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Abstract: The notion of median in one dimension is a foundational element in nonparametric
statistics. It has been extended to multi-dimensional cases both in location and in regression via
notions of data depth. Regression depth (RD) and projection regression depth (PRD) represent the
two most promising notions in regression. Carrizosa depth DC is another depth notion in regression.
Depth-induced regression medians (maximum depth estimators) serve as robust alternatives to
the classical least squares estimator. The uniqueness of regression medians is indispensable in
the discussion of their properties and the asymptotics (consistency and limiting distribution) of
sample regression medians. Are the regression medians induced from RD, PRD, and DC unique?
Answering this question is the main goal of this article. It is found that only the regression median
induced from PRD possesses the desired uniqueness property. The conventional remedy measure for
non-uniqueness, taking average of all medians, might yield an estimator that no longer possesses the
maximum depth in both RD and DC cases. These and other findings indicate that the PRD and its
induced median are highly favorable among their leading competitors.
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1. Introduction

Regular univariate sample median defined as the innermost (deepest) point of a data set is
unique (If the sample median is defined to be the point θ that minimizes the sum of its distances to
sample points (i.e., θ = arg minθ∈R1 ∑n

i=1 |θ − xi|, where xi, i = 1, · · · , n are the given n sample points
in R1), then it is not unique. However, to overcome this drawback, conventionally it is defined as
θ = Median{xi} := x(b n+1

2 c)
+ x(b n+2

2 c)
/

2, where x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered values of xi’s
and b·c is the floor function. Namely, it is the innermost point (from both left and right direction) or
the average of two deepest sample points. Hence, it is unique). The population median defined as
the 1

2 -th quantile (Recall, for any univariate distribution function F, and for 0 < p < 1, the quantity
F−1(p) := inf{x : F(x) ≥ p} is called the pth quantile or fractile of F (see page 3 of Serfling (1980) [1]))
of the underlying distribution (there are other versions of definition) is also unique. The most
outstanding feature of the univariate median is its robustness. In fact, among all translation equivariant
location estimators, it has the best possible breakdown point (Donoho (1982) [2]) (and the minimum
maximum bias if underlying distribution has a unimodal symmetric density (Huber (1964) [3]).
Besides serving as a promising robust location estimator, the univariate median also provides a
base for a center-outward ordering (in terms of the deviations from the median), an alternative to the
traditional left-to-right ordering.

To extend the univariate median to multidimensional settings and to share its outstanding
robustness property and an alternative ordering scheme is desirable for multidimensional data.
One approach, among others, is via notions of data depth. General notions of data depth have been
increasingly pursued and studied (Liu, et al. (1999) [4], Zuo and Serfling (2000) (ZS00) [5]) since the
pioneer proposal of Tukey (1975) [6] (see Donoho and Gasko (1992) [7]). Besides Tukey depth, another
prevailing depth, among others, is the projection depth (PD) [5] (Liu (1992) [8], and Zuo (2003) [9]).
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Abstract: The comparison of group means in latent variable models plays a vital role in empirical
research in the social sciences. The present article discusses an extension of invariance alignment
and Haberman linking by choosing the robust power loss function ρ(x) = |x|p (p > 0). This power
loss function with power values p smaller than one is particularly suited for item responses that are
generated under partial invariance. For a general class of linking functions, asymptotic normality
of estimates is shown. Moreover, the theory of M-estimation is applied for obtaining linking
errors (i.e., inference with respect to a population of items) for this class of linking functions. In a
simulation study, it is shown that invariance alignment and Haberman linking have comparable
performance, and in some conditions, the newly proposed robust Haberman linking outperforms
invariance alignment. In three examples, the influence of the choice of a particular linking function
on the estimation of group means is demonstrated. It is concluded that the choice of the loss function
in linking is related to structural assumptions about the pattern of noninvariance in item parameters.

Keywords: linking; invariance alignment; Haberman linking; measurement invariance; partial
invariance; differential item functioning; item response model; structural equation model; factor
model; 2PL model; linking error; loss function

1. Introduction

In the comparison of multiple groups in latent variable models like factor analysis or item response
models, some identifying assumptions have to be posed. In practice, it is often assumed that item
parameters are equal across groups, which is denoted as invariance. The invariance concept has been
very prominent in psychology and the social sciences in general [1,2]. For example, in international
large-scale assessment studies in education like the programme for international student assessment
(PISA), the necessity of invariance is strongly emphasized [3].

In the violation of invariance, linking approaches have been proposed to allow group comparisons.
In this article, two important linking approaches are compared: invariance alignment [4] and Haberman
linking [5]. These two approaches are contrasted by introducing a unifying notation. Moreover, these
approaches are extended by considering a broad family of linking functions, the Lp loss function.
By means of this extension, invariance alignment and Haberman linking appear to be very similar on a
formal level, and through a simulation study, it is shown that they provide comparable results.

The article is structured as follows. In Section 2, unidimensional factor models are introduced.
In Section 3, the theory of the proposed extension of invariance alignment and Haberman linking
is described. In Section 4, asymptotic results for general linking functions that also (partly) apply
to invariance alignment and Haberman linking are presented. In Section 5, two simulation studies
targeting the case of continuous or dichotomous items, respectively, are presented. In Section 6,
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the usefulness of the linking approaches is demonstrated throughs three empirical examples. Finally,
Section 7 concludes with a discussion.

2. Unidimensional Factor Model with Partial Invariance

In this section, the unidimensional factor model for continuous and dichotomous items for
multiple groups (i.e., multiple populations) is introduced. Afterward, different assumptions about
levels of invariance of item parameters are discussed.

2.1. Unidimensional Factor Model

Let Xig denote the item response variable of item i (i = 1, . . . , I) in group g (g = 1, . . . , G).
In Section 2.1.1, we discuss the unidimensional factor model for continuous items. In Section 2.1.2,
the factor model for dichotomous items is introduced.

2.1.1. Continuous Items

For continuous items Xig, a unidimensional factor model is assumed [6]

Xig = νig + λigθg + εig , θg ∼ N(µg, σ2
g) , εig ∼ N(0, ωig), (1)

where λig are item loadings (that are typically assumed to be nonnegative), and νig are item intercepts.
It has to be noted that the parameters in Equation (1) are not identified. An identified model is obtained
by assuming a standardized latent variable θg:

Xig = νig,0 + λig,0θg + εig , θg ∼ N(0, 1) , εig ∼ N(0, ωig) (2)

The model parameters are then related as follows

λig,0 = λigσg (3)

νig,0 = νig + λigµg = νig +
λig,0

σg
µg (4)

The special case in which all loadings are set equal to 1 is referred to as the so-called tau-equivalent
measurement model [7]. Only item intercepts have to be linked in this case.

2.1.2. Dichotomous Items

For dichotomous (i.e., binary) variables, a logistic link function L is employed, and the resulting
unidimensional factor model is

P(Xig = 1|θg) = L(νig + λigθg) , θg ∼ N(µg, σ2
g) (5)

This model is also known as the two-parameter logistic (2PL) model [8] and is widely spread in the
literature of item response theory (IRT) models, for example, [9,10]. One might view the IRT approach
in Equation (5) as a special case of structural equation modeling (see Equation (1) for continuous items
using the normal distribution assumption), employing the logistic link function [11].

Again, the model in Equation (5) is not identified, but an identified parameterization can be
employed using the same conversion Formulas (3) and (4). It should be noted that the 2PL model in
Equation (5) is often reparameterized as P(Xig = 1|θg) = L(λig(θg − βig)), where βig = −νig/λig are
item difficulties. Using identified parameters λig,0 and βig,0, the relations among item parameters hold
by rewriting Equations (3) and (4)

log λig,0 = log λig + log σg (6)
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σgβig,0 = βig − µg . (7)

Equation (7) can also be rephrased in terms of random intercepts νig:

σg
νig,0

λig,0
= −βig + µg . (8)

The special case in which all item loadings λig are set to 1 is referred to as the one-parameter
logistic model (1PL; a.k.a. the Rasch model; [12]). In this case, only item intercepts have to be linked.
There is no need to distinguish linking based on item intercepts from linking based on item difficulties
because it holds that βig = −νig.

2.2. Full Invariance, Partial Invariance, and Linking Methods

The main goal is to compare the distribution of θg among groups. As the unidimensional
factor model is not identified, some identification constraints have to be imposed to enable group
comparisons. Three main approaches can be distinguished that differ concerning the assumptions of
item parameters.

First, in a full invariance approach [1,2,13,14] it is assumed that all item parameters are equal among
groups, for example, λi1 = . . . = λiG and νi1 = . . . = νiG for all items i = 1, . . . , I. This approach
presumes the existence of common item parameters λi and νi across groups and the unidimensional
factor model is identified by posing constraints on the parameters of the first group (i.e., µ1 = 0 and
σ1 = 1).

Second, in a partial invariance approach [15–17], it is assumed that a subset of item parameters
is the same across groups. More formally, the group-specific item parameters are decomposed into
common item parameters and group-specific item parameters as follows:

λig = λi + uig and νig = νi + eig (9)

The existence of group-specific item parameters is also labeled as differential item functioning
(DIF, [1,18]). The presence of group-specific item intercepts is denoted as uniform DIF, while the
presence of group-specific item loadings is denoted as nonuniform DIF [18]. In partial invariance, it is
assumed that a subset of effects uig and eig is equal to zero. In the extreme case that all parameters
equal zero, full invariance is obtained. A crucial issue is that a researcher does not know which item
parameters differ among groups and some statistical procedure has to be applied for detecting the
group-specific parameters (see [19–23] for overviews). By assuming some zero effects uig and eig
and the identification constraint µ1 = 0 and σ1 = 1 of distribution parameters of the first group,
the unidimensional factor model can be identified. In [24], it is suggested that at most 25% of all item
parameters can be noninvariant to get trustworthy estimates of group means in the IA approach, a rule
that can be also transferred to the partial invariance approach (see also [25]).

Third, in a full noninvariance approach, all item parameters are allowed to differ among
groups. The unidimensional factor model is identified by posing some identification constraints
on group-specific parameters [26]. For example, ∏I

i=1 λig = 1 and ∑I
i=1 νig = 0 (for all groups

g = 1, . . . , G) are sufficient conditions for ensuring identifiability. In the linking approach see [27–31],
the sets of identified group-specific item parameters λ̂g,0 = (λ̂1g,0, . . . , λ̂Ig,0) and ν̂g,0 = (ν̂1g,0, . . . , ν̂Ig,0)

(g = 1, . . . , G) are used to compute group means µ = (µ1, . . . , µG) and group standard deviations
σ = (σ1, . . . , σG) by minimizing some linking function H(µ, σ) = f (µ, σ; λ̂1,0, . . . , λ̂G,0, ν̂1,0, . . . , ν̂G,0).
The main idea is that deviations λig − λih and νig − νih should be small for all pairs of groups g and h.
In this article, two linking methods will be investigated in more detail that are introduced in Section 3.

In practice, the full invariance or the partial invariance assumption are often only approximately
fulfilled, and diversity of statistical methods has been proposed to tackle this case [32–38]. These
approaches are of particular importance in studies of cross-cultural comparisons in which many groups
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(i.e., countries in this case) are involved [3,39]. Moreover, the issue of invariance is also vital in studies
involving longitudinal measurements [40,41].

3. Linking Methods

In this section, the linking methods invariance alignment [4] and Haberman linking [5] are
introduced. It was highlighted by researcher Matthias von Davier that the alignment method appears
to be very similar to the Haberman linking approach (see [42], p. 4). In the following section, both
approaches are discussed using a unifying notation.

3.1. Invariance Alignment

Asparouhov and Muthén [4,24] proposed the method of invariance alignment (IA) to define a
linking method that maximizes the extent of invariant item parameters. IA is also labeled as alignment
optimization [43,44].

