
Article

Depth Induced Regression Medians and Uniqueness

Yijun Zuo

Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA; zuo@msu.edu

Received: 14 February 2020; Accepted: 31 March 2020; Published: 10 April 2020
����������
�������

Abstract: The notion of median in one dimension is a foundational element in nonparametric
statistics. It has been extended to multi-dimensional cases both in location and in regression via
notions of data depth. Regression depth (RD) and projection regression depth (PRD) represent the
two most promising notions in regression. Carrizosa depth DC is another depth notion in regression.
Depth-induced regression medians (maximum depth estimators) serve as robust alternatives to
the classical least squares estimator. The uniqueness of regression medians is indispensable in
the discussion of their properties and the asymptotics (consistency and limiting distribution) of
sample regression medians. Are the regression medians induced from RD, PRD, and DC unique?
Answering this question is the main goal of this article. It is found that only the regression median
induced from PRD possesses the desired uniqueness property. The conventional remedy measure for
non-uniqueness, taking average of all medians, might yield an estimator that no longer possesses the
maximum depth in both RD and DC cases. These and other findings indicate that the PRD and its
induced median are highly favorable among their leading competitors.
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1. Introduction

Regular univariate sample median defined as the innermost (deepest) point of a data set is
unique (If the sample median is defined to be the point θ that minimizes the sum of its distances to
sample points (i.e., θ = arg minθ∈R1 ∑n

i=1 |θ − xi|, where xi, i = 1, · · · , n are the given n sample points
in R1), then it is not unique. However, to overcome this drawback, conventionally it is defined as
θ = Median{xi} := x(b n+1

2 c)
+ x(b n+2

2 c)
/

2, where x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered values of xi’s
and b·c is the floor function. Namely, it is the innermost point (from both left and right direction) or
the average of two deepest sample points. Hence, it is unique). The population median defined as
the 1

2 -th quantile (Recall, for any univariate distribution function F, and for 0 < p < 1, the quantity
F−1(p) := inf{x : F(x) ≥ p} is called the pth quantile or fractile of F (see page 3 of Serfling (1980) [1]))
of the underlying distribution (there are other versions of definition) is also unique. The most
outstanding feature of the univariate median is its robustness. In fact, among all translation equivariant
location estimators, it has the best possible breakdown point (Donoho (1982) [2]) (and the minimum
maximum bias if underlying distribution has a unimodal symmetric density (Huber (1964) [3]).
Besides serving as a promising robust location estimator, the univariate median also provides a
base for a center-outward ordering (in terms of the deviations from the median), an alternative to the
traditional left-to-right ordering.

To extend the univariate median to multidimensional settings and to share its outstanding
robustness property and an alternative ordering scheme is desirable for multidimensional data.
One approach, among others, is via notions of data depth. General notions of data depth have been
increasingly pursued and studied (Liu, et al. (1999) [4], Zuo and Serfling (2000) (ZS00) [5]) since the
pioneer proposal of Tukey (1975) [6] (see Donoho and Gasko (1992) [7]). Besides Tukey depth, another
prevailing depth, among others, is the projection depth (PD) [5] (Liu (1992) [8], and Zuo (2003) [9]).
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Depth notions in location have also been extended to regression. Regression depth (RD) of
Rousseeuw and Hubert (1999) (RH99) [10], the most famous, exemplifies a direct extension of Tukey
location depth to regression. Projection regression depth (PRD) of Zuo (2018a) (Z18a) [11] is another
example of the extension of prominent PD in location to regression. The RD and PRD represent
the two leading notions of depth in regression ([11]) which satisfy desirable axiomatic properties.
Carrizosa depth DC (Carrizosa (1996) (C96)) [12] (defined in Section 2.2) is one of the other notions
of depth in regression ([11]). One of the outstanding advantages of depth notions is that they can
be directly employed to introduce median-type deepest estimating functionals (or estimators in the
empirical case) for the location or regression parameters in a multi-dimensional setting based on a
general min-max stratagem. The maximum (deepest) regression depth estimator (also called regression
median) serves as a robust alternative to the classical least squares or least absolute deviations estimator
for the unknown parameters in a general linear regression model:

yi = x>i β + ei, for i = 1, · · · , n, (1)

where > denotes the transpose of a vector, and vector xi = (1, xi1, · · · , xi(p−1))
> and parameter vector

β = (β1, · · · , βp) are in Rp (p ≥ 2), and ei is a random variable in R. One can regard the observations
(yi, x>i ) as a sample from random vector (y, x>) ∈ Rp+1.

Robustness of the median induced from RD and PRD have been investigated in Van Aelst and
Rousseeuw (2000) (VAR00) [13] and Zuo (2018b) [14], respectively. These medians, just like their
location or univariate counterpart, indeed possess high breakdown point robustness.

