gap field. Such motors can be designed to have outstanding
performance in low speed and high torque applications, but also suffer from a significantly nonlinear
relationship between the dimensions and the magnetic flux distribution [17]. Thus, reliable surrogate
models with sufficient accuracy are hard to obtain. The Vernier motor used for this investigation is
shown in Figure 1, and some basic parameters are given in Table 1.
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Figure 1. Outer rotor Vernier machine considered for the case study. Major parameters are given
in Table 1.
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Table 1. Parameters of the Vernier motor shown in Figure 1.

Parameter Value Description

p 24 number of pole pairs of the outer rotor
n 27 number of micro slots of the stator
do 80 mm outer diameter of the rotor
l f e 20 mm stack length of the motor
lair 0.5 mm air gap length
bm 3.74 mm nominal width of magnets
hm 1.73 mm nominal height of magnets

It might be mentioned that this Vernier motor has not a claim to be optimal in any sense—that
is, it was not optimized for any special purpose, but should only serve as an illustrative and demanding
real-world test case. The goal of this investigation was to predict the impact of permanent magnet
uncertainties on the cogging torque. The uncertainties concern the

• magnet width (∆bm),
• magnet height (∆hm),
• radial position (∆xr), and
• circumferential position (∆xϕ).

The tolerance-affected parameters are also shown in Figure 1. The width and height vary due
to the manufacturing process of the permanent magnets, and their tolerances have maximum values
of δbm = ±0.05 mm and δhm = ±0.05 mm, respectively. Radial and circumferential positions can
vary due to the assembling process of the permanent magnets. If, for example, the magnets are
glued, the adhesive gap thickness can vary, leading to a radial position which deviates from the
expected value. For this investigation, a radial maximum displacement tolerance of δxr = −0.01 mm
is assumed. Note that for the radial displacement, only a negative tolerance limit is given, what
corresponds to a movement towards the center. The fourth parameter is the circumferential position
of the magnets. They are buried into slots with a width of bs, as illustrated in the highlighted area of
Figure 1. The maximum circumferential displacement of a certain magnet i is a function of its actual

tolerance-affected width, that is, δi
xϕ

= ± bs−bi
m∆

2 , where bi
m∆ = bm + ∆bi

m.
In the test machine, the slots have a width of bs = bm + δbm . Thus, a magnet i prone to the

maximum tolerance level, that is, bi
m∆ = bm + δbm , cannot move any more (∆xi

ϕ = 0). A magnet with a
minimum width of bi

m∆ = bm − δbm can move up to ∆xi
ϕ = ±δbm . All parameters subject to tolerances

are assumed to have uniform distribution and are summarized in Table 2.

Table 2. Tolerance definition.

Parameter Symbol ∆X Range of ∆X Tolerance Limit δX Distribution

magnet width ∆bm [−δbm ,+δbm ] 0.05 mm uniform
magnet height ∆hm [−δhm ,+δhm ] 0.05 mm uniform
radial position ∆xr [−δxr , 0] 0.01 mm uniform
circumferential position ∆xϕ [−δxϕ ,+δxϕ ]

bs−bm∆
2 uniform *

* on a normalized range (see Section 4).

It might be worth emphasizing that due to the stochastic nature of the tolerances, all 48 magnets
are likely to have individual values for a given design. Therefore, their specific values will be modeled
independently. Assuming a discretization of three steps for each of the four parameters, this leads to
34 = 81 possible combinations for a single magnet. Taking into account that every magnet features
its independent tolerance values, a total of

(
34)48

= 3192 > 4× 1091 different variations are possible.
If the simulation of one design would need one microsecond, the evaluation of all variants would need
more than 1078 years. Even if a proper analytical (surrogate) model would be available to calculate
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cogging torque, evaluating all combinations would never be an option. Hence, alternative approaches
need to be developed.

3. Introduction to Cumulative Distribution Functions

From a set of n tolerance-affected sample values X1, . . . , Xn, that is, n samples of a certain target
evaluated under the influence of tolerances, the empirical cumulative distribution function (ECDF)
F̂x(x) is defined as [18]

F̂x(x) =
1
n

n

∑
i=1

I(Xi, x), I(Xi, x) =

{
1 if Xi ≤ x

0 if Xi > x .
(1)

In words, F̂x(x) is the weighted count of samples Xi for which Xi is below or equal to the threshold,
x. A set of exemplary random samples Xi, and the respective ECDF F̂x(x) are plotted in Figure 2.
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Figure 2. Explanation of the (E)CDF based on n = 34 random samples (black lines): empiric cumulative
distribution function F̂x(x); probability density function fx(x) fitted by kernel density estimation;
cumulative distribution function Fx(x) from fx(x) (cf. (2)); lower L(x) and upper U(x) confidence
bound derived from the Dvoretzky–Kiefer–Wolfowitz inequality (cf. (4)).