The IA approach uses estimated identifiable item parameters λ̂ig,0 and ν̂ig,0 (i = 1, . . . , I;
g = 1, . . . , G) as the input. These parameters can be obtained from fitting a unidimensional factor
model for continuous items or a unidimensional item response model for dichotomous items.
The goal is to minimize deviations λig − λih and νig − νih for pairs of groups g and h. By rewriting
Equations (3) and (4), we obtain

λig − λih =
λig,0

σg
− λih,0

σh
(10)

νig − νih = νig,0 − νih,0 − λig,0
µg

σg
+ λih,0

µh
σh

(11)

These relations motivate the minimization of the following linking function for determining group
means µ and standard deviations σ:

H(µ, σ) =
I

∑
i=1

G

∑
g,h=1

wi1,ghρ

(
λ̂ig,0

σg
− λ̂ih,0

σh

)
+

I

∑
i=1

G

∑
g,h=1

wi2,ghρ

(
ν̂ig,0 − ν̂ih,0 − λ̂ig,0

µg

σg
+ λ̂ih,0

µh
σh

)
(12)

where wi1,gh and wi2,gh are user-defined weights and ρ is a loss function [45]. Asparouhov and
Muthén [4,24] proposed to use wi1,gh = wi2,gh =

√ngnh and ρ(x) =
√
|x|. In this article, we propose

the robust loss function ρ(x) = |x|p for nonnegative p (Lp loss function; [46–50]). To balance the impact
of groups in the estimation, all weights wi1,gh and wi2,gh in Equation (12) could be chosen equal to 1.
In the following, we omit weights for ease of notation.

3.1.1. A Reformulation as a Two-Step Minimization Problem

It is instructive to reformulate the minimization problem of H in Equation (12) as a two-step
minimization problem. In the first step, the vector of group standard deviations σ is obtained
by minimizing

H1u(σ) =
I

∑
i=1

G

∑
g,h=1

ρ

(
λ̂ig,0

σg
− λ̂ih,0

σh

)
(13)

In the second step, estimated standard deviations σ̂g (g = 1, . . . , G) from the first step are used,
and the vector of group means µ is obtained by minimizing the following criterion:

H2i(µ) =
I

∑
i=1

G

∑
g,h=1

ρ

(
ν̂ig,0 − ν̂ih,0 − λ̂ig

µg

σ̂g
+ λ̂ih

µh
σ̂h

)
(14)

Alternatively, one can use relations (6) and (8) to define a linking function. We obtain

log λig − log λih = log λig,0 − log λih,0 − log σg + log σh (15)
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βig − βih = σg
νig,0

λig,0
− σh

νih,0

λih,0
+ µg − µh (16)

For estimating group standard deviations in the first step, logarithmized item loadings can be
used by minimizing

H1l(σ) =
I

∑
i=1

G

∑
g,h=1

ρ
(
log λ̂ig,0 − log λ̂ih,0 + log σg − log σh

)
(17)

For estimating group means in the second step, the differences in item difficulties in Equation (16)
are used to minimize

H2d(µ) =
I

∑
i=1

G

∑
g,h=1

ρ

(
σ̂g

ν̂ig,0

λ̂ig,0
− σ̂h

ν̂ih,0

λ̂ih,0
+ µg − µh

)
(18)

The IA approach can be applied by combining the two alternatives of minimization functions
for untransformed item loadings (H1u) or logarithmized loadings (H1l) and item intercepts (H2i) or
item difficulties (H2d) for standard deviations and means, respectively. Hence, four different linking
functions can be defined: H1u and H2i (Method IA1), H1l and H2i (Method IA2), H1u and H2d (Method
IA3), and H1l and H2d (Method IA4). In this article, it is investigated in two simulation studies which
linking method is to preferred with respect to the performance in the estimated group means µ̂.

If loadings are set to 1 in the estimation (i.e., one-parameter models are used), the linking
function only involves group means µ and item intercepts are linked. Then, the linking function (18)
simplifies to

H2d(µ) =
I

∑
i=1

G

∑
g,h=1

ρ
(
ν̂ig,0 − ν̂ih,0 + µg − µh

)
. (19)

3.1.2. Choice of the Loss Function ρ

The statistical properties of the estimator for µ and σ also strongly depend on the choice of
the loss function ρ. In the case of partial invariance, only a few of the pairwise differences of item
parameters are nonzero. This motivates the use of robust loss functions ρ that are obtained with p ≤ 1
because a few large differences between group-specific item parameters can be interpreted as outlying
cases [51–59]. Asparouhov and Muthén [4,24] implemented the loss function ρ(x) =

√
|x| = |x|0.5 in

their commercial Mplus software [60]. The more general loss function ρ(x) = |x|p is implemented
in the R package sirt (see the function invariance.alignment; [61]). In Figure 1, the loss function ρ is
displayed for different values of p.

The case of the loss function can be motivated in the case of G = 2 groups and the one-parameter
model. In this case, only the mean µ2 of the second group has to be estimated and Equation (19)
further simplifies to

H2d(µ2) =
I

∑
i=1
|ν̂i1,0 − ν̂i2,0 − µ2|p . (20)

By inspecting Equation (20), it becomes clear that a generalized mean µ2 in an Lp norm is
estimated [62]. For p = 2, it corresponds to the ordinary mean of observations δ̂i = ν̂i1,0 − ν̂i2,0. In this
case, linking is also known as mean-mean linking [28]. With p = 1, the Lp mean is estimated as the
median of observations δ̂i (uniqueness presupposed). The case p = 0 corresponds to the estimation of
the mode of observations. Values between these three integers can be interpreted as intermediate cases.
It should be noted that in the limiting case of p = 0, the number of noninvariant item parameters is
minimized because for p = 0, Equation (20) reduces to
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H2d(µ2) =
I

∑
i=1

1{µ2=ν̂i1,0−ν̂i2,0} , (21)

where 1 denotes the indicator function of a set.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

ρ(
x)

p=2
p=1
p=0.5
p=0.1
p=0.02

Figure 1. Lp loss function ρ(x) = |x|p for different values of p.

3.1.3. Estimation

The loss function ρ(x) = |x|p is not differentiable for p ≤ 1 that prevent from using optimization
algorithms that rely on derivatives. However, in the alignment, the function ρ is replaced by a
differentiable approximating function ρD(x) = (x2 + ε)p/2 using a small ε > 0 (e.g., ε = 0.01 that is
used in the software Mplus, or ε = 0.001). Because ρD is differentiable, quasi-Newton minimization
approaches can be used that are implemented in standard optimizers in R (e.g., optim or nlmnib; [63]).
For p = 0, ρ(x) is a step function that takes the value 0 for x = 0 and 1 otherwise (see p = 0.02 in
Figure 1). In this case, the maximum approximation error by using ρD is 1. For p > 0, ρ is a continuous
function of x. The maximum difference is given as |ρD(x)− ρ(x)| ≤ ρD(0) = εp/2. For p = 0.02 and
ε = 0.001, it is 0.940. However, it strongly reduces to 0.039 for x = 0.005. Also note that for empirical
data, it is unlikely that exact values of 0 are obtained in the linking function.

In our experience, in the case of small ε values, the optimization of the alignment function is very
sensitive to starting values. Asparouhov and Muthén ([4], p. 497) note that the linking function in
invariance alignment is prone to multiple local minima (see also [64] for an illustration in the case of
G = 2 groups). Further, they remark that these local minima often yield values of the linking function
that are only slightly different from values at the global minimum. Hence, Asparouhov and Muthén
decided to use multiple starting values in their commercial Mplus software to avoid local minima.
In the IA implementation in the sirt package [61], a sequence of decreasing values of ε is specified in
the optimization, each using the previous solution as initial values (see [65] for a similar approach).
By default, the optim optimizer is used. However, a user can also choose the optimizer nlminb. The
code is publicly available at the CRAN server as the invariance.alignment function in the R package
sirt [61]. To obtain more computationally efficient code, parts of the evaluation of the optimization
functions was written in the Rcpp language [66–68].
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3.1.4. Previous Simulation Studies and Applications

There are a few simulation studies that investigate the behavior of the IA method with the
originally proposed power of p = 0.5. With the exception of [64,69], all simulation studies were carried
with the Mplus software. Previous simulation studies for unidimensional factor model investigated
the case of continuous items [4,36,44,70], dichotomous items [71,72], and polytomous items [69,73].
The extension of IA to multidimensional factor models with continuous items was discussed in [74,75].

In the simulation study of [64], different values of p for continuous items were studied, and it
was found that p = 0.1 was superior to p = 0.5 in many conditions when data has been generated
under partial invariance. It also turned out in the simulation as well their empirical example that the
implementation of IA with p = 0.5 in the sirt package performed similarly to the implementation in
the Mplus software.

As the IA approach is implemented in the popular Mplus software since its inclusion in
Version 7.1 (May 2013; see [76]), it was already employed in a broad range of applications [40,75,77–95].
The applications are most frequently found in the disciplines of education science, political science,
psychology, and sociology.

3.2. Haberman Linking

The Haberman linking (HL) approach [5] also has the goal of linking multiple groups. In contrast
to the IA approach, HL also estimates joint item loadings λ = (λ1, . . . , λI) and item difficulties
β = (β1, . . . , β I) or item intercepts ν = (ν1, . . . , νI). HL is conducted in two estimation steps. In the
first step, the group standard deviations σ are computed. In the second step, the group means µ are
computed. We now describe the estimation procedure in detail.

In the first step, estimated item loadings λ̂g (g = 1, . . . , G) are used to obtain group standard
deviations σ and joint item loadings λ by minimizing a criterion H1(σ, λ). Using logarithmized
estimated item loadings (see Equation (6)), the following linking function is minimized:

H1l(σ, λ) =
I

∑
i=1

G

∑
g=1

ρ
(
log λ̂ig,0 − log λi − log σg

)
. (22)

where the power loss function ρ(x) = |x|p is applied like in the IA method. Haberman [5] used p = 2
for ρ in Equation (22). Alternatively, one can employ untransformed item loadings for determining σ

and λ. In this case, untransformed estimated item loadings are used, and one minimizes

H1u(σ, λ) =
I

∑
i=1

G

∑
g=1

ρ
(
λ̂ig,0 − λi − σg

)
. (23)

In the second step, estimated item intercepts νg and standard deviations σ̂g from the first step
(g = 1, . . . , G) are used to compute group means µ and item difficulties β. By using Equation (8),
the following criterion originally proposed by Haberman [5] is minimized

H2d(µ, β) =
I

∑
i=1

G

∑
g=1

ρ

(
σ̂g

ν̂ig,0

λ̂ig,0
+ βi − µg

)
. (24)

Alternatively, one can use Equation (4) for motivating the minimization of the following
linking function

H2i(µ, ν) =
I

∑
i=1

G

∑
g=1

ρ

(
ν̂ig,0 − νi −

λ̂ig,0

σ̂g
µg

)
. (25)

In this case, item intercepts ν instead of item difficulties β are estimated.
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As for the IA approach, the HL method can be applied by combining the two alternatives of
minimization functions H1u or H1l and H2n or H2l for standard deviations and means, respectively.
Again, four different linking functions can be defined: H1u and H2i (Method HL1), H1l and H2i (Method
HL2), H1u and H2d (Method HL3), and H1l and H2d (Method HL4). The originally proposed Haberman
method is given by Method HL4 with the loss function ρ(x) = x2 (i.e., p = 2).

If loadings are set to 1 in the estimation (i.e., one-parameter models are used), the linking function
only involves group means µ and item intercepts (or item difficulties) are linked. Hence, the linking
function (24) simplifies to

H2d(µ, β) =
I

∑
i=1

G

∑
g=1

ρ
(
ν̂ig,0 + βi − µg

)
. (26)

In this formulation, it becomes visible that the linking problem is a 2-way analysis of variance
(ANOVA) with only main effects, without cell replications, and using a robust estimation function
(see [96], Ch. 6, for general treatment, and [97] for an illustration). The existence of DIF effects
(i.e., noninvariance) means the presence of nonvanishing interactions ν̂ig,0 + βi − µg in this 2-way
ANOVA model [98]. Estimating joint item parameters βi and group means µg under partial invariance
minimizes the number of interactions in (26) that differ from zero. Indeed, Davies [96] referred to
using the loss function ρ(x) = |x|p with p = 0 in the estimation to as the L0 solution in the ANOVA
model. A similar research question was investigated in [99].

