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Abstract: We prove that the Behrens–Fisher statistic follows a Student bridge distribution, the mixing
coefficient of which depends on the two sample variances only through their ratio. To this end, it is
first shown that a weighted sum of two independent normalized chi-square distributed random
variables is chi-square bridge distributed, and secondly that the Behrens–Fisher statistic is based on
such a variable and a standard normally distributed one that is independent of the former. In case of
a known variance ratio, exact standard statistical testing and confidence estimation methods apply
without the need for any additional approximations. In addition, a three pillar bridges explanation is
given for the choice of degrees of freedom in Welch’s approximation to the exact distribution of the
Behrens–Fisher statistic.
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MSC: 62 E 15; 62 F 03; 62 F 25; 28 A 50

1. Introduction

Generalizations and modifications of standard statistical distributions, such as chi-square and
Student distributions, play a useful role because of their numerous possible applications in different
areas of statistics. However, the modifications introduced here, chi-square and Student bridge
distributions, are only considered from the subsequent application.

If the normalized chi-square distributed random variable from the denominator of the common
ratio representation of a Student distributed random variable is replaced with a mixture of independent
normalized chi-square distributed variables, then the resulting ratio follows a distribution that is called
here a Student bridge distribution. The possibly most prominent example of this type of random
variables is the Behrens–Fisher statistic. The mixing coefficient in the corresponding representation
of this statistic depends on the variances of the underlying two Gaussian sample distributions only
through their ratio. The variance ratio thus plays the role of a nuisance parameter when deriving
the distribution of the Behrens–Fisher statistic. As described in [1], it may happen that the variance
ratio is known although the individual variances are not when two instruments of equal precision
average different numbers of replicates arriving at a response. Another situation where one of the two
variances is known and the other one is not is dealt with in [2].

The well known Behrens–Fisher statistic was introduced already in [3,4]. Several authors provided
approximations of its distribution. To mention only some of the earlier contributions, first of all we refer
to the well known approximation in [5]. The approximative distribution whose percentage points are
dealt with in [6] is often called the Behrens–Fisher distribution. Convolutions of weighted chi-squares
are used for an evaluation of the Welch approximation to the distribution of the Behrens–Fisher
statistic in [7]. In [8], the exact distribution of the Behrens–Fisher statistic is derived for the case of
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two unknown variances, and depends on two unknown parameters, which brings with it the need for
additional approximations for statistical applications.

The exact distribution of a modified Behrens–Fisher statistic considered in [9] is very closely
related to the distribution derived in [8]. Authors of [9] emphasize that there are (at that time) not
many computer programs for computing the special functions that appear as components of the exact
distributions and replace these functions mostly with suitable elementary ones.

The alternative aim of the present brief report is to take up again and continue earlier structural
considerations on weighted chi-square distributions and their convolutions and on accordingly
generalized Student distributions. Knowing the symmetry properties of the generalized Student
densities considered here, numerical results obtained in [9] can be taken over to dealing with
asymmetric statistical problems in a common way. To be more specific, we prove that the distribution
derived in [8] actually depends on the unknown variances only through their ratio, thus allowing to
perform exact statistical decisions in case of known variance ratios without additional approximations.
Our proof follows a different line than that presented in [8]. In particular, we make more visible
the influence the mixture coefficient of the chi-square distributed variables from the denominator
of the Behrens–Fisher statistic has on the resulting distribution of the Behrens–Fisher statistic itself.
Although the densities of this statistic are visually quite close to each other with varying variance
ratios, for many choices of the two sample sizes there are more or less exceptional situations of smaller
closeness not mentioned in [8]. From a general structural point of view, our consideration makes the
particularly high precision of known approximations to the exact distribution of the Behrens–Fisher
statistic more understandable, but it also confirms their limitations, as pointed out in [9] for selected
cases from a numerical point of view.

The more general problem of finding an optimal expectation test in the Gaussian two-sample
scheme is called the Behrens–Fisher problem. It is dealt with in [10] as a problem in the presence of
three nuisance parameters. Reviews on numerous papers dealing with the Behrens–Fisher problem and
the distribution of the Behrens–Fisher statistic can be found, e.g., in [11] and in [12]. The connections
between the different classical approaches to statistics and the Behrens–Fisher problem are emphasized
in [11], while in [12] there is an emphasis on three procedures that are in a certain suitably defined
sense exact solutions to the Behrens–Fisher problem. The multivariate Behrens–Fisher distribution is
considered, e.g., in [13,14]; for the nonparametric approach to the Behrens–Fisher problem see [15] and
the references given there.