From the cumulative distribution function, it is easy to determine how many of the samples
have a value below or equal to a certain limit, or what the parameter limit qx is, where a certain
percentage p of the samples has a smaller or equal value. This threshold qp

x is called the p-quantile.
In Figure 2, the 90% quantile is shown, meaning that 90% of the samples have a value smaller or equal
to q0.9

x = 2.73.
Given the n samples, a continuous probability density function f (x) can also be fitted, using kernel

density estimation (KDE). KDE is a popular approach to estimate the probability density function
of random datasets, and due to its non-parametric nature, it is also capable of fitting complicated
distributions [18–20]. In Figure 2, this KDE estimate f (x) is shown as a blue line.

From f (x), the CDF Fx(x) can be determined as

Fx(x) =
∫ x

−∞
f (ξ)dξ . (2)

The 90%-quantile in Figure 2 is shown based on this continuous CDF. As an absolute measure
for the robustness of a design, any quantile value can be used. Another indicator is the steepness of
Fx—that is, the steeper the CDF is, the more robust the system is.
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It is clear that the ECDF F̂x, and consequently, also the fitted CDF Fx, can only be an estimate of
the real CDF with n→ ∞. Thus, the remaining but essential question is: How good is this estimate for
a given number of n? From the Dvoretzky–Kiefer–Wolfowitz inequality, a (1− α)-confidence band for
Fx can be constructed as follows [18]:

P (L(x) ≤ F(x) ≤ U(x) for all x) ≥ 1− α, (3)

where

L(x) = max{F̂n(x)− εn, 0}
U(x) = min{F̂n(x) + εn, 1} (4)

and

εn =

√
1

2n
log
(

2
α

)
. (5)

Equation (3) implies that the probability P of the real CDF Fx lying in between some lower L(x)
and upper U(x) boundary is greater than or equal to 1− α, where the definitions of the lower and
upper bound are given by (4) and (5). For example, if we want 95% confidence (α = 0.05) of the
estimation F̂x shown in Figure 2 with n = 34 samples, from (5) an uncertainty of εn = 0.233, which
is equivalent to ±23.3%, can be calculated. Thus, the real CDF has a probability of 95% laying in the
confidence slot of F̂x ± 23.3%. This slot, bounded by the light-grey dashed lines L(x) and U(x), is
also displayed in Figure 2. The method based on (3) to (5) will be referred to as the DKW method
throughout the paper.

Let us assume that a 95% confidence interval with a slot of ±1% is desired. An approximation of
the required sample size can be calculated by rearranging (5), leading to n = 18,445 samples for this
example. Note that no information about the actual problem is necessary using the DKW method.
However, from (5), it can also be observed that the confidence slot and thus F̂x converges with 1√

n .
If we are interested in the confidence range in parameter space x rather than in the probability

space p = Fx(x), the (E)CDF can be inverted to get F−1
x (p). Since F−1

x (p) is basically the definition of
the p-quantile, the inverse is also called a quantile function.

4. Creation of Sample Data and Evolution of the CDF

To create the test data for this investigation, a parametric finite element model was set up using
the SyMSpace framework [21]. For the finite element calculations, FEMM software was used [22],
to which SyMSpace features an interface. Since the circumferential positioning ∆xi

ϕ of each magnet
i is dependent on its actual width, which is also subject to tolerances, for this parameter the uniform
distribution is mapped to a normalized range of ∆ξ i

xϕ
= [−1, 1], where

∆ξ i
xϕ

=
∆xi

ϕ

δxϕ

. (6)

Considering (6) and Figure 1, if ∆ξ i
xϕ

= 1, the affected magnet is moved in clockwise direction,
such that it is touching the edge of the slot. For ∆ξ i

xϕ
= −1, the magnet is against the slot edge in

counterclockwise direction. In Figure 3 the normalized tolerance values of all magnets for an exemplary
sample are visualized, where

∆ξ i
xr =

∆xi
r

δxr

, ∆ξ i
bm

=
∆bi

m
δbm

, ∆ξ i
hm

=
∆hi

m
δhm

. (7)
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Figure 3. Normalized tolerance values of all 48 permanent magnets for one exemplary sample of the
Vernier machine.