Estimation and Applications

HL is implemented in the R packages equateMultiple [100] (function multiec) and
sirt [61] (functions linking.haberman and linking.haberman.lq). In the sirt implementation,
the nondifferentiable loss function is again replaced by a differentiable approximation (see Section 3.1.3).
SAS code is also available [101].

To our knowledge, there are only a few simulation studies that investigate the performance
of Haberman linking [97,102,103]. In contrast to the IA method, HL has only been scarcely
applied [104–111]. The linking of multiple groups using other linking functions has been treated
in [102,112–114].

4. Statistical Properties

In this section, we study the statistical properties of the proposed linking estimators. Our results
even extend to more general classes of linking functions. Let γ be a finite-dimensional parameter of
interest. In IA, we can define γ = (µ, σ), and in HL, we can set γ = (µ, σ, λ, ν). Estimated identified
item parameters β̂ from a first step are used as the input of a linking function H(γ, β̂) which shall be
minimized with respect to γ. In the sequel, we will often use subsets of parameters β̂i of β̂ referring to
item i (i = 1, . . . , I). We consider additive linking functions H (with respect to items), i.e.,

H(γ, β) =
1
I

I

∑
i=1

h(γ, βi) (27)

The class defined in Equation (27) includes IA and HL, but also, for example, Haebara linking [115]
and its extensions to multiple groups [102,112] and robust loss functions [53,55,97,116].

In the following, we assume that sufficient regularity conditions of the function h in (27) are
fulfilled. By differentiating H in (27), we get an estimating equation for the estimate γ̂

Ψ(γ̂, β̂) =
1
I

I

∑
i=1

ψ(γ̂, β̂i) = 0 , (28)
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where Ψ = ∂H
∂γ and ψ = ∂h

∂γ . It is assumed that β̂ follows an asymptotic normal (AN) distribution, i.e.,

β̂ is AN
(

β,
V
N

)
as N → ∞ ⇔

√
N(β̂− β) −→ N(0, V) (N → ∞) (29)

for a sample size N and some average information matrix V . This assumption is fulfilled if β̂ has been
obtained as a maximum likelihood estimate in the first step. Also, assume that the first derivative Ψ of
the linking function has a unique solution γ0 for infinite sample size, i.e.,

Ψ(γ0, β) =
1
I

I

∑
i=1

ψ(γ0, βi) = 0 . (30)

Equation (30) means that true group parameters γ0 are obtained by solving the estimating
equation and if item parameters βi would be known. The parameter γ0 may not necessarily be equal
to the data generating parameters γ.

The derivations in the following sections rely on linear Taylor approximations, asymptotic
arguments, and the theory of M-estimators [117,118]. For the rest of this section, we assume usually
employed regularity conditions for the linking function, and approximate nondifferentiable linking
functions by sufficiently smooth differentiable approximating functions.

4.1. Asymptotic Normality: Standard Errors

We can now use (29) and the estimating Equation (28) to show asymptotic normality of the
estimate γ̂. Note that γ̂ is only implicitly given as the root of Ψ(γ̂, β̂) = 0. One can apply the
multivariate delta formula to a Taylor approximation (resulting in the delta formula for the implicit
function theorem; see [119]). This approach has been previously applied for the computation
standard errors in linking [4,120–122]. We denote partial derivatives of Ψ by Ψγ(γ, β) = ∂Ψ

∂γ (γ, β)

and Ψβ(γ, β) = ∂Ψ
∂β (γ, β). By applying a linear Taylor approximation and using (30), we get

0 = Ψ(γ̂, β̂) ≈ Ψγ(γ0, β) (γ̂− γ) + Ψβ(γ0, β)
(

β̂− β
)

(31)

Setting A = Ψγ(γ0, β) (and assuming its invertibility) and J = Ψβ(γ0, β), Equation (31) can be
rewritten as

γ̂− γ ≈ −A−1 J
(

β̂− β
)

(32)

Hence, by applying the delta formula and using (29), we get asymptotic normality of γ̂

γ̂ is AN
(

γ0,
A−1 JV JT A−T

N

)
as N → ∞ (33)

The result in Equation (33) implies that estimated group means and group standard deviations in
linking are asymptotically normally distributed if input item parameters are asymptotically normally
distributed. Moreover, these parameters are asymptotically unbiased in the case of full invariance.
In this situation, typically, the condition (30) will be fulfilled. This means that the group means and
standard deviations are identified in infinite samples, i.e., there exists a function f such that γ = f (β)

for the data-generating parameter γ. Hence, in large samples and in the situation of full invariance, IA
and HL are expected to produce unbiased results for all values of p of the loss function ρ.
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4.2. Asymptotic Normality: Linking Errors

The presence of DIF effects introduces an additional source of ambiguity in determining group
means in latent variable models. A consequence of noninvariance is that a subset of items can
provide different group means even for infinite sample sizes. In large-scale assessment studies,
this source of uncertainty that is due to a selection of a particular set of items has been labeled as
linking errors [123–130]. Uncertainty in group means due to item sampling has also been extensively
studied in generalizability theory [131–133].

In this section, we discuss the computation of linking errors for general linking functions by using
the calculus of M-estimation [118]. The estimating equation for determining γ is given as

Ψ(γ̂, β) =
1
I

I

∑
i=1

ψ(γ̂, βi) = 0 . (34)

In this section, we base our inference on infinite sample sizes so that we can assume β̂i = βi
for i = 1, . . . , I. Linking errors assess uncertainty in γ̂ with respect to items. Hence, we assume a
distribution function Pβ for item parameters βi (i = 1, . . . , I) that are independent and identically
distributed (i.i.d.) random variables.

Hence, the standard theory of M-estimation can be applied to (30), and asymptotic inference is
derived for a large number of items I. For an infinite sample of items, we can define a parameter γ0 by
taking the expectation of (30) with respect to the distribution Pβ (i.e., applying EPβ

):

EPβ
(Ψ(γ0, β)) =

∫
ψ(γ0, β1)dPβ = 0 . (35)

Assumption (35) can be interpreted as an asymptotic limit. In the case of violation of invariance,
the parameter γ0 must not coincide with a data-generating parameter of group means and standard
deviations contained in γ.

M-estimation theory provides asymptotic normality estimated parameters γ̂ with limiting
covariance matrix as the sandwich matrix [118]

γ̂ is AN
(

γ0,
A−1BA−T

I

)
as I → ∞ , (36)

where A = EPβ
{−ψγ(γ0, β1)} and B = EPβ

{ψ(γ0, β1)ψ(γ0, β1)
T}. These matrices can be estimated

by their sample-based analogs [117]. For known item parameters βi, matrices A and B can be
estimated by

Â = −1
I

I

∑
i=1

ψγ(γ̂, βi) and (37)

B̂ =
1
I

I

∑
i=1

ψ(γ̂, βi)ψ(γ̂, βi)
T (38)

In a finite sample of subjects, the estimators Â and B̂ in Equations (37) and (38) might be biased
because βi is replaced by its estimate β̂i. Some bias correction could be applied in this case. To sum
up, asymptotic normality, as shown in Equation (36), provides the framework for computing linking
errors for any additive linking function of the form Equation (27).

It should be noted that there is an assumption that γ is a vector of fixed dimensionality. Hence,
the theory is applicable to IA. In HL, however, for every item, joint item parameters ξ i must be
estimated for each item i. Hence, the number of parameters grows with the available data (which are I
items in this case). This issue is referred to as the incidental parameter problem in the literature [134].
The first option to circumvent the estimation of incidental item parameters is to modify the linking
function. In HL, this would mean to remove joint item parameters from estimation. One could use
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the same loss function, but one considers differences between identified item parameters of different
groups, which exactly coincides with the IA approach. The second option could be to integrate out the
incidental parameters ξ in the estimating equation by assuming a parametric distributional assumption
ξ i ∼ Fξ(ξ; φ) with some finite-dimensional parameter φ that has to be estimated. In the case of HL,
this would result in the estimation of a linear mixed effects model with robust loss functions [135–138].

4.3. A Simultaneous Assessment of Standard Errors and Linking Errors

In Section 4.1, we obtained the statistical inference (i.e., standard errors) for γ̂ with respect to
subjects and in Section 4.2 with respect to items (i.e., linking errors). Finally, we provide a simultaneous
inference for subjects and items. We assume that the inference with respect to items is not influenced
by the inference with respect to subjects. In other words, inference for persons is first investigated by
holding the set of items fixed, and inference for items is conducted in the second step (see [139] for
related work).

We now move to the general case of linking using an estimating function Ψ(γ, β). Again,
we assume that β̂i is asymptotically normally distributed with mean βi and variance matrix Vi

N
for each item i = 1, . . . , I. Note that Vi = V(βi) are typically functions of item parameters βi. By the
continuous mapping theorem it holds that

ψ(γ, β̂i)→ ψ(γ, βi) as N → ∞ (39)

Assume that there is a distribution Pβ on item parameters and βi are i.i.d. random variables.
The estimator γ̂ fulfills Ψ(γ̂, β̂) = 1

I ∑I
i=1 ψ(γ̂, β̂i) = 0. Assume that there uniquely exists a parameter

γ0 that fulfills the estimating equation in the population of items, that is

EPβ
{ψ(γ0, β1)} = 0 (40)

The notation EPβ
is meant to compute the expected value with respect to the distribution Pβ of

item parameters. Note that EPβ
{β̂1 − β1} = 0. It is assumed that the sampling process for subjects

does not interfere with the sampling process for items.
A Taylor approximation of Ψ with respect to γ and β provides

0 = Ψ(γ̂, β̂) ≈ Ψ(γ0, β) + Ψγ(γ0, β)(γ̂− γ0) + Ψβ(γ0, β)(β̂− β) (41)

The estimate γ̂ is obtained as

γ̂− γ0 = −Ψγ(γ0, β)−1
(

Ψ(γ0, β)−Ψβ(γ, β)(β̂− β)
)

(42)

Then, one can use the proof technique used in M-estimation. Here, we need a sequential evaluation
of expectations. That is, we apply the operator EPβ

E to random variables where E denotes the
usual expectation operator with respect to some probability distribution for subjects. One can prove
asymptotic normality of γ̂ for a large number of items I and a large number of subjects N:

γ̂ is AN
(

γ0, A−1
(

B
I
+

C
NI

)
A−T

)
as I → ∞ and N → ∞ , (43)

where the involved matrices A, B, and C are given as

A = EPβ
{−ψγ(γ0, β1)} (44)

B = EPβ
{ψγ(γ0, β1)ψγ(γ0, β1)

T} (45)

C = EPβ
{ψβ(γ0, β1)E(β̂1 − β1)

2ψβ(γ0, β1)
T} = EPβ

{ψβ(γ0, β1)V(β1)ψβ(γ0, β1)
T} (46)
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The matrix B refers to the estimation error due to items. In the case of noninvariance, it can
be interpreted for quantifying variability in DIF effects that are weighted by ψγ. The matrix C
primarily quantifies the average sampling error due to subjects that are weighted by ψβ. Again,
the corresponding matrices may be estimated using their sampling-based analogs, but bias corrections
for these estimates might be needed in some applications.

It should be noted that while the result in Equation (43) could prove useful in theory, resampling
based approaches for the simultaneous inference of items and subjects are often more straightforward
to implement. In this case, the crossed sampling design of sampling items and subjects has to be taken
into account, and a double bootstrap or double jackknife seems to be required [102,125,130,140–142].