Regression median, as the deepest regression hyperplane, just like their location or univariate
counterpart, is expected to be unique because non-uniqueness would result in vagueness in the
inference (prediction and estimation) via regression median. Uniqueness is the indispensable feature
and axiomatic property when one (i) investigates the population median, or (ii) deals with the
convergence in probability or in distribution of the sample regression median to its inevitably unique
population version (iii) it is also an essential property in the computation of the sample regression
medians for the convergence of approximate algorithms. The uniqueness issue of multidimensional
location medians has been addressed in Zuo (2013) [15].

Are the medians induced from regression depth notions via the min-max scheme generally
unique? Answering this question is the goal of this article. It turns out that the regression depth-induced
medians are not necessarily unique. The conventional remedy measure for this issue is taking average
of all. It, however, might not work (in the sense that the resulting estimator might no longer possess
the maximum depth) for both RD of RH99 and DC of C96. On the other hand, PRD-induced regression
medians are unique.

The rest of article is organized as follows. Section 2 introduces leading regression depth notions
and induced medians and show these medians indeed recover the regular univariate sample median
in the special univariate case. Empirical examples of regression depth and medians and their behavior
are illustrated in Section 3. Section 4 establishes general results on uniqueness of regression medians.
Brief concluding remarks in Section 5 end the article.

2. Maximum Depth Functionals (Regression Medians)

Let D(β; P) be a generic non-negative functional on Rp ×P , where β ∈ Rp and P is a collection
of distributions FZ of Z = (y, x>)> ∈ Rp+1 (FZ and P are used interchangeably).

If D(β; P) satisfies four axiomatic properties: (P1) (regression, scale and affine) invariance;
(P2) maximality at center; (P3) monotonicity relative to any deepest point and (P4) vanishing at
infinity, then it is called a regression depth functional (see [11] for details). The maximum regression
depth functional, or the regression median, can be defined as

β∗(FZ) := arg max
β∈Rp

D(β; FZ). (2)
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Note that β∗ might not be unique, and a conventional remedy measure is to take the average of
all maximum depth points. Unfortunately, this could lead to a scenario where the resulting functional
(or estimator) might not have the maximum depth any more. For detailed discussions on D(β; FZ)

and β∗(FZ), see [11]. In the following we elaborate three examples.

2.1. Median Induced from Regression Depth of RH99

Definition 1. For any β ∈ Rp and the joint distribution P of (y, x>) in (1), [10] defined the regression depth
of β, denoted hence by RDRH(β; P), to be the minimum probability mass that needs to be passed when tilting
(the hyperplane induced from) β in any way until it is vertical. The maximum regression depth functional
β∗RDRH

(regression median) is defined as

β∗RDRH
(P) = argmax

β∈Rp
RDRH(β; P) (3)

The RDHR(β; P) definition above is rather abstract and not easy to comprehension, many
characterizations of it, or equivalent definitions, have been given in the literature though, see, e.g., [11]
and references cited therein.

2.2. Median Induced from Carrizosa Depth of C96

Among regression depth notions investigated in [11], Carrizosa depth DC(β; P)

DC(β; P) = inf
α∈Rp

P(|r(β)| ≤ |r(α)|), (4)

for any β ∈ Rp and underlying probability measure P associated with (y, x>), was a pioneer
regression depth notion introduced in [12] and thoroughly investigated in [11], where r(γ) = y− x>γ.
As characterized in [11] (see Proposition 2.2 there), it turns out that (p ≥ 2)

DC(β; P) = P(r(β) = 0). (5)

The maximum regression depth functional (or regression median) was then defined as

β∗DC
(P) = arg max

β∈Rp
DC(β; P). (6)

As shown in [11], β∗DC
always exists if the assumption: (A) P(Hv) = 0, for any vertical hyperplane

Hv, holds. Unfortunately, as DC violates (P3) generally (see [11]), we will not focus on it in the sequel.
On the other hand, under (A) RDRH above satisfies (P1)–(P4).

2.3. Median Induced from Projection Regression Depth of Z18a

Hereafter, assume that R is a univariate regression estimating functional which satisfies

(A1) regression, scale and affine equivariant. That is, respectively,

R(F(y+xb, x)) = R(F(y, x)) + b, ∀ b ∈ R1, and

R(F(sy, x)) = sR(F(y, x)), ∀ s ∈ R1, and

R(F(y, ax)) = a−1R(F(y, x)), ∀ a( 6= 0) ∈ R1.

where x, y ∈ R1 are random variables. Throughout, the lower case x stands for a variable in R1 while
the bold x for a vector in Rp (p > 1). F(x1,x2)

is the distribution of vector (x1, x2).

(A2) sup v∈Sp−1 |R(F(y, x>v))| < ∞, where Sp−1 := {u ∈ Rp, ‖u‖ = 1}.