To speed up calculations done by the finite element program, usually sectors with some periodic
boundary conditions are defined and the rotor is rotated by one electrical period. Since these
investigations consider tolerances leading to asymmetric designs, that is, every magnet is exposed to
different tolerance values, the full cross-section has to be modeled in the finite element program and
the rotor has to be rotated by the angular width of one main stator tooth (360◦/9 = 40◦ in this case)
to allow for analysis of all possible harmonics of the cogging torque. In our case, such a calculation
takes approximately 15 min. From the obtained cogging torque Tc(ϕ) as a function of the rotor
angle ϕ, the peak-to-peak value Tc,pp is evaluated, which also serves as a target variable for the
following investigations.

After evaluating n = 20 randomly defined motor cross-sections (a motor subject to a random set
of tolerances will also be referred to as a sample throughout the paper), the CDF F20

T is fitted from the
Tc,pp values, as displayed in Figure 4. The right superscript denotes the number of n samples upon
which the CDF is based, that is, Fn

T .
The continuous CDF F20

T , which is fitted by kernel density estimation using a Gauss kernel, as well
as its deviation to the empiric CDF F̂20

T with respect to probability εp (lower axis), and its deviation
to F̂20

T with respect to the quantile value (cogging torque) εq (right axis) are also shown in Figure 4.
From the appended axes, it can be observed that the deviation from the fitted to the empiric CDF is
below 10% and 5 mNm.

To have a single measure for the deviation between two (E)CDFs, Fx,1(x) and Fx,2(x), the absolute
area between them, Ad (Fx,1, Fx,2), can be evaluated:

Ad (Fx,1, Fx,2) =

max(x)∫

min(x)

∣∣∣Fx,1(x)− Fx,2(x)
∣∣∣dx. (8)

Since the (E)CDF is a normalized quantity, Ad has the unit of the parameter which the distribution
describes (Nm in this case). Ad, generally defined as the deviation between two arbitrary CDF functions,
will serve as a parameter predicting the convergence of the approach presented in the following.
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T to the fitted CDF F20
T for the probability εp, as well as for the

quantile values εq; deviation area Ad = 7.95 · 10−3 Nm.

Now, from Figure 4 and also from Figure 2, it can be seen that the ECDF can be reasonably fitted
by kernel density estimation, but it is not clear if a CDF, based on a low number of samples, reflects the
statistical behavior to be expected when manufacturing this motor in a mass production process.
Thus, the idea is to observe the evolution of the CDF when more and more samples are calculated.
Starting from the CDF based on 20 samples, a selection of CDFs based on an increased number of
samples is shown in Figure 5.
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Figure 5. Evolution of Fn
T for an increasing number of samples. The deviations εp and εq are with

respect to the reference CDF F2k
T .

In total, 2000 samples were evaluated. The CDF fitted from this full dataset will serve as
a reference CDF F2k

T . In Figure 5, and also in all the following investigations, only the KDE-fitted CDFs
are considered.

Now, from Figure 5, it can be observed that FT converges very fast. The appended axes below
and on the right side show the deviation of Fn

T to F2k
T . From this Figure, it seems that F500

T already
converged quite close to a “final” CDF. Thus, it looks like a statistical statement on the robustness of
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cogging torque against magnet tolerances can be derived within 500 simulations for a problem with
an incredible number of possible combinations.

An explanation for this desirable behavior is the insensitivity of the KDE-fitted CDF to fluctuations
of the underlying data. On the one hand, the CDF is based on a set of sample values, where each single
sample contributes with a value of 1/n to the functional, and on the other hand, the fitting process has
a smoothing effect.

However, thinking on the iterative procedure of creating new samples and updating FT ,
the question of how to define convergence remains, since in Figure 5 the convergence was identified
by referring to a CDF based on much more samples (F2k

T ) than actually available. We cannot rely on
a comparison to this “best available” CDF, but have to compare to the CDFs from previous update
steps and track the evolution of the CDFs.