4.4. Summary

In the last three parts, we proved asymptotic normality of estimated parameters of a linking
method that can be written as additive item-wise contributions. The IA method, as well as adapted
methods of HL or Haebara linking, would constitute examples for which the theory can be applied.
Statistical inference can be conducted with respect to subjects resulting in ordinary standard errors
(Section 4.1), items resulting in linking errors (Section 4.2), or subjects and items resulting in a
simultaneous assessment of standard and linking errors (Section 4.3). The theory of M-estimation can
be applied both in the case of unbiased estimates and in the case of biased estimates for the parameter
γ of interest.

5. Simulation Studies

In this section, we present two simulation studies that compare different specifications of IA
and HL. In Study 1 (Section 5.1), we consider the case of continuous items. In Study 2 (Section 5.2),
we investigate the case of dichotomous items.

5.1. Simulation Study 1: Continuous Items

5.1.1. Simulation Design

We chose a simulation design that was similar to Simulation Study 1 of Asparouhov and
Muthén [4]. Data was generated using a unidimensional factor model with G = 3, G = 6, or
G = 18 groups, each of size N = 250, 500, 1000, or 5000. The normally distributed factor was measured
by five normally distributed items. In the case of G = 3 groups, the means of the normal distributions
of the factor were −0.365, −0.112, and 0.477, while the standard deviations were 0.842, 1.032, and 0.923.
This choice resulted in a mean of 0 and a standard deviation of 1 for the total population comprising all
groups. For G = 6 groups, the means and standard deviations were duplicated, i.e., the fourth group
uses the same parameters as the first group, and so on. For G = 18 groups, the three means and three
standard deviations were duplicated six times.

In the no DIF condition, all item parameters were assumed to be invariant across groups. In the
DIF condition, we generated item responses so that in each group, there is exactly one noninvariant
item intercept and one noninvariant item loading. In all groups, the invariant loadings and the
residual variances of the indicator variables were set to λi = 1 (i = 1, . . . , 5) and the invariant item
intercepts were set to νi = 0. The noninvariant item parameters in the first group were ν51 = 0.5 and
λ13 = 1.4. The noninvariant item parameters in the second group were ν12 = −0.5 and λ52 = 0.5.
The noninvariant item parameters in the third group were ν23 = 0.5 and λ43 = 0.3. In the case of six
groups, item parameters were duplicated. That is, item parameters of Group g + h were chosen to be
equal to item parameters of Group g (g = 1, 2, 3; h = 1, 2, 3). In the cases of 18 groups, item parameters
were duplicated six times. For each condition, R = 300 replications were used.



Stats 2020, 3 258

5.1.2. Analysis Methods

The performance of IA and HL was investigated by varying specifications of the linking functions.
Four IA and HL specifications were tested: IA1, IA2, IA3, and IA4 (see Section 3.1), and HL1, HL2,
HL3, and HL4 (see Section 3.2). For IA and HL, the powers p = 0.02, 0.01, 0.25, 0.50, 1, and 2 were
used in the linking functions.

For identifying group means and group standard deviations in the linking procedure, for the
first group, the mean was set to 0, and the standard deviation was set to 1. After estimating all group
means and group standard deviations. These parameters were transformed to obtain a mean of 0 and
a standard deviation 1 for the total sample comprising all groups. These conditions were also fulfilled
in the data generating model.

The statistical performance of the vector of estimated means µ̂ and estimated standard deviations
σ̂ is assessed by summarizing bias and variability of estimators across groups. Let γ = (γ1, . . . , γG) be
a parameter of interest and γ̂ = (γ̂1, . . . , γ̂G) its estimator (i.e., for means and standard deviations).
For R replications, the obtained estimates are γ̂r = (γ̂1r, . . . , γ̂Gr) (r = 1, . . . , R). The average absolute
bias (ABIAS) is defined as

ABIAS(γ̂) =
1
G

G

∑
g=1

∣∣∣∣∣
1
R

R

∑
r=1

γ̂gr − γg

∣∣∣∣∣ =
1
G

G

∑
g=1

∣∣Bias(γ̂g)
∣∣ (47)

The average root mean square error (ARMSE) is computed as

ARMSE(γ̂) =
1
G

G

∑
g=1

√√√√ 1
R

R

∑
r=1

(
γ̂gr − γg

)2
=

1
G

G

∑
g=1

RMSE(γ̂g) . (48)

The ARMSE is the average of the root mean square error (RMSE) of each parameter estimate.
In all analyses, the software R [63] was used. IA and HL were performed with the R package sirt [61].

5.1.3. Results

It turned out that in the no DIF condition, group mean estimates of IA and HL were unbiased
for 3, 6, and 18 groups (results not reported in tables). There were no notable differences between
the different IA and HL approaches. For example, for G = 3 groups, the ABIAS averaged across all
approaches (IA and HL with different values of p) was 0.007 (Max = 0.010) for N = 250. For N = 500,
results slightly improved across approaches (Max = 0.005), and there was virtually no ABIAS for
N = 5000 (Max = 0.001).

In Table 1, the ARMSE is displayed in the condition of no DIF and six groups. In large samples, all
methods showed similar performance in estimated group means. As expected, the ARMSE decreased
with larger sample sizes. However, the IA methods IA1 and IA2 (based on item intercepts) and
all four HL methods performed similarly. It can be seen that there are efficiency losses in terms of
ARMSE when using a power p ≤ 1 instead of p = 2. However, in many conditions, the efficiency loss
is negligible.
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Table 1. Simulation Study 1: Average Root Mean Square Error (ARMSE) of Group Means as a Function
of Sample Size in the Condition of No Differential Item Functioning (No DIF) and G = 6 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.060 0.060 0.070 0.072 0.059 0.060 0.060 0.060
0.1 0.060 0.059 0.069 0.071 0.059 0.059 0.060 0.060

0.25 0.059 0.059 0.068 0.070 0.059 0.059 0.059 0.059
0.5 0.058 0.058 0.066 0.068 0.058 0.058 0.059 0.058
1 0.056 0.056 0.062 0.064 0.056 0.056 0.057 0.057
2 0.056 0.056 0.061 0.062 0.056 0.056 0.056 0.056

N = 500
0.02 0.045 0.045 0.049 0.049 0.046 0.046 0.046 0.046
0.1 0.045 0.045 0.048 0.049 0.046 0.046 0.045 0.045

0.25 0.045 0.045 0.048 0.048 0.045 0.045 0.045 0.045
0.5 0.044 0.044 0.047 0.047 0.044 0.044 0.044 0.044
1 0.043 0.043 0.045 0.045 0.043 0.043 0.043 0.043
2 0.042 0.042 0.043 0.044 0.042 0.042 0.042 0.042

N = 1000
0.02 0.030 0.030 0.034 0.034 0.030 0.030 0.030 0.030
0.1 0.030 0.030 0.034 0.034 0.030 0.030 0.030 0.030

0.25 0.030 0.030 0.033 0.034 0.029 0.029 0.029 0.029
0.5 0.029 0.029 0.033 0.033 0.029 0.029 0.029 0.029
1 0.029 0.029 0.032 0.032 0.029 0.029 0.029 0.029
2 0.029 0.029 0.031 0.032 0.029 0.029 0.029 0.029

N = 5000
0.02 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013
0.1 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013

0.25 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013
0.5 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013
1 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013
2 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.013

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

In Table 2, the ARMSE is shown in the condition of DIF and G = 6 groups. Alignment methods
IA3 and IA4 that rely on linking item difficulties are inferior to all other methods, even for huge
sample sizes. It can be seen that the methods (except IA3 and IA4) performed very similar for power
values p = 0.02, 0.1, 0.25, and 0.5 for sample sizes of at least 500. Using a power p of at least 0.5 is
effective in reducing the bias introduced by linking using p = 1 or p = 2. For a small sample size of
N = 250, p = 0.1 or p = 0.02 introduced non-negligible amounts of uncertainty. In general, the linking
methods IA1, IA2, HL1, and HL2 had comparable performance. Notably, the additional number
of estimated common item parameters in HL did not introduce additional variability in estimated
group means. Moreover, it was found that HL based on item difficulties (as originally proposed
in [5]; methods HL3 and HL4) resulted in more variable estimates than HL based on item difficulties
(methods HL1 and HL2).

The simulation results showed (not reported here) that the ARMSE for three groups was almost
identical to six groups. In the DIF condition, it turned out that all methods using the power p = 2
provided biased estimates. In contrast, the bias was acceptable for powers p of at most 1. Interestingly,
methods in which linking is based on item difficulties (IA3, IA4, HL3, HL4) are inferior to methods
based on item intercepts (IA1, IA2, HL1, HL2).
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Table 2. Simulation Study 1: Average Root Mean Square Error (ARMSE) of Group Means as a Function
of Sample Size in the Condition of Differential Item Functioning (DIF) and G = 6 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.072 0.073 0.108 0.112 0.071 0.071 0.077 0.077
0.1 0.072 0.073 0.107 0.111 0.071 0.071 0.077 0.077

0.25 0.070 0.070 0.105 0.113 0.070 0.070 0.077 0.077
0.5 0.069 0.069 0.101 0.108 0.071 0.071 0.077 0.077
1 0.073 0.071 0.102 0.113 0.075 0.075 0.084 0.084
2 0.094 0.088 0.130 0.126 0.087 0.088 0.096 0.096

N = 500
0.02 0.048 0.048 0.099 0.100 0.046 0.046 0.053 0.053
0.1 0.048 0.048 0.095 0.098 0.047 0.047 0.052 0.052

0.25 0.048 0.048 0.094 0.097 0.047 0.047 0.052 0.052
0.5 0.048 0.048 0.096 0.100 0.047 0.047 0.051 0.051
1 0.052 0.050 0.096 0.108 0.053 0.053 0.058 0.059
2 0.083 0.075 0.118 0.115 0.076 0.075 0.084 0.086

N = 1000
0.02 0.032 0.032 0.083 0.088 0.033 0.033 0.034 0.034
0.1 0.032 0.032 0.085 0.086 0.033 0.033 0.034 0.034

0.25 0.033 0.033 0.084 0.090 0.033 0.033 0.033 0.033
0.5 0.032 0.032 0.084 0.094 0.032 0.032 0.034 0.034
1 0.038 0.037 0.098 0.108 0.039 0.039 0.043 0.043
2 0.078 0.068 0.115 0.108 0.070 0.068 0.076 0.078

N = 5000
0.02 0.013 0.013 0.041 0.055 0.013 0.013 0.013 0.013
0.1 0.013 0.013 0.040 0.063 0.013 0.013 0.013 0.014

0.25 0.013 0.013 0.050 0.066 0.013 0.013 0.014 0.014
0.5 0.013 0.013 0.045 0.049 0.013 0.013 0.014 0.014
1 0.019 0.018 0.092 0.098 0.021 0.021 0.023 0.024
2 0.073 0.059 0.112 0.100 0.063 0.059 0.067 0.072

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

In Table 3, the ARMSE is shown for the case of G = 18 groups. The general pattern of findings
differed somewhat from the one with only a few groups (G = 3 or G = 6). Overall, approaches HL3
and HL4 (linking based on item difficulties instead of based on item intercepts) resulted in the most
precise estimates for small values of p. Notably, smaller p values than 0.5 (that was originally proposed
in [4]) were not needed for increasing precision in group mean estimates. Methods IA1 (implemented
in Mplus), IA2, HL1, and HL2 performed similarly. The least precise results were obtained with
methods IA3 and IA4. In particular, in a very large sample of N = 5000, there was even an ARMSE
increase compared to smaller samples that can be attributed to bias.

In Table A1 of Appendix A, the ARMSE of group standard deviations for six groups in the DIF
condition is shown. For power values ranging p = 0.02 between p = 0.5, the methods IA1, IA2, HL1,
and HL2 were similar, but provided substantially different results for p = 1 and p = 2.