The present paper does not deal with the general Behrens–Fisher problem but is devoted to the
study of the probability density function of the Behrens–Fisher statistic with a focus on a function of
the mixing parameter as a nuisance parameter. We explicitly describe the influence the single nuisance
parameter has on the Student bridge distribution.

The two-sample t-test with a known ratio of variances where the pooled empirical variance is
used instead of individual sample variances is dealt with in [1,2]. What these papers have in common
is that, unlike here, Student distributions with estimated d.f. are used for performing statistical tests.
A test statistic conditional on the value of the variance ratio is studied in [16].

We derive here exact representations of the pdf of the Behrens–Fisher statistic allowing
heteroscedasticity and unbalancedness, i.e., different variances and sample sizes, respectively.
These representations can be considered as heteroscedasticity-unbalancedness generalizations of
Student’s density.

The paper is organized as follows. The chi-square bridge distribution is introduced and its
moments are described in Section 2. Section 3 deals with the Student bridge distribution and Section 4
with its application to the Behrens–Fisher statistic. A discussion including a three pillar bridges
explanation for the choice of degrees of freedom in the Welch approximation to the exact distribution
of the Behrens–Fisher statistic is presented in Section 5. Figures were drawn using Matlab.
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2. Chi-Square Bridge Distribution

Let CQ1,k and CQ2,m be independent random variables, where CQi,d is chi-square distributed
with d d.f., d ∈ {k, m}, and i = 1, 2. For γ ∈ [0, 1], we consider the mixture of normalized chi-squares
or weighted sum of Chi-squares

W = WSCS(k, m; γ) = γ
CQ1,k

k
+ (1− γ)

CQ2,m

m
.

The first and second order moments of W are

E(W) = 1 and V(W) = 2(
γ2

k
+

(1− γ)2

m
),

respectively. Minimal variance with respect to the mixing coefficient is attained for γ = γ0, where

γ0 =
k

k + m
. (1)

Let X ∼ h indicate that the random variable X follows the probability distribution h. If A = γ/k
and B = (1− γ)/m, then A = B holds for γ = γ0 and statistic W/A follows in this case a chi-square
distribution with k + m d.f., (k + m)WSCS(k, m; γ0) ∼ χ2

k+m. Moreover, k ·WSCS(k, m; 1) ∼ χ2
k

and m ·WSCS(k, m; 0) ∼ χ2
m. That is why we say that the distribution of WSCS has a three pillar

bridges property.

In what follows we assume that γ ∈ (0, 1). The density of W can immediately be derived then
from its convolution integral representation

fW(x) =
∞∫
−∞

f γ
k CQ1,k

(x− z) f 1−γ
m CQ2,m

(z)dz

=
( k

γ )
k
2 ( m

1−γ )
m
2

2
k+m

2 Γ( k
2 )Γ(

m
2 )

x∫
0

(x− z)
k
2−1e−

k(x−z)
2γ z

m
2 −1e−

mz
2(1−γ) dz

and allows according to commutativity of summands the following two representations:

fW(x) = (
k
γ
)k/2(

m
1− γ

)m/2
x(k+m)/2−1

1F1(
m
2 , k+m

2 ; x
2 (

k
γ −

m
1−γ ))

2(k+m)/2Γ( k+m
2 ) exp{ kx

2γ}
, x > 0 (2)

and

fW(x) = (
k
γ
)k/2(

m
1− γ

)m/2
x(k+m)/2−1

1F1(
k
2 , k+m

2 ; x
2 (

m
1−γ −

k
γ ))

2(k+m)/2Γ( k+m
2 ) exp{ mx

2(1−γ)
}

, x > 0 (3)

where

1F1(a, b; z) =
1

B(a, b− a)

1∫
0

eztta−1(1− t)b−a−1dt

denotes the hypergeometric function of order (1,1), see, e.g., Formula 13.2.1 in [17] and Formula 9.210

in [18]. The Beta function can be expressed in terms of the Gamma function x → Γ(x) =
∞∫
0

tx−1e−tdt

as B(a, b) = Γ(a)Γ(b)/Γ(a + b). In the case that γ = γ0, we have that 1F1(a, b; x
2 (

k
γ −

m
1−γ )) = 1 and

fW(x) = (1/A) fχ2
k+m

(x/A). Choosing k
γ < m

1−γ in (2) avoids unboundedness of ezt in the integrand of

1F1(a, b; z) and might motivate favoring Formula (2) over Formula (3), in this case.
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Definition 1. The probability distribution having density (2) (or (3)) will be called chi-square bridge distribution
with (k, m) d.f. and mixing parameter γ, or (k, m; γ)-chi-square distribution χ2

k,m;γ, for short.