To evaluate this behavior, every 10 samples a CDF was calculated, that is, F10
T , F20

T , F30
T , . . . F2k

T ,
and the deviation area between successive CDFs, Ad(Fn

T , Fn−10
T ), was evaluated. This course, and also

the deviation with respect to F2k
T , Ad(Fn

T , F2k
T ), is shown in Figure 6.
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Figure 6. Evolution of Ad when Fn
T is compared to previous CDF F(n−10)

T and to the final one F2k
T .

Dotted lines show the same evaluations, but with the samples used in reversed order, designated by
a negative sample index. Inset shows a zoom of the main figure.

Looking at the deviation to F2k
T , which gives an absolute measure of the convergence, it turns out

that a significant drop appears within the first 100 samples, then there is some fluctuation and from
about 500 samples, Ad(Fn

T , F2k
T ) is stable and shows a steady convergence towards zero. The relative

deviation, Ad(Fn
T , Fn−10

T ), converges even faster to very low values, as can be seen from the lower axis
of Figure 6. Thus, from Ad(Fn

T , Fn−10
T ), one could interpret a faster convergence of FT , but since it is

a relative measure, it could have an integrating character. This means that even if Ad(Fn
T , Fn−10

T ) is low,
FT could slowly but steadily move in one direction, and no information is available about the “real”
limit, F∞

T .
Another point which was not discussed so far is also shown in Figure 6—the effect of random

sampling. Since the samples are defined randomly, or more precisely, the tolerance values of each
parameter for every magnet are selected randomly considering its distribution, it is obvious that quite
different CDFs can emerge, especially at the beginning. To verify this, the evolution of Ad(Fn

T , F2k
T ) and

Ad(Fn
T , Fn−10

T ) was evaluated with the available samples in reversed order—that is, the sample number
2000 was used as the first one, sample number 1999 was used as the second one, and so on. The reversed
order was designated with a negative sign of the sample index n in the corresponding deviation
function, as drawn in Figure 6 with dotted lines. When comparing the deviations based on the standard
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ordered samples with the ones based on the reversed ordered samples, it is worth emphasizing
that, up to sample index 1000, they relied on completely different samples. Having this in mind,
the comparison shows interesting insights—the first one comes by observing Ad(F−n

T , F−2k
T ), which

has an (expected) deviation to Ad(Fn
T , F2k

T ) in the lower samples range, but shows good agreement
with Ad(Fn

T , F2k
T ) already from n = 400 onwards. The second one is that the relative evolution shows

pretty much the same behavior, regardless of whether the samples are in standard or in reversed order.
To summarize this section:

• The method seems promising, especially since Ad(Fn
T , F2k

T ) and Ad(F−n
T , F−2k

T ) converge to the
same value even for different sets of samples (cf. range 400 < n < 1000 in Figure 6).

• From the relative deviation area Ad(Fn
T , Fn−10

T ), no reference is available about the remaining
deviation to F∞

T .
• The relative deviation seems to be quite robust concerning the random sampling, since its

evolution has a high correlation for different sets of samples (n < 1000 in Figure 6).

5. Evaluation of Data-Based CDF Confidence Values

For an iterative approach, Ad(Fn
T , Fx

T) with x � n cannot be evaluated, since no “best” reference
Fx

T (F2k
T in the previous section) is available. From the relative evolution of FT , or more precisely, of

Ad(Fn
T , Fn−10

T ), no statement can further be drawn about the absolute deviation, due to the (possible)
integrating character.

From the presented theory of Section 3, especially (5), one could determine which sample count
n is required for guaranteeing a specified confidence interval. However, the underlying problem to be
investigated is not taken into account, as (5) was developed for deriving confidence intervals for any
empiric cumulative distribution function without loss of generality. Such general (not problem-specific)
derivations usually implicate very conservative measures, such as confidence interval bounds.
Besides, they often imply assumptions, like unbiased data sets, which can hardly be ensured for
practical applications. While it can be more easily guaranteed for the tolerance-affected input variables,
ensuring an unbiased performance measure is practically impossible, as the input–output relation is
not known in general.

To overcome the lack of problem-specific information, the bootstrap approach is used to estimating
the confidence interval [14–16,20]. This common method in statistical inference utilizes the sample
data itself and not only the number of samples for confidence boundary estimation.

The confidence value is created using the following approach:

1. Create nb batches (bootstrap samples), where every batch contains n samples which are drawn
from the original dataset with replacement. The original dataset also features n samples.

2. Create a CDF for every bootstrapped batch of samples Fb
T and calculate the deviation to the CDF

based on the original dataset, Ad(Fb
T , Fn

T ).
3. Investigate the distribution of the deviations by creating a CDF based on the deviation values FAd .
4. Evaluate a confidence value based on FAd .