Stats 2020, 3 261

Table 3. Simulation Study 1: Average Root Mean Square Error (ARMSE) of Group Means as a Function
of Sample Size in the Condition of Differential Item Functioning (DIF) and G = 18 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.080 0.080 0.083 0.083 0.079 0.079 0.077 0.077
0.1 0.079 0.079 0.082 0.082 0.079 0.078 0.076 0.076

0.25 0.078 0.078 0.079 0.079 0.078 0.078 0.076 0.076
0.5 0.075 0.075 0.074 0.075 0.078 0.078 0.076 0.076
1 0.078 0.077 0.076 0.076 0.084 0.084 0.085 0.085
2 0.093 0.095 0.115 0.091 0.093 0.095 0.107 0.113

N = 500
0.02 0.060 0.060 0.072 0.072 0.059 0.059 0.052 0.052
0.1 0.059 0.059 0.072 0.072 0.059 0.059 0.052 0.052

0.25 0.058 0.058 0.071 0.071 0.059 0.059 0.052 0.052
0.5 0.057 0.057 0.070 0.070 0.058 0.058 0.052 0.052
1 0.062 0.061 0.070 0.070 0.066 0.066 0.062 0.062
2 0.083 0.084 0.105 0.080 0.082 0.084 0.095 0.103

N = 1000
0.02 0.047 0.046 0.089 0.090 0.047 0.047 0.035 0.035
0.1 0.046 0.046 0.090 0.090 0.046 0.046 0.035 0.035

0.25 0.046 0.046 0.092 0.092 0.046 0.046 0.035 0.035
0.5 0.045 0.045 0.092 0.092 0.046 0.046 0.036 0.036
1 0.051 0.051 0.074 0.075 0.053 0.053 0.045 0.046
2 0.076 0.077 0.100 0.073 0.075 0.077 0.087 0.097

N = 5000
0.02 0.032 0.032 0.127 0.127 0.032 0.032 0.015 0.015
0.1 0.031 0.031 0.127 0.127 0.032 0.032 0.015 0.015

0.25 0.031 0.031 0.126 0.126 0.031 0.031 0.015 0.015
0.5 0.031 0.031 0.122 0.122 0.031 0.031 0.016 0.016
1 0.041 0.041 0.086 0.087 0.039 0.039 0.025 0.026
2 0.071 0.069 0.095 0.067 0.068 0.069 0.081 0.092

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

5.1.4. Summary

Overall, Simulation Study 1 showed that HL could be regarded at least to be very similar to IA by
using the same robust loss function as in IA. Both IA and HL, approaches can be effectively used to
reduce bias in estimated group distribution parameters in the situation of partial invariance by using
power values p of at most 0.5. Simulation results indicated slight advantages of HL compared to IA
in the case of many groups (G = 18). However, findings were found to be different for a few groups
(G = 3 or G = 6) in which IA was competitive to HL.

5.2. Simulation Study 2: Dichotomous Items

5.2.1. Simulation Design

In this study, we generated dichotomous item responses and investigated the performance of IA
and HL for the 2PL model. We adopted a simulation design that was used in [97]. We simulated item
responses from a 2PL model for G = 3, G = 6, and G = 18 groups. For each group g, abilities were
normally distributed with mean µg and standard deviation σg. Across all conditions and replications of
the simulation, the group means and standard deviations were held fixed. The population parameters
for group means and standard deviations are provided in Appendix B. The total population comprising
all groups had a mean of 0 and a standard deviation of 1. Item loadings λi were assumed to be invariant
across groups. Group-specific item intercepts νig were generated according to νig = νi + eig, where νi
is the common item intercept, and eig is the group-specific uniform DIF effect. The item parameters
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were held constant across conditions and replications (see Appendix B in [116] for used parameters).
In total, I = 20 items were used in the simulation.

For each item in each group and for a fixed proportion πB of items with DIF effects, a discrete
variable Zig, which had values of 0 (if the item had an invariant item intercept), or +1 (biased item
with a uniform DIF effect). The constant DIF effect δ was chosen either 0 (no DIF condition), or 0.6 (DIF
condition). All biased items within a group received a uniform DIF effect of either +δ or −δ. Hence,
unbalanced DIF was simulated (see [97]). This property was implemented by defining a variable Dg

that had either a value of 1 or −1. The DIF effects for unbalanced DIF were defined as eig = ZigDgδ.
For each condition of the simulation design, R = 300 replications were generated. We manipulated

the number of persons per group (N = 250, 500, 1000, and 5000). We fixed the proportion of items
with DIF effects to 30% (i.e., in every group, 6 out of 20 items have DIF effects).

5.2.2. Analysis Methods

The same four IA and HL methods were tested as in simulation study 1. Again, power values
p = 0.02, 0.1, 0.25, 0.5, 1, and 2 were compared. We implemented the IA and HL approaches in
the sirt package [61] and used the TAM package [143] for estimating the 2PL model with marginal
maximum likelihood.

5.2.3. Results

In Table A2 in Appendix C, the ARMSE of the estimated group means is shown in the condition
of no DIF and G = 6 groups. IA methods IA1 and IA2 performed slightly better than HL for a small
power p. Like in the case of continuous item responses, using a power p smaller than 2 in the no DIF
conditions resulted in a loss of efficiency in estimated group means. Moreover, methods IA3 and IA4
that perform alignment based on item difficulties were again clearly inferior to alignment based on
item intercepts (methods IA1 and IA2).

All methods, except methods IA3 and IA4, provided almost unbiased group mean estimates for
all studied sample sizes for G = 3 and G = 6 groups in the no DIF condition.

In Table 4, the ARMSE of estimated group means is shown in the condition of DIF and G = 6
groups. Again, the methods IA3 and IA4 were not well-performing, in particular with a small p.
Interestingly, when comparing the linking functions that use the same power p, HL performed better
than IA, except in the case of a very large sample size. HL based on item difficulties (HL3 and HL4)
was again substantially worse than HL based on item intercepts (HL1 and HL2). However, HL based
on item difficulties was also preferable to all IA methods.
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Table 4. Simulation Study 2: Average Root Mean Square Error (ARMSE) of Group Means as a Function
of Sample Size in the Condition of Differential Item Functioning (DIF) and G = 6 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.157 0.156 0.164 0.187 0.129 0.128 0.160 0.156
0.1 0.151 0.155 0.163 0.231 0.127 0.126 0.159 0.152

0.25 0.149 0.153 0.163 0.236 0.126 0.126 0.154 0.148
0.5 0.146 0.149 0.158 0.184 0.124 0.125 0.146 0.142
1 0.140 0.144 0.160 0.157 0.120 0.121 0.136 0.136
2 0.154 0.156 0.179 0.179 0.155 0.156 0.185 0.183

N = 500
0.02 0.117 0.117 0.144 0.145 0.075 0.075 0.105 0.105
0.1 0.116 0.117 0.143 0.140 0.074 0.075 0.104 0.107

0.25 0.117 0.118 0.141 0.137 0.074 0.076 0.103 0.108
0.5 0.118 0.120 0.141 0.134 0.074 0.076 0.102 0.098
1 0.127 0.130 0.145 0.133 0.091 0.092 0.109 0.110
2 0.146 0.149 0.164 0.153 0.148 0.149 0.162 0.162

N = 1000
0.02 0.070 0.072 0.115 0.123 0.048 0.049 0.060 0.059
0.1 0.071 0.072 0.117 0.122 0.048 0.048 0.060 0.060

0.25 0.071 0.072 0.119 0.114 0.048 0.048 0.062 0.061
0.5 0.079 0.076 0.124 0.121 0.048 0.048 0.063 0.063
1 0.115 0.116 0.137 0.129 0.066 0.067 0.085 0.086
2 0.144 0.145 0.158 0.150 0.145 0.145 0.161 0.161

N = 5000
0.02 0.017 0.017 0.070 0.068 0.017 0.017 0.020 0.019
0.1 0.017 0.017 0.070 0.068 0.017 0.017 0.020 0.019

0.25 0.018 0.018 0.065 0.064 0.017 0.017 0.020 0.019
0.5 0.020 0.020 0.067 0.073 0.018 0.018 0.021 0.020
1 0.065 0.065 0.115 0.113 0.033 0.033 0.041 0.042
2 0.140 0.141 0.149 0.147 0.140 0.141 0.153 0.154

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

In Table 5, the ARMSE for many groups (i.e., G = 18) is shown. HL had slight advantages over
IA for smaller sample sizes of N = 250 or N = 500. The difference between IA and HL got smaller
with larger sample sizes. Interestingly, IA with p ≤ 0.25 seems to be preferable to p = 0.5 in terms
of ARMSE. Differences between different power values p were less pronounced for HL than for IA.
For N = 1000, using a very small power p (e.g., p = 0.02) in IA resulted in more precise estimates than
for any other (studied) power p in HL.

In Table A3 in Appendix C, the ARMSE of estimated group means is shown in the condition of
DIF and G = 3 groups. Surprisingly, IA was superior to HL in this situation. The best performance
was obtained by using p = 0.1, 0.25, or 0.50 and the IA1 or the IA2 method. However, methods IA1,
IA2, HL1, HL2 performed nearly equivalent for a very large sample size of N = 5000.

Finally, in Table A4 in Appendix C, the ARMSE for estimated standard deviations for G = 6 groups
in the DIF condition is shown. It can be seen that alignment based on untransformed item loadings
(IA1), as originally proposed in [4], had inferior performance compared to using logarithmized item
loadings (IA2). Like for group means, estimated group standard deviations for HL resulted in more
precise estimates than for IA.
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Table 5. Simulation Study 2: Average Root Mean Square Error (ARMSE) of Group Means as a Function
of Sample Size in the Condition of Differential Item Functioning (DIF) and G = 18 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.141 0.141 0.154 0.153 0.123 0.123 0.153 0.152
0.1 0.141 0.141 0.153 0.152 0.122 0.122 0.149 0.149
0.25 0.143 0.143 0.152 0.151 0.121 0.121 0.146 0.147
0.5 0.147 0.147 0.151 0.150 0.120 0.120 0.143 0.143
1 0.159 0.158 0.157 0.156 0.128 0.127 0.148 0.147
2 0.180 0.176 0.191 0.192 0.176 0.176 0.228 0.223

N = 500
0.02 0.080 0.080 0.122 0.122 0.074 0.075 0.093 0.093
0.1 0.081 0.081 0.122 0.123 0.074 0.074 0.092 0.093
0.25 0.085 0.085 0.125 0.125 0.074 0.074 0.092 0.092
0.5 0.102 0.101 0.133 0.132 0.076 0.076 0.094 0.093
1 0.146 0.146 0.150 0.150 0.095 0.094 0.113 0.113
2 0.171 0.170 0.174 0.174 0.171 0.170 0.191 0.190

N = 1000
0.02 0.045 0.045 0.087 0.086 0.047 0.048 0.055 0.056
0.1 0.046 0.046 0.088 0.087 0.047 0.047 0.055 0.056
0.25 0.048 0.048 0.091 0.090 0.047 0.047 0.055 0.055
0.5 0.057 0.057 0.106 0.106 0.048 0.048 0.058 0.058
1 0.134 0.134 0.147 0.147 0.069 0.069 0.084 0.083
2 0.169 0.169 0.173 0.173 0.169 0.169 0.183 0.183

N = 5000
0.02 0.017 0.017 0.054 0.055 0.019 0.018 0.020 0.020
0.1 0.018 0.018 0.054 0.054 0.019 0.018 0.020 0.020
0.25 0.018 0.018 0.054 0.054 0.019 0.018 0.021 0.020
0.5 0.021 0.021 0.058 0.058 0.020 0.019 0.022 0.022
1 0.095 0.095 0.142 0.142 0.035 0.035 0.042 0.042
2 0.168 0.168 0.173 0.174 0.168 0.168 0.178 0.178

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

5.2.4. Summary

To conclude, Simulation Study 2 provided a mixed pattern of findings regarding the superiority
of one method over the other. For a smaller number of groups (G = 3), IA was preferable, while for
a somewhat number of groups (G = 6) and for many groups (G = 18), HL was preferable. For a
sufficiently large sample (e.g., N ≥ 500), power values smaller than the original proposal of p = 0.5
(see [4]) provide smaller biases and more precise estimates. Using a power value smaller than 0.5 is
crucial for IA. For HL, powers studied in the range between 0.02 and 0.5 performed relatively similar.