Figures 1 and 2 show the density fW of the distribution χ2
k,m;γ for four different pairs (k, m),

and γ ∈ {0.1, 0.505, 0.962} or γ ∈ {0.01, 0.505, 0.7, 0.99}, respectively.
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Figure 1. (a) Example 1; (b) Example 2.
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Figure 2. (a) Example 3; (b) Example 4.

3. Student Bridge Distribution

If N denotes a standard Gaussian distributed random variable that is independent of CQ1,k and
CQ2,m, and tl Student’s t-distribution with l d.f., then the statistic

T = Tk,m;γ =
N√

WSCS(k, m; γ)

satisfies
Tk,m;1 ∼ tk, Tk,m;γ0 ∼ tk+m and Tk,m;0 ∼ tm. (4)
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By the general integral representation of the density of the ratio of two independent continuous
random variables,

fT(t) =
∞∫
−∞

fN(tx) f√WSCS(k,m;γ)(t)|t|dt

where fN denotes the standard Gaussian density and f√W(t) = 2t fW(t2) can easily be derived from
(2) or (3). Making use of (2) and changing the order of integration gives us:

fT(t) =
2( k

α )
k/2( m

1−α )
m/2

√
2π2(k+m)/2Γ(k/2)Γ(m/2

·
1∫

0

vm/2−1(1− v)k/2−1
∞∫

0

tk+m−1 exp{− t2x2

2
− kt2

2α
−
−t2v( m

1−α −
k
2 )

2
}tdtdv,

and changing the variables s = t2

2 (x2 + k
α + v( m

1−α −
k
2 )) leads to the first of the following two

alternative representations of the density fT ,

fT(x) =
(

mγ

k(1− γ)

)m/2 Γ( k+m+1
2 ) 2F1

(
k+m+1

2 , m
2 ; k+m

2 ;
k
γ−

m
1−γ

k
γ +x2

)
Γ( k+m

2 )
√

π k
γ (1 +

γ
k x2)(k+m+1)/2

, x ∈ R (5)

and

fT(x) =
(

k(1− γ)

mγ

)k/2 Γ( k+m+1
2 ) 2F1

(
k+m+1

2 , k
2 ; k+m

2 ;
m

1−γ−
k
γ

m
1−γ +x2

)
Γ( k+m

2 )
√

π m
(1−γ)

(1 + 1−γ
m x2)(k+m+1)/2

, x ∈ R. (6)

Making use of (3) instead of (2) proves (6). Here, 2F1 denotes the hypergeometric function being
defined for δ > β > 0 by

2F1(γ, β; δ; y) =
1

B(β, δ− β)

1∫
0

(1− z)δ−β−1zβ−1(1− yz)−γdz,

see 15.3.1 in [17] and Formula 9.111 in [18]. Choosing y < 0 avoids a zero of 1− yz within the range of
integration and might motivate a favor of using Formulas (5) or (6) if k

γ < m
1−γ or k

γ > m
1−γ , respectively.

The following definition is motivated by the three pillar bridges property (4).

Definition 2. The probability distribution corresponding to density (5) (or (6)) will be called a Student bridge
distribution with (k, m) d.f. and mixing coefficient γ, or (k, m; γ)-Student bridge distribution tk,m;γ, for short.

Figures 3 and 4 show the density fT of the distribution tk,m;γ for the same choice of parameters as
for fW .

We remark that for l = 1, 2, ..., ET2l−1 = 0 and

ET2l =
(2l − 1)!!( k

γ )
k/2( m

1−γ )
m/2

2(k+m)/2Γ((k + m)/2)

·
∞∫

0

x
k+m

2 −1−le−
kx
2γ 1F1

(
m
2

,
k + m

2
,

x
2

(
k
γ
− m

1− γ

))
dx,
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that is

ET2l =
Γ( k+m

2 − l)

Γ( k+m
2 )

(
k

2γ

)l ( γm
(1− γ)k

)m/2

· 2F1

(
k + m

2
− l,

m
2

;
k + m

2
; 1− γm

(1− γ)k

)
.
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Figure 3. (a) Example 1; (b) Example 2.
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Figure 4. (a) Example 3; (b) Example 4.