Let us go through the steps using an example: Assume a dataset with n = 100 samples. From these
100 samples, nb = 200 batches of samples are created, where each batch also contains n = 100 samples.
The samples of one batch are randomly selected out of the full dataset with replacement. From this, it
follows that a specific sample from the original dataset can occur in a batch multiple times. The CDF
based on all available samples, F100

T , is plotted in Figure 7a together with the nb = 200 different CDFs
calculated from the 200 batches, Fb

T .
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Since every batch consists of a different set of samples, the corresponding CDFs look different.
They form a tube around F100

T , which defines some kind of confidence for the case where 100 samples
are available. In the next step, we want to have a look at the deviation of every batch CDF to the
original data CDF, Ad(Fb

T , F100
T ). The probability density function fAd of these deviations, as well as the

corresponding cumulative distribution function FAd are shown in Figure 7b.
From FAd , we can now easily read which share of the batches leads to a deviation area below

a certain limit, or the other way round: what is the maximum deviation area that a certain amount of
batches does not exceed? In our example, 90% of the batches lead to a deviation area of Ad ≤ 0.0082 Nm,
as also shown in Figure 7b. This parameter will be used to rate the confidence of the batches and is
designated by C0.9

T . Although C0.9
T gives the 90%-quantile of Ad(Fb

T , F100
T ), the index T is used. On the

one hand, this was chosen because it should serve as a confidence value for pretending the distribution
of the cogging torque Tc,pp. On the other hand, this choice can be argued by the following interpretation
of CT : If any CDF Fx(x) is horizontally shifted by any value δx, the area Ad between the original and
the shifted CDF just corresponds to the shift value, since Fx is always normalized between zero and
one—thus, Ad = δx. So, if in our example F100

T is shifted by ±C0.9
T on the parameter axis, as depicted in

Figure 7a, it can be interpreted as a worst-case slot, where 90% of all batch CDFs are within.
An aspect to consider when using this confidence interval is related to the worst-case

scenario—especially for large-scale problems, it is very unlikely that the worst-case performance
can be identified through the relatively small share of initially evaluated samples. Additionally,
the CDF turns very flat when approaching a quantile level close to 1, following significant errors for
the corresponding quantile values (here, cogging torque levels), even if the CDF exhibits only small
uncertainties on the quantile level (that is, probability value). To be on the safe side, it is recommended
to use this method only up to a quantile level of approximately 0.95.

In Figure 7a, the 90% limit slots calculated with the DKW method are additionally shown. Not to
be confused with the C0.9

T limit, the L −U slot defines the slot, wherein the real CDF (F∞
T ) is with

a probability of 90%. Similar to the evolution of FT , now the question arises about how many batches
are necessary until FAd converges. Since it is again about convergence of a cumulative distribution
function, Equations (3)–(5) can be applied, which basically means the same convergence behavior
for FAd as for FT . For 5000 batches, εn = 1.9% can be evaluated from (5). To show convergence,
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the deviation of Fnb
Ad

to F5k
Ad

, Ad(Fnb
Ad

, F5k
Ad
) was evaluated as a function of the number of batches nb and

presented in Figure 8.
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) over number of batches nb for different

numbers of total samples, n (big picture and zoom).

It can be seen that convergence is fast, and that the prediction continuously gets better with an
increasing number of samples. It is further important to emphasize that the creation of FAd is very fast,
because no finite element calculations are needed. One additional aspect concerning convergence is
that taking the shape of the whole CDF into account is probably too strict as a criterion. Actually, we are
interested in the convergence of particular quantiles C p

T , rather than the convergence of the whole
distribution function. In Figure 9, C0.9

T is shown over the number of batches and for different values of
total samples n.
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Figure 9. Evolution of the 90% confidence value C0.9
T over number of batches for different numbers of

samples, Ns.

It can be observed that C0.9
T is fluctuating within the first 500 batches and has almost reached

convergence after 1000 batches. What can further be seen even better than in Figure 8 is that C0.9
T drops

significantly with an increasing number of total samples.
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The evolution of different confidence values over the number of available samples is shown in
Figure 10, together with the absolute and relative deviation area (cf. Figure 6).
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Figure 10. Confidence values over the number of available samples together with an evolution of
absolute and relative deviation areas of FT (Figure 6).