6. Empirical Examples

In this section, three empirical examples are presented. In the first two examples (Sections 6.1
and 6.2), published item parameters from a 2PL and a 1PL model were taken as the input of the
linking method. In Section 6.3, we use the PISA 2006 Reading dataset to investigate whether country
comparisons depend on the choice of the linking function.

6.1. 2PL Linking Study: Meyer and Zhou Example

6.1.1. Method

In the following small empirical example, we use estimated item parameters that were the outcome
of estimating a 2PL model. Item parameters were taken from Meyer and Zhou [144], see Table 6.



Stats 2020, 3 265

Table 6. 2PL Linking Study: Item Parameters Taken from Meyer and Zhou [144].

Item FormX Form Y

ai bi ai bi

1 1.17 0.56 1.31 1.09
5 0.95 −0.90 1.09 −0.30
9 0.90 −0.85 1.14 −0.01
13 1.07 −0.39 1.22 0.13
17 1.27 −1.19 1.53 −0.59
21 0.77 −1.26 0.95 −0.43
25 0.96 −0.66 1.14 −0.07
29 1.14 −0.51 1.36 −0.02

The original application was a linking study in which two test forms X and Y should be linked
onto a common scale using eight common items (displayed in Table 6). The computation of linking
constants is equivalent to the computation of group means and standard deviations in the case of
two groups of persons that correspond to forms X and Y. We estimated the mean and the standard
deviation of the second group (i.e., Form Y) while for the first group the mean was set to 0 and the
standard deviation was set to 1. As in the simulation studies, we specified different variants of IA
and HA as well as different power values p in the loss function. All weights wi1,gh and wi2,gh in
Equation (12) were set to 1.

6.1.2. Results

In Table 7, the obtained means for the second group are displayed. It turned out that all Haberman
approaches (HL) led to similar results, relatively independent of the choice p. Interestingly, IA and HL
only resulted in similar estimates of the mean for p = 2. For p ≤ 1, IA produced substantially lower
group differences (in terms of absolute values). The IA approaches based on item difficulties (IA3 and
IA4) was different from the use of item intercepts (IA1 and IA2). However, no substantial differences
for logarithmized and untransformed item loadings were obtained. Overall, this example shows that
the use of a particular linking method can affect the outcomes of group comparisons.

Table 7. 2PL Linking Study: Group Mean Corresponding to Form Y.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

0.02 −0.43 −0.43 −0.34 −0.34 −0.57 −0.57 −0.54 −0.54
0.1 −0.43 −0.43 −0.34 −0.34 −0.57 −0.57 −0.54 −0.54
0.25 −0.43 −0.43 −0.34 −0.34 −0.57 −0.57 −0.55 −0.55
0.5 −0.44 −0.44 −0.35 −0.35 −0.57 −0.57 −0.55 −0.55
1 −0.47 −0.47 −0.44 −0.44 −0.58 −0.58 −0.58 −0.58
2 −0.60 −0.60 −0.62 −0.62 −0.59 −0.59 −0.62 −0.62

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

6.2. 1PL Linking Study: Monseur and Berezner Example

6.2.1. Method

In this example, we use published item parameters from the 1PL model in a study of Monseur and
Berezner [125]. The item parameters are obtained by scaling countries in the studies 2000 and 2003 at
the international level for the domain of Reading. In PISA, mean-mean linking between the two studies
2000 and 2003 was carried to transform the obtained item parameters onto a common metric. As a
consequence, published item parameters big (g = 1, 2) were centered, i.e., 1/I ·

(
∑I

i=1(bi2 − bi1)
)
= 0.

As argued in Section 3.1.2, mean-mean linking refers to the application of IA with the power p = 2.
The used item parameters are shown in Table A5 in Appendix D. In total, 28 items nested within 8
testlets (i.e., a common Reading text that is administered to a subset of items) were available.
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We applied IA and HL for a sequence of p values ranging between p = 0.02 and p = 3.0 to
investigate the sensitivity of the estimated linking constant with respect to the linking function chosen.
In the 1PL model, there is only one option for performing IA and HL because no item loadings are
estimated and item intercepts, and item difficulties are equal up to the sign. As in the 2PL linking study
(see Section 6.1), all weights wi1,gh and wi2,gh in Equation (12) were set to 1. To study the influence of
the sample of items, we also computed the linking error for each linking approach (see Section 4.2)
by applying jackknife at the level of testlets (see [125]). We (like Monseur and Berezner) opted for
applying jackknife at the level of testlets instead of items because variations in item difficulties are
likely to affect items in a testlet simultaneously.

6.2.2. Results

The results for HL were very similar to that of IA. Hence, we only present results for IA in this part.
As expected, we obtained a value near to 0 (i.e., µ̂2 = 0.005) for p = 2. This value represents the mean
of the differences in item parameters from the first and the second study. For p = 1, a median difference
of µ̂2 = −0.057 was obtained. A value of µ̂2 = −0.115 was obtained for p = 0.02. The estimated
linking error by jackknife was 0.060 for p = 2. Largest linking errors were obtained for power values
near to 1 (i.e., a maximum value of 0.085), while the smallest linking error (i.e., 0.031) was obtained
for p values near to 0. It could be speculated that linking errors were reduced because items in which
values were handled as outliers were essentially removed from linking.

In Figure 2, estimated linking constants µ̂2 are shown. It can be seen that there are substantial
differences for p values of at most 1 compared to the originally employed linking method by PISA
using p = 2. The reason for this difference could be seen in Figure 3, where the kernel density for the
difference of item difficulties δi = bi2 − bi1 is shown. The empirical distribution had slightly fatter
distributional tails compared to an assumed normal distribution. Moreover, the empirical had a mode
that was slightly shifted to the right compared to the normal distribution approximation. This is
consistent with the estimated linking constant because IA with p = 2 corresponds to the estimation of
the mean (i.e., the mode of the normal density approximation) and IA with p = 0 estimates the mode
of the empirical distribution. To conclude, using p = 0.02 instead of p = 2 would result in a difference
of 0.120 between the two estimates. This finding is considerable in terms of interpretation because of
the differences that are usually considered as practically significant changes in the trend.
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Figure 2. Estimated linking constant µ̂2 as a function of power p.
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Figure 3. Kernel density estimate for differences in item difficulties δi = bi2 − bi1 (normal density
approximation displayed by a dashed line).

6.3. PISA 2006 Reading Study: Country Comparisons

6.3.1. Method

In order to illustrate the choice of different linking methods for the power p in IA and HL in the
case of many groups, we analyzed the data from the PISA 2006 assessment of the Reading domain [145].
In this analysis, we included 26 OECD countries that participated in 2006 (see [97,127,146] for similar
analyses using the same dataset). Reading items were only administered to a subset of the participating
students, and we included only those students who received a test booklet with at least one reading
item. This resulted in a total sample size of 110,236 students (ranging from 2010 to 12,142 per country).
In total, 28 reading items nested within eight testlets were used in PISA 2006. Six of the 28 items
were polytomous and were dichotomously recoded, with only the highest category being recoded
as correct. We used nine different analysis models to obtain estimates of the country means: a full
invariance approach (concurrent scaling with multiple groups; FI), and HL as well as IA using powers
p = 2, 1, 0.5, and 0.02.

For all analyses, the 1PL model was estimated using student weights. Within a country, student
weights were normalized to a sum of 5000 in order to let all countries equally contribute to the analysis.
Finally, all estimated country means were linearly transformed such that the distribution containing
all (weighted) students in all 26 countries had a mean of 500 (points) and a standard deviation of 100.
Note that this transformation differs from the one used in official PISA publications.

6.3.2. Results

In Table 8, the average absolute differences in the country means for pairs of different linking
methods are shown. It can be seen that IA and HL with p = 2 are practically identical (with an average
absolute difference of |∆M| = 0.1). However, for other values of p, IA and HL differ from each other.
Also, the difference between the FI model and IA, as well as HL with p = 2, turned out to be relatively
small. However, average absolute differences between FI and IA with p values smaller than 2 were
slightly smaller than for FI and HL. The largest difference between linking methods was obtained for
FI and HL with p = 0.02 with |∆M| = 7.5.
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Table 8. Average Absolute Differences for Different Linking Methods for Reading Domain in PISA
2006 for 26 Selected OECD Countries.

1 2 3 4 5 6 7 8 9

1: FI — 1.6 3.0 3.9 5.5 1.5 4.1 6.6 7.5
2: IA p = 2 1.6 — 2.1 2.9 4.6 0.1 3.4 6.2 7.0
3: IA p = 1 3.0 2.1 — 1.0 2.8 2.0 2.1 4.6 5.4
4: IA p = 0.5 3.9 2.9 1.0 — 2.0 2.9 2.2 3.9 4.7
5: IA p = 0.02 5.5 4.6 2.8 2.0 — 4.6 3.1 4.3 4.9
6: HL p = 2 1.5 0.1 2.0 2.9 4.6 — 3.4 6.2 7.0
7: HL p = 1 4.1 3.4 2.1 2.2 3.1 3.4 — 3.9 5.0
8: HL p = 0.5 6.6 6.2 4.6 3.9 4.3 6.2 3.9 — 1.5
9: HL p = 0.02 7.5 7.0 5.4 4.7 4.9 7.0 5.0 1.5 —

Note: FI = linking based on full invariance; HL = Haberman linking; IA = invariance alignment;
p = power used in HL or IA. Average absolute differences smaller than 2.0 are printed in bold.

In Table 9, the country mean estimates obtained from the nine different linking methods are
shown. Within a country, the range of country means differed between 2.0 (BEL, Belgium) and 21.3
(GRC, Greece) points across the different models. These differences between the methods can be traced
back to different amounts of country DIF and different statistical properties of the IA and HL method.
When investigating the course of a country mean for different values p, it seems that the influence of
the choice of power is more pronounced for HL and IA. This finding contrasts somewhat with the
results of Simulation Study 2 for many groups (see Section 5.2).

Table 9. Country Means for the Reading Domain for PISA 2006 for 26 Selected OECD Countries.