4. Behrens–Fisher Statistic

Let X1, ..., Xn1 and Y1, ..., Yn2 be jointly independent Gaussian samples with expectations µi and
variances σ2

i , i = 1, 2. We consider the statistic

TBF =
X̄− Ȳ√
S2

X
n1

+
S2

Y
n2

where X̄ = 1
n1

∑n1
i=1 Xi, Ȳ = 1

n2
∑n2

i=1 Yi and

S2
X =

1
n1 − 1

n1

∑
i=1

(Xi − X̄)2, S2
Y =

1
n2 − 1

n2

∑
i=1

(Yi − Ȳ)2
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are common sample means and unbiased sample variances, respectively. By Z d
= U we mean that two

random variables Z and U have the same probability distribution.

Lemma 1. The Behrens–Fisher statistic allows the representation

TBF d
=

Zn1+n2−1√
S2

with

S2 = A∗
n1−1

∑
i=1

Z2
i + B∗

n1+n2−2

∑
i=n1

Z2
i

and where (Z1, ..., Zn1+n2−1)
T is a standard Gaussian distributed random vector taking values in Rn1+n2−1,

A∗ =
1

1 + n1
n2
( σ2

σ1
)2 ·

1
n1 − 1

, B∗ =
1

1 + [ n1
n2
( σ2

σ1
)2]−1 ·

1
n2 − 1

and

Zn1+n2−1
d
=

X̄− Ȳ√
σ2

1
n1

+
σ2

2
n2

and S2 d
=

S2
X

n1
+

S2
Y

n2

σ2
1

n1
+

σ2
2

n2

are independent.

Proof. We put

1k = (1, ..., 1)T ∈ Rk, 0k = (0, ..., 0)T ∈ Rk, 1+0 = (1T
n1

0T
n2
)T and 10+ = (0T

n1
1T

n2
)T .

Let us further denote the orthogonal projection onto the linear space L = L(1+0, 10+) by ΠL and
let the matrix P be defined such that ΠLx = Px, ∀x ∈ Rn; n = n1 + n2, then

P =

(
1

n1
IIn1

1
n2

IIn2

)

where IIk = 1k1T
k is a k× k-matrix. Here and below, missing off-diagonal matrix elements are zero. If L⊥

is the subspace of Rn being orthogonally to L then In − P = ΠL⊥ . The statistic TBF can be written as:

TBF =

(
πL

(
X
Y

)
, 1

n1
1+0 − 1

n2
10+

)

||
(

X
Y

)
− πL

(
X
Y

)
||(n)

(7)

where the functional ||.||(n) is defined for all x = (x1, ..., xn1)
T ∈ Rn1 and y = (y1, ..., yn2)

T ∈ Rn2 as:

||
(

x
y

)
||(n) =

(
1

n1(n1 − 1)

n1

∑
1

x2
i +

1
n2(n2 − 1)

n2

∑
1

y2
i

)1/2

.
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We note that Pµ = µ and (In − P)µ = 0n, and put κ = (µ11T
n1

0T
n2
)T . The random vector

ζ =


P

(
X
Y

)

(In − P)

(
X
Y

)


takes its values in R2n and follows a singular Gaussian distribution of rank n,

ζ ∼ Φκ,Ψ with Ψ =


σ2

1
n1

IIn1
σ2

2
n2

IIn2

σ2
1 (In1 − 1

n1
IIn1)

σ2
1 (In2 − 1

n2
IIn2)

 .

As a consequence, the nominator and denominator of the ratio statistic TBF are stochastically
independent. Let

BT
1 =

(
b1 · · · bn1−1

1√
n1

1n1

)
, BT

2 =
(

c1 · · · cn2−1
1√
n2

1n2

)

be orthogonal n1 × n1 and n2 × n2 matrices, respectively. The random vector η = B(In − P)

(
X
Y

)

with B =

(
B1

B2

)
follows a centered Gaussian distribution with the covariance matrix

B

(
σ2

1 (In1 − 1
n1

IIn1)

σ2
1 (In2 − 1

n2
IIn2)

)
BT =


σ2

1

(
In1−1 0

0 0

)

σ2
2

(
In2−1 0

0 0

)
 .