What can be observed from Figure 10 is that CT seems to be a good measure for the absolute
deviation, although it is only based on data available at every sample step.

In Figure 11 the evolution of different quantile values of the cogging torque Tp
c,pp are plotted

together with the worst-case 90% confidence band calculated with the batch method presented within
this section.
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Figure 11. Different cogging torque quantile values together with the 90% confidence values as
a function of the actually available samples n; dashed lines correspond to the

(
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confidence bounds.

Additionally, the confidence bounds based on the quantile functions of L and U of the DKW
method are illustrated by dashed lines. Especially for high quantile levels, p, the DKW method leads
to much more conservative predictions of the confidence slot.
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6. Discussion

What we have shown so far is a method to statistically predict the effect of manufacturing
tolerances apparent in electric machine mass production, where a large number of tolerance-affected
parameters are taken into account. If the performance variation of such an investigation is not satisfying,
it might be interesting to investigate which of the tolerance-affected parameters has the highest impact.
Unfortunately, this information cannot be deduced from the resulting CDF, FT . Luckily, the method
gives reasonable results with low computational effort, measured against the complexity of the
problem. For example, the 2000 samples of the test case were simulated within approximately 8 h
on an available HTCondor [23] cluster with around 150 workstation cores (where, of course, not all
of them were used simultaneously). So, to identify which tolerance parameter has a high influence,
and also which one can maybe neglected, the presented analysis can be performed for every parameter
in a one-factor-at-a-time manner. For the test case, four different runs (every parameter of Table 2)
would be necessary.

It should also be mentioned that for problems with a low number of tolerance-affected parameters,
this method might not be the first choice. Sampling of tolerance-affected space using design of
experiments, creating surrogate models upon these samples, and evaluating the influence of tolerances
using the surrogate models will be more effective. The blurry and problem-dependent decision
boundary for using state-of-the-art methods or the one presented here will be a topic of further
investigation.

So far, most of the presented work on tolerance analysis has been about symmetric changes, such
as the same change of the height of all utilized permanent magnets. This is done because the more
realistic individual changes require much more computational effort and the modeling and evaluation
complexity are significantly increased. The approach presented here allows for analyzing realistic
scenarios that are much more likely to be present in the mass manufacturing of electric machines,
while still maintaining reasonable computational cost.

By contrast, available counterparts from the literature featuring a considerable number of
individual parameter changes are, for example, either based on (i) analytical models [24] or (ii)
on theoretical investigations about worst-case scenarios [12]. Such approaches constitute solutions
with much less required computational effort. However, they are generally not flexible, considering
their application on many different machine types and corresponding designs. Besides, they are often
limited to, for example, a particular performance measure, such as the worst-case one [12].

With the approach derived here, those limitations do not apply. In order to further improve
the approach presented here, the authors are considering the development of a hybrid version, that
is, an analysis facilitated through making use of the cumulative distribution function, which is both
based on finite element-based analysis of selected samples, and consequent surrogate modeling and
evaluation of further configurations. This would allow for further minimization of the computational
burden, while utmost flexibility for analyzing diverse scenarios is sustained. Consequently, such further
improved approaches are more likely to be applied for online robustness evaluation of designs to be
evaluated within electric machine design optimization problems.

7. Conclusions and Outlook

This investigation has shown that a cumulative distribution function is suitable to statistically
predict the effect of parameter uncertainties on some target functions with comparably low
computational effort. More specifically, it is especially useful if there is a large number of uncertain
parameters which would be hard to analyze by applying other available methods from the literature.
The considered test case was about investigating the effect of manufacturing and assembling
tolerances of Vernier machine permanent magnets on cogging torque. A data-based method has
been presented for solving such problems. This further allows for predicting the confidence of
the cumulative distribution function, which was applied to describe the statistical behavior of the
cogging torque. The confidence evaluation utilizing the bootstrap method was compared with
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a mathematical confidence definition based on the Dvoretzky–Kiefer–Wolfowitz inequality. As was
observed, the Dvoretzky–Kiefer–Wolfowitz definition follows much more conservative estimations.
Future work will include the following activities:

• Testing the presented approach on different problems to show its reliability and applicability.
• Incorporating the method into a robust optimization framework.
• Trying to gain separability of the tolerance parameters’ influence on robustness—that is, to find

a method to evaluate from CDF data which parameters have a crucial impact on the target, and
further derive which ones have little effect and thus can be neglected.
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