Country N rg FI IA with Power p HL with Power p

2 1 0.5 0.02 2 1 0.5 0.02

AUS 7562 6.1 515.9 518.4 520.1 520.9 521.5 518.3 521.0 524.1 524.4
AUT 2646 4.0 495.2 495.9 495.3 494.9 495.0 495.9 495.6 498.3 498.9
BEL 4840 2.0 506.5 504.5 503.7 503.3 502.5 504.5 504.0 503.6 502.5
CAN 12,142 10.3 528.2 527.9 528.6 528.1 524.6 528.0 529.7 534.9 533.8
CHE 6578 6.8 501.2 500.0 501.3 501.0 506.8 500.2 502.4 501.3 502.3
CZE 3246 3.9 483.7 484.9 485.2 485.6 485.6 484.9 486.2 488.1 488.8
DEU 2701 14.2 493.3 490.7 496.5 499.5 502.5 490.8 500.8 504.3 504.9
DNK 2431 3.5 501.4 502.7 503.8 504.4 505.4 502.8 504.0 505.5 506.2
ESP 10,506 9.5 464.1 466.5 470.3 472.3 476.0 466.5 473.9 473.5 472.3
EST 2630 6.8 497.4 501.6 504.7 505.6 506.3 501.5 504.0 505.0 508.3
FIN 2536 5.3 548.9 552.2 553.5 553.3 552.9 552.1 552.1 549.1 548.2
FRA 2524 16.9 498.9 496.1 497.3 496.8 490.3 496.3 498.5 506.8 507.2
GBR 7061 9.2 498.8 498.9 497.5 496.9 493.1 499.0 495.7 498.7 502.3
GRC 2606 21.3 462.9 463.4 455.7 452.1 450.9 463.3 455.5 443.2 442.1
HUN 2399 15.9 484.4 483.6 482.0 481.0 481.4 483.4 488.4 474.2 472.5
IRL 2468 13.3 518.8 520.3 520.4 520.2 518.1 520.3 520.2 508.0 507.1
ISL 2010 7.8 492.9 494.0 496.4 498.7 501.7 493.9 494.6 499.1 500.0
ITA 11,629 3.7 473.0 473.9 472.7 472.1 472.5 473.8 473.8 475.8 474.2
JPN 3203 10.4 504.9 503.2 500.0 499.3 493.8 503.3 492.9 494.6 495.0
KOR 2790 14.3 560.3 557.7 550.2 547.6 547.0 557.7 546.2 544.6 543.4
LUX 2443 5.0 481.0 478.9 479.7 479.5 478.4 478.8 482.6 483.4 480.5
NLD 2666 14.5 509.1 505.3 504.8 504.0 504.3 505.5 501.0 495.5 491.0
NOR 2504 2.7 485.5 485.5 484.1 483.6 483.9 485.4 486.1 486.3 485.6
POL 2968 10.5 507.4 507.2 508.7 510.8 514.1 507.1 508.8 514.4 517.6
PRT 2773 6.9 477.0 476.8 476.0 475.8 477.8 476.7 470.9 473.9 474.0
SWE 2374 7.2 509.4 509.7 511.5 512.7 513.7 509.8 510.8 513.7 516.9

Note: N = sample size; rg = range of country estimates across different results linking methods;
FI = linking based on full invariance; HL = Haberman linking; IA = invariance alignment; p = power
used in HL or IA.
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It could be argued that absolute differences in points on the PISA metric are not of particular
importance. Alternatively, we computed the rank of each country for each linking method (see [147]).
The average maximum difference of ranks across different linking methods was M = 3.7 (SD = 3.0)
and ranged between 0 (CAN, GRC) and 11 (NLD). Although some of the rank differences between
countries will probably not be statistically significant, these differences in model choice are maybe
considerable.

7. Discussion

7.1. Summary and Limitations

In this article, we investigated the performance of extensions of invariance alignment (IA; [4]) and
Haberman linking (HL; [5]) with respect to the flexibility of linking function in the analysis of more
than two groups. The linking functions build on the principle that deviations between group-specific
item parameters should be made as small and as sparse as possible. We have proposed a class of
linking functions based on the family of robust Lp loss functions ρ(x) = |x|p (p ≥ 0). It was shown
that using robust link functions in HL can have similar performance as IA.

HL was originally proposed using the power p = 2, resulting in quadratic loss functions. IA used
p = 0.5 and was primarily targeted to the situation of partial invariance in which only a few item
parameters are noninvariant. HL with robust linking functions (p ≤ 1) has similar performance to
IA. Moreover, we have shown that using item intercepts instead of item difficulties for HL has more
desirable statistical properties. For IA, we found that using logarithmized instead of untransformed
item loadings led to precision gains.

Findings from the three empirical examples showed that the used type of linking function had
some impact on outcomes. In particular, for several countries in the PISA studies, changes in points
were considerably big. Employing different linking functions in PISA necessarily results in decisions of
how the distribution of country DIF effects should be weighted in the computation of country means.

As it is true for all simulation studies, our study has some limitations. First, we restricted the
number of groups to at most 18. For international large-scale assessments like PISA (e.g., [145]),
the number of groups—countries in this case—can also be larger, say 50, or even more. It would be
interesting whether the general findings that HL is at least competitive to IA would also transfer to an
even larger number of groups. Second, we only used five continuous items and 20 dichotomous items
in the simulation studies. The performance of the linking methods with an increasing number of items
could be a relevant topic for future research [64]. Third, we restricted ourselves to dichotomous data.
The performance of IA and HL for polytomous items (see, e.g., [69]) or the mixed case of dichotomous
and polytomous items could be investigated in future studies.

7.2. Choice of the Loss Function

In the simulation study and the empirical example, different values of the power p of the loss
function were compared. It should be noted that using a particular type of loss function can also
be interpreted as an optimal estimation method that corresponds to some distributional assumption
of deviations between group-specific item parameters [148]. The estimation in HL corresponds
to a maximum likelihood approach to residuals e in a regression model if they have a density
f (e) ∝ exp(−|e/τ|p p−1) where τ is the scale of the distribution which must be also estimated. This
distribution is also known as the exponential power distribution [149,150]. Hence, the power p in
the loss function can be simultaneously in HL. A two-step estimation algorithm for estimating the
power p in a regression model was suggested in [151]. See also [152] for a related approach based on
regularization. For an empirical dataset or for a simulated dataset, it can be expected that estimated
group means depend on a chosen power p prior to analysis or an estimated power p. By estimating a
power p using the exponential power distribution, most efficient group mean estimates are obtained
in the case of many items.
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The choice of a particular value of the power p in the linking function implies a decision whether
some items (or item parameters) should be treated as outliers in a group comparison [97]. Typically,
outliers are down-weighted in the estimation. Hence, the group-specific contribution of items to
a group mean is determined by a statistical approach. In contrast, using p = 2 corresponds to a
quadratic loss function, and DIF effects follow a normal distribution. In this case, all items equally
contribute to the computation of group means. If a researcher believes that most of the items function
homogeneously across groups, she or he will try to identify group means and group standard
deviations under the presupposition of a partial invariance model. In theory, values of p near to
0 are aligned with this request. However, as our simulations showed, p values of 0.1 or 0.25 could be
preferred in finite samples for statistical reasons.

As it has been clearly pointed out several times [4,36], IA is most suitable in the case of partial
invariance in which most of the DIF effects are 0 or small. If DIF effects are unsystematically distributed
and nearly follow a normal distribution, IA with p = 2 (or HL with p = 2) could be the preferred
linking method [44,64].

7.3. Alternative Approaches to Measurement Noninvariance

Measurement invariance is most frequently applied in structural equation modeling (SEM; see,
e.g., [153] for an overview). Typically, an invariance analysis follows multiple steps. First, it is
tested whether configural invariance holds. This means that a unidimensional model fits within each
group. Second, if in all groups, the configural model is not rejected, metric invariance is tested that
assumes equal item loadings across groups. Third, when metric invariance has not been rejected, scalar
invariance is tested that additionally assumes equal item intercepts across groups. In applications
with many groups, it has often been shown that the model with scalar invariance must be rejected for
reasons of model fit. However, metric invariance often approximately holds [154].

The failure to show an acceptable model fit has led to several proposals of alternative
methodologies that only presuppose some approximate measurement invariance. Linking methods
like IA and HL are such examples. As pointed out by Oberski [155], the detection of noninvariance
in terms of global model fit does not necessarily result in consequences of a parameter of interest
(e.g., a country mean). Hence, it is suggested to perform a sensitivity analysis for country means
(see also [156]). In such an analysis, a model can be repeatedly fitted after freeing some item parameters.
Such an approach bears similarity with a jackknife approach if a single item is removed from the
analysis. Resulting estimates can be summarized in a kind of variability measure which equals to the
linking error that was introduced in Section 4.2. In our view, while the proposed sensitivity analysis is
undoubtedly a step forward compared to traditional SEM measurement invariance approaches, we
would always accompany the method of Oberski with some variability measure that quantifies the
heterogeneity in a parameter of interest with respect to the set of chosen items.

For discrete items, there exists a variety of item fit statistics for detecting noninvariance [147,157,158].
In SEMs, related modification indices are often employed (see [159] for a comparison of SEM and item
response model based DIF statistics). Similar approaches in SEM find only scarce interest in applied
research (see [160,161] for exceptions).

Linking of multiple groups in the presence of DIF can alternatively be conducted using
regularization techniques (see [162] for an overview). In a regularization based approach to DIF,
group-specific item parameters are decomposed into common item parameters and group-specific
deviation [163–167]. By using maximum likelihood estimation, this approach would result in a
nonidentified model. In regularization, penalty terms for the non-identifiable group-specific deviations
are added to the log-likelihood function in the optimization function, which ensures empirical
identifiability of model parameters and imposes assumptions about the distribution of parameters of
noninvariance. IA, which uses the power of p = 0.5, can be rephrased as a regularization problem
with an L1/2-penalty function [168]. The general case of powers p can be reformulated as an Lp

regularization problem [169,170]. As regularization techniques with p ≤ 1 set a subset of deviations
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of group-specific and common item parameters to 0, a reformulation of linking problems would be
particularly suited to situations of partial invariance.

As it has been pointed out in Section 2, assuming group-specific item parameters leads to a
nonidentified model [171,172]. Hence, non-invariance can only be assessed in a relative sense: One can
only determine whether pairs of items show DIF instead of detecting whether a particular item shows
DIF [171,173]. Procedures based on cluster analysis have been proposed that determine clusters of
items that have invariant item parameters [173]. A cluster solution of items can provide approximately
invariant items and provides a comprehensive insight into the extent of noninvariance [174].

There are complaints by some scholars blaming cross-cultural researchers for their ignorance in
assessing measurement invariance [39,175]. It is argued in this kind of literature that comparisons
across countries do not seem to be “allowed” if certain levels of measurement invariance are not
fulfilled [40]. We strongly disagree with such statements. The presence or absence of measurement
invariance is neither necessary nor sufficient for conducting valid comparisons across groups. Some
researchers weaken these statements a bit and claim that showing satisfactory partial invariance is
needed for ensuring comparability [17,176,177]. If noninvariant items had not been adequately handled
by allowing some group-specific unique item parameters, biased comparisons would follow [178].
As mentioned by researcher Harvey Goldstein, there is an inherent circularity in such an argument [179]
because data alone cannot choose an approach that provides unbiased estimates.

However, we do not want to argue that fitting a model of interest with maximum likelihood
while ignoring measurement noninvariance is the optimal option. In such cases of model error,
alternative fitting functions (i.e., loss functions in the linking terminology) might be more robust to
model violations [180]. By using a particular type of loss function in a linking procedure, a researcher
is (implicitly) making a decision on how items in a scale should be weighted for group comparisons.
Optimally, this decision should be primarily driven by substantive considerations [14,97,181–186].
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Abbreviations

The following abbreviations are used in this manuscript:

1PL one-parameter logistic model
2PL two-parameter logistic model
ABIAS average absolute bias
AN asymptotic normal distribution
ARMSE average root mean square error
DIF differential item functioning
FI full invariance
HL Haberman linking
i.i.d. independent and identically distributed
IA invariance alignment
PISA programme for international student assessment
RMSE root mean square error

Appendix A. Additional Results for Simulation Study 1

In Table A1, the ARMSE of group standard deviations for G = 6 groups in the DIF condition of
Simulation Study 1 is shown.