The vector (In − P)

(
X
Y

)
= BTη allows almost surely the representation

BTη = BT(N1, ..., Nn1−1, 0, Nn1+1, ..., Nn−1, 0)T

=
n1−1

∑
i=1

Ni

(
bi

0n2

)
+

n2−1

∑
j=1

Nn1+j

(
0n1

cj

)

=


n1−1

∑
i=1

Nibi

n2−1
∑

j=1
Nn1+jcj


where the random variables Ni are independent and centered normally distributed with variances σ2

1
and σ2

2 for i = 1, ..., n1 − 1 and i = n1 + 1, ..., n− 1, respectively. Let

B∗T1 =
(

b1 . . . bn1−1

)
and B∗T2 =

(
c1 . . . cn2−1

)
.

The Kronecker product matrix B∗T = B∗T1 ⊗ B∗T2 =

(
B∗T1

B∗T2

)
describes then a mapping

from R2n−2 to R2n and, a.s.,



Stats 2020, 3 338

||BTη||(n) = ||



B∗T1

 N1
...

Nn1−1


B∗T2

 Nn1+1
...

Nn−1




||∗(n)

= (
1

n1(n1 − 1)
||B∗T1

 N1
...

Nn1−1

 ||2 + 1
n2(n2 − 1)

||B∗T2

 Nn1+j
...

Nn−1

 ||2 )1/2

= (
1

n1(n1 − 1)
||

n1−1

∑
i=1

Ni bi ||2 +
1

n2(n2 − 1)
||

n2−1

∑
j=1

Nn1+j cj ||2 )1/2

= (
1

n1(n1 − 1)

n1−1

∑
i=1

N2
i +

1
n2(n2 − 1)

n2−1

∑
j=1

N2
n1+j)

1/2

where the norm ||.||∗(n) is defined in Rn−1 ×Rn−1. The variance of the nominator of the Behrens–Fisher
statistic is

V(X̄− Ȳ) =
σ2

1
n1

+
σ2

2
n2

.

Hence, TBF may be represented as

TBF d
=

(
σ2

1
n1

+
σ2

2
n2
)1/2Nn

(
σ2

1
n1(n1−1)

n1−1
∑

i=1
N2

i +
σ2

2
n2(n2−1)

n2−1
∑

j=1
N2

n1+j)
1/2

where the standard Gaussian distributed random variable Nn is independent of
N1, ..., Nn1−1, Nn1+1, ..., Nn−1.

The constants A∗ and B∗ from Lemma 1 depend on σ1 and σ2 only through the variance ratio
VR = σ2

2 /σ2
1 , which itself plays the role of a nuisance parameter.

If θ = VR/SR where SR = n2
n1

is the sample size ratio then the constants A∗, B∗, VR and n2 may
be expressed in terms of the parameter triple (θ, n1, SR). The constants A∗ and B∗ depend on the
variance ratio VR, but in a different way for the different sample size ratio SR. For n1 given, the inverse
mapping (A∗, B∗)→ (θ, SR) is defined by:

θ =
1

A∗(n1 − 1)
− 1, SR =

1 + A∗ + B∗ − A∗n1

n1B∗
.

Other parameter triples could be introduced, e.g., (k, m, θ), being closely related to but nevertheless
different from the parameter triple in [6].

The first and second order moments of S2 are

ES2 = 1 and V(S2) =
2

(1 + θ)2

[
1
k
+

θ2

m

]
.
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Finally, it turns out that under the hypothesis

H0 : µ1 = µ2

the statistic TBF allows the representation

TBF|H0
d
=

N√
γ

CQ1,n1−1
n1−1 + (1− γ)

CQ2,n2−1
n2−1

(8)

where the independent random variables N and CQi,ni−i, i = 1, 2 are as in Section 2, k = n1 − 1, m =

n2 − 1, and the mixing coefficient is

γ = (1 +
VR
SR

)−1. (9)

Thus, the Behrens–Fisher statistic follows the Student bridge distribution with d.f. (n1 − 1, n2 − 1)
and mixing coefficient γ, or (n1 − 1, n2 − 1; γ)-Student bridge distribution, for short,

TBF|H0 ∼ tn1−1, n2−1; (1+ VR
SR )−1 . (10)

In case of a known variance ratio, standard statistical significance testing and confidence
estimation methods are based therefore upon the (n1 − 1, n2 − 1; γ)-Student bridge distribution in the
common way. Here, assumption k

γ < m
1−γ from Section 2 means that

n1(n1 − 1)
n2(n2 − 1)

<
σ2

1
σ2

2
.

Without going here into technical details, the unrestricted distribution of TBF is a non-central
Student bridge distribution in a suitably defined sense.

5. Discussion

5.1. Reflection of the Three Pillar Bridges Property

We now consider four examples from [8] for demonstrating the role the three pillar bridges
property discussed in this paper may play in practical statistical work. In each example, we chose
a pair of sample sizes (k, m) from the set {(11, 14), (14, 14), (6, 2), (3, 9)}, and a variance ratio VR
from the positive real line that we assume to be known. In any case, we then determine the mixture
coefficient γ by a one-to-one calculation from VR. This way, Examples 1–4 are described (with some
redundancy) as: E1(11, 14|1.25|0.505), E2(14, 14|0.04|0.962) , E3(6, 2|1.25|0.505) and E4(3, 9|0.04|0.962).
Figures 1–4 show the densities fW = fWSCS(k,m;γ) and fT = fTk,m;γ for more parameter combinations
(k, m; γ) than required in Examples E1 to E4.

A value of γ close to 1 corresponds to a value of θ = VR/SR close to zero, VR << SR,
meaning that the sample size in the second population compared to that in the first is disproportionately
large compared to the corresponding quotient of variances; in other words, the first population is
under represented.

A value of γ close to 0 corresponds to a very large value of θ = VR/SR, SR << VR, meaning
that the sample size in the first population compared to that in the second is disproportionately
large compared to the corresponding quotient of variances; in other words, the second population is
under represented.

Unlike these two cases of imbalance, a value of γ in the order of γ0 speaks for an approximately
achieved balance. The latter can be observed close to the middle pillar of the three pillar Student
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bridge distribution and is suitable to explain some effect when choosing the degree of freedom in the
Welch approximation to the exact density of T.

The chi-square bridge densities shown in Figure 1 correspond tho those of the Student bridge
densities in Figure 3. It is shown in [8] that for such cases the Welch approximation seems to be the
best that were found so far. Welch’s approximate degrees of freedom, see Formula (1.2) in [8] with
N1 − 1 = k, N2 − 1 = m and σ2

i replaced with S2
i , i = 1, 2, are f = 25 for Example 1 and f = 15 for

Example 2. This corresponds very well to the three pillar property of the Student bridge distribution.
If γ = 1/2, as is approximately the case in Example 1, then the denominator N of T can be

written as N 2 = (CQ1,11/11 + CQ2,14/14)/2. Because the numbers 11 and 14 are of comparable size,
a reasonable approximation is N 2 ≈ (CQ1,11 + CQ2,14)/(2× 12.5) ∼ CQ25/25 finally leading for
Example 1 to T ≈ t25.

In Example 2, the denominator of T allows the representation N 2 = 0.962CQ1,14/14 +

0.038CQ2,14/14, which is reasonably approximated by N 2 ≈ CQ15/15. Thus, T ≈ t15.
Figure 2 shows a broader variability between the densities when the mixing coefficient γ is varied

compared to Figure 1. This is reflected in more visible variation of the corresponding Student bridge
densities in Figure 4, both in their distribution centers and their distribution tails. This should be taken
into account if applications of the Student bridge distribution are required, in particular in the areas of
the distributions just mentioned.

The Welch approximation is known to perform better when both k and m are sufficiently large.
Our Figures show what may happen for small sample sizes.

Because the consideration in [8] is even for higher dimensions it might be of some interest to
extend the present work to this case, too.

5.2. Examples Where the Student Bridge Distribution Should Be Preferred

The aim of this section is to give a complementary structural argumentation confirming the
numerical discoveries in [9] with respect to the question of when Welch’s approximation is not
sufficiently precise. To this end, we present, for two cases of sample sizes and variance ratios, the exact
Student bridge density and Welch’s approximation to it in a joint figure.

Example 5. Assume that as in Figures 1–3 in [9], sample sizes (n1, n2) are (5, 3), (3, 4), (4, 3), (2, 4), (3, 3)
and (2, 2), and that the estimated variance ratio is always equal to 0.25. If we assume that the exact
variance ratio in (10) is equal to 0.25, then the mixing coefficient γ of the Student bridge distribution
tn1−1,n2−1;γ is accordingly equal to 0.706, 0.840, 0.750, 0.889, 0.8 and 0.8. Figure 5 shows the density of
t4,2; 0.706 and the density of its Welch approximation t6 that can hardly be visually distinguished from
each other if considered on the whole line, but differ locally. Figure 6 shows the densities of the Student
bridge distribution t1,3; 0.889 and Welch’s Student approximation to it, t1. In this case, preference for the
Student bridge density can even be seen globally.
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Figure 5. Densities of t4,2; 0.706 and t6 around the origin and in the distribution tails.
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Figure 6. Densities of t1,3; 0.889 and t1.
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