Stats 2020, 3 272

Table A1. Simulation Study 1: Average Root Mean Square Error (ARMSE) of Group Standard
Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF)
and G = 6 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.057 0.059 0.062 0.061 0.062 0.059 0.062 0.060
0.1 0.057 0.059 0.061 0.060 0.061 0.059 0.062 0.060

0.25 0.056 0.058 0.061 0.060 0.061 0.059 0.062 0.060
0.5 0.055 0.058 0.060 0.060 0.062 0.059 0.062 0.060
1 0.057 0.066 0.067 0.060 0.073 0.069 0.073 0.070
2 0.071 0.123 0.123 0.075 0.107 0.123 0.107 0.123

N = 500
0.02 0.036 0.036 0.041 0.041 0.037 0.037 0.037 0.038
0.1 0.036 0.035 0.040 0.041 0.037 0.037 0.037 0.037

0.25 0.035 0.035 0.040 0.041 0.036 0.036 0.037 0.037
0.5 0.035 0.035 0.039 0.041 0.036 0.036 0.036 0.036
1 0.037 0.041 0.043 0.043 0.045 0.044 0.045 0.044
2 0.060 0.108 0.106 0.066 0.089 0.108 0.089 0.107

N = 1000
0.02 0.026 0.026 0.029 0.030 0.025 0.025 0.025 0.026
0.1 0.026 0.025 0.029 0.030 0.025 0.025 0.025 0.025

0.25 0.025 0.025 0.029 0.030 0.025 0.025 0.025 0.025
0.5 0.025 0.025 0.028 0.030 0.025 0.025 0.026 0.026
1 0.028 0.032 0.034 0.034 0.035 0.035 0.035 0.035
2 0.056 0.106 0.103 0.061 0.088 0.106 0.087 0.105

N = 5000
0.02 0.010 0.010 0.013 0.015 0.010 0.010 0.010 0.010
0.1 0.010 0.010 0.013 0.016 0.010 0.010 0.010 0.011

0.25 0.010 0.011 0.014 0.016 0.010 0.011 0.011 0.011
0.5 0.011 0.011 0.013 0.014 0.011 0.011 0.011 0.011
1 0.013 0.017 0.020 0.020 0.020 0.021 0.019 0.021
2 0.050 0.104 0.098 0.055 0.086 0.104 0.084 0.102

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

Appendix B. Data Generating Parameters for Simulation Study 2

In the case of G = 3 groups, the means were 0.030, −0.262, and 0.232, and the standard deviations
were 0.958, 0.948, and 1.029, respectively.

In the case of G = 6 groups, the means were chosen as 0.078, −0.205, 0.273, 0.625, −0.830,
and 0.059, while the standard deviations were 0.927, 0.918, 0.996, 0.879, 0.810, 0.820, respectively.

In the case of G = 18 groups, group means were −0.019, −0.309, 0.181, 0.541, −0.948, −0.039,
0.081, 0.781, −0.529, 0.001, 0.061, −0.219, 0.221, 0.481, 0.121, 0.061, −0.159, and −0.309, respectively.
The group standard deviations were 0.949, 0.939, 1.019, 0.899, 0.829, 0.839, 0.829, 0.859, 1.059, 0.949,
0.959, 0.959, 0.889, 1.029, 0.909, 0.889, 0.869, and 0.879, respectively.

Appendix C. Additional Results for Simulation Study 2

In Table A2, the ARMSE of the estimated group means is shown in the condition of no DIF and
G = 6 groups. In Table A3, the ARMSE of estimated group means for G = 3 groups is shown in the
DIF condition. In Table A4, the ARMSE for estimated standard deviations for G = 6 groups in the DIF
condition is shown.
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Table A2. Simulation Study 2: Average Root Mean Square Error (ARMSE) of Group Means as a
Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and G = 6
Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.080 0.074 0.106 0.135 0.075 0.075 0.091 0.088
0.1 0.073 0.072 0.105 0.146 0.075 0.074 0.090 0.086

0.25 0.072 0.071 0.103 0.196 0.073 0.073 0.085 0.083
0.5 0.068 0.067 0.096 0.169 0.070 0.070 0.080 0.078
1 0.065 0.064 0.087 0.114 0.065 0.066 0.073 0.073
2 0.069 0.067 0.130 0.171 0.066 0.067 0.125 0.119

N = 500
0.02 0.054 0.053 0.074 0.086 0.056 0.058 0.058 0.059
0.1 0.053 0.052 0.073 0.083 0.056 0.057 0.057 0.058

0.25 0.051 0.050 0.073 0.080 0.054 0.054 0.057 0.057
0.5 0.048 0.048 0.070 0.074 0.052 0.052 0.054 0.055
1 0.046 0.046 0.063 0.063 0.046 0.047 0.051 0.051
2 0.046 0.046 0.063 0.070 0.046 0.046 0.057 0.056

N = 1000
0.02 0.035 0.035 0.056 0.052 0.038 0.038 0.039 0.039
0.1 0.035 0.035 0.055 0.051 0.037 0.037 0.038 0.038

0.25 0.034 0.034 0.053 0.047 0.036 0.036 0.037 0.037
0.5 0.033 0.032 0.048 0.043 0.034 0.034 0.035 0.036
1 0.031 0.031 0.043 0.038 0.031 0.031 0.033 0.033
2 0.031 0.031 0.041 0.041 0.030 0.031 0.036 0.036

N = 5000
0.02 0.014 0.014 0.046 0.043 0.015 0.015 0.016 0.016
0.1 0.014 0.014 0.045 0.042 0.015 0.015 0.016 0.016

0.25 0.014 0.014 0.043 0.040 0.015 0.014 0.016 0.016
0.5 0.014 0.014 0.039 0.036 0.014 0.014 0.016 0.015
1 0.013 0.013 0.030 0.027 0.014 0.014 0.015 0.015
2 0.013 0.013 0.019 0.017 0.013 0.013 0.016 0.016

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

Table A3. Simulation Study 2: Average Root Mean Square Error (ARMSE) of Group Means as a
Function of Sample Size in the Condition of Differential Item Functioning (DIF) and G = 3 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.124 0.118 0.125 0.140 0.136 0.136 0.169 0.158
0.1 0.123 0.117 0.127 0.140 0.135 0.135 0.167 0.158

0.25 0.122 0.118 0.122 0.136 0.135 0.135 0.163 0.158
0.5 0.127 0.123 0.125 0.140 0.130 0.130 0.160 0.158
1 0.135 0.131 0.130 0.136 0.131 0.131 0.153 0.152
2 0.156 0.152 0.150 0.157 0.152 0.152 0.179 0.179

N = 500
0.02 0.075 0.073 0.109 0.110 0.094 0.092 0.123 0.123
0.1 0.075 0.073 0.108 0.110 0.091 0.091 0.123 0.125

0.25 0.076 0.075 0.108 0.111 0.091 0.091 0.120 0.125
0.5 0.078 0.077 0.110 0.111 0.091 0.092 0.120 0.123
1 0.107 0.106 0.118 0.122 0.106 0.106 0.129 0.129
2 0.148 0.147 0.151 0.154 0.146 0.147 0.170 0.171

N = 1000
0.02 0.043 0.043 0.080 0.079 0.058 0.058 0.098 0.099
0.1 0.043 0.043 0.080 0.079 0.058 0.058 0.095 0.095

0.25 0.050 0.050 0.082 0.080 0.058 0.058 0.098 0.100
0.5 0.052 0.052 0.084 0.083 0.060 0.060 0.101 0.101
1 0.085 0.085 0.109 0.110 0.086 0.086 0.117 0.117
2 0.148 0.148 0.154 0.155 0.147 0.148 0.171 0.171

N = 5000
0.02 0.015 0.015 0.035 0.034 0.015 0.015 0.016 0.016
0.1 0.015 0.015 0.035 0.034 0.015 0.015 0.016 0.016

0.25 0.015 0.015 0.035 0.034 0.015 0.015 0.016 0.016
0.5 0.017 0.017 0.036 0.035 0.017 0.017 0.019 0.019
1 0.042 0.042 0.073 0.073 0.045 0.045 0.066 0.066
2 0.142 0.141 0.147 0.148 0.141 0.141 0.161 0.161

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].
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Table A4. Simulation Study 2: Average Root Mean Square Error (ARMSE) of Group Standard
Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF)
and G = 6 Groups.

p IA1 IA2 IA3 IA4 HL1 HL2 HL3 HL4

N = 250
0.02 0.170 0.076 0.083 0.181 0.077 0.082 0.078 0.083
0.1 0.140 0.075 0.082 0.196 0.076 0.082 0.076 0.083

0.25 0.133 0.072 0.080 0.252 0.072 0.079 0.073 0.080
0.5 0.114 0.067 0.075 0.146 0.067 0.073 0.067 0.073
1 0.100 0.060 0.069 0.091 0.059 0.063 0.058 0.062
2 0.093 0.064 0.069 0.087 0.057 0.064 0.056 0.062

N = 500
0.02 0.071 0.057 0.064 0.071 0.055 0.057 0.057 0.059
0.1 0.070 0.056 0.064 0.070 0.054 0.057 0.056 0.060

0.25 0.068 0.054 0.062 0.068 0.051 0.055 0.053 0.057
0.5 0.065 0.051 0.059 0.064 0.048 0.052 0.050 0.053
1 0.062 0.048 0.054 0.059 0.044 0.047 0.046 0.049
2 0.060 0.050 0.054 0.057 0.045 0.050 0.045 0.049

N = 1000
0.02 0.044 0.041 0.050 0.050 0.040 0.042 0.041 0.042
0.1 0.044 0.039 0.049 0.049 0.039 0.041 0.040 0.042

0.25 0.043 0.038 0.048 0.048 0.038 0.040 0.039 0.041
0.5 0.042 0.037 0.046 0.046 0.036 0.038 0.037 0.039
1 0.043 0.037 0.044 0.044 0.033 0.035 0.035 0.037
2 0.045 0.037 0.042 0.043 0.036 0.037 0.037 0.039

N = 5000
0.02 0.015 0.014 0.032 0.031 0.015 0.015 0.015 0.015
0.1 0.015 0.014 0.032 0.031 0.015 0.015 0.015 0.015

0.25 0.015 0.014 0.032 0.031 0.014 0.015 0.014 0.015
0.5 0.014 0.014 0.032 0.030 0.014 0.014 0.014 0.014
1 0.018 0.018 0.030 0.028 0.014 0.015 0.016 0.016
2 0.024 0.024 0.029 0.028 0.024 0.024 0.027 0.028

Note: p = power used in IA or HL; N = sample size; IA1 used in [4], and HL3 is used in [5].

Appendix D. Item Parameters for the 1PL Linking Study

In Table A5, item parameters from [125] (Table 1, p. 327) are shown that are used in the 1PL
linking study (Section 6.2).



Stats 2020, 3 275

Table A5. 1PL Linking Study: Item Parameters Taken from Monseur and Berezner [125].

Item Testlet bi1 bi2 δi

R055Q01 R055 −1.28 −1.347 −0.072
R055Q02 R055 0.63 0.526 −0.101
R055Q03 R055 0.27 0.097 −0.175
R055Q05 R055 −0.69 −0.847 −0.154
R067Q01 R067 −2.08 −1.696 0.388
R067Q04 R067 0.25 0.546 0.292
R067Q05 R067 −0.18 0.212 0.394

R102Q04A R102 1.53 1.236 −0.290
R102Q05 R102 0.87 0.935 0.067
R102Q07 R102 −1.42 −1.536 −0.116
R104Q01 R104 −1.47 −1.205 0.268
R104Q02 R104 1.44 1.135 −0.306
R104Q05 R104 2.17 1.905 −0.267
R111Q01 R111 −0.19 −0.023 0.164

R111Q02B R111 1.54 1.395 −0.147
R111Q06B R111 0.89 0.838 −0.051
R219Q01T R219 −0.59 −0.520 0.069
R219Q01E R219 0.10 0.308 0.210
R219Q02 R219 −1.13 −0.887 0.243
R220Q01 R220 0.86 0.815 −0.041

R220Q02B R220 −0.14 −0.114 0.027
R220Q04 R220 −0.10 0.193 0.297
R220Q05 R220 −1.39 −1.569 −0.184
R220Q06 R220 −0.34 −0.142 0.196
R227Q01 R227 0.40 0.226 −0.170

R227Q02T R227 0.16 0.075 −0.086
R227Q03 R227 0.46 0.325 −0.132
R227Q06 R227 −0.56 −0.886 −0.327

Note. δi = bi2 − bi1; Item parameter differences δi larger than 0.20 in absolute value are printed in bold.
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