(A3) R(F(y−x>β, x>v)) is continuous in β and v, and quasi-convex in β, for β ∈ Rp, v ∈ Sp−1.
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Let S be a positive scale estimating functional that is scale equivariant and location invariant.
R will be restricted to the form R(F(y−x>β, x>v)) = T

(
F(y−x>β)/(x>v)

)
and T will be a univariate

location functional that is location, scale and affine equivariant (see pages 158–159 of Rousseeuw and
Leroy (1987) (RL87) [16] for definitions). Hereafter we assume that (A0) P(x>v = 0) = 0 for any
v ∈ Sp−1 (see (I) of Remarks 4.1 for the explanations).

Examples of T include, among others, the mean, weighted mean, and quantile functionals.
A particular example of R(F(y−x>β, x>v)) is Medx>v 6=0

(
F(y−x>β)/x>v

)
, where Med stands for the

median functional. Typical examples of S include the standard deviation and weighted deviation
functionals (Wu and Zuo (2008) [17]) and the median of absolute deviations (MAD) functional.

Equipped with a pair of T and S, we can introduce a corresponding projection based regression
estimating functional. By modifying a functional in Marrona and Yohai (1993) [18] to achieve scale
equivarance, [11] defined

UFv(β; F(y, x>), T) := |T(F(y−x>β)/x>v)|/S(Fy), (7)

which represents unfitness of β at F(y, x>) w.r.t. T along the v ∈ Sp−1. If R is a Fisher consistent regression
estimating functional, then T(F(y−x>β0)/x>v) = 0 for some β0 (the true parameter of the model) and
∀ v ∈ Sp−1. Thus overall, one expects |T| to be small and close to zero for a candidate β, independent
of the choice of v and x>v. The magnitude of |T|measures the unfitness of β along the v. Taking the
supremum over all v ∈ Sp−1 yields

UF(β; F(y, x>), T) = sup
‖v‖=1

UFv(β; F(y, x>), T), (8)

the unfitness of β at F(y, x>) w.r.t. T. Now applying the min-max scheme, [11] obtained the projection
regression estimating functional (also denoted by β∗PRD) w.r.t. the pair (T, S)

β∗(F(y, x>), T) = argmin
β∈Rp

UF(β; F(y, x>), T) (9)

= argmax
β∈Rp

PRD
(

β; F(y, x>), T
)

,

where the projection regression depth (PRD) functional was defined in [19] as

PRD
(

β; F(y, x>), T
)
=
(

1 + UF
(

β; F(y, x>), T
))−1

, (10)

Just like S (which is for achieving scale invariance and is nominal), T sometimes is also suppressed
in above functionals for simplicity. The authors of [11] showed that PRD satisfies (P1)–(P4).

For robustness consideration, in the sequel, (T, S) is the fixed pair (Med, MAD), unless otherwise
stated. Hereafter, we write Med(Z) rather than Med(FZ). For this special choice of T and S,
we have that

T(F(y−x>β)/x>v) = Medx>v 6=0
(y− x>β

x>v
)
,

S(Fy) = MAD(Fy).

To end this section, we show that the three maximum depth estimators above indeed deserve to
be called regression median since they recover the regular univariate sample median in the special
univariate case. (The result below also holds true for the population case).

Proposition 1. For univariate data, the β∗RDRH
, β∗DC

and β∗PRD all recover the univariate sample median.
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Proof. (i) For β∗RDRH
, this has already been discussed and claimed in [10] (page 390). So we only need

to focus on the other two.
(ii) For β∗DC

, we no longer can use (5) and have to invoke (4). Note that r(β) = y − β in this case
(no slope term any more).

DC(β, P) = inf
α∈R1

P(|y− β| ≤ |y− α|)

= min
{

inf
α>β

P(|y− β| ≤ |y− α|), inf
α≤β

P(|y− β| ≤ |y− α|)
}

= min
{

P(y ≤ β), P(y ≥ β)
}

.

That is, DC(β, Pn) = min
{

∑n
i=1 I(yi ≤ β)/n, ∑n

i=1 I(yi ≥ β)/n
}

. The latter immediately leads
to β∗DC

= Medi{yi} (the average of all solutions).
(iii) For β∗PRD, first we note that (without loss of generality, assume that S(Fy) = 1)

β∗PRD = arg min
β∈Rp

sup
v∈Sp−1

∣∣∣Medi{
yi − x>iβ

x>iv
}
∣∣∣. (11)

When p = 1, it reduces to the following

β∗PRD = arg min
β∈R

sup
v=±1

∣∣∣Medi{
yi − β

v
}
∣∣∣. (12)

It is readily seen that

β∗PRD = arg min
β∈R

∣∣Medi{yi − β}
∣∣ = arg min

β∈R

∣∣Medi{yi} − β
∣∣, (13)

where the first equality follows from (12) and the oddness of median operator, the second one follows
from the translation equivalence (see page 249 of [16] for definition) of the median as a location
estimator. The last display means that β∗PRD recovers the sample median.

3. Examples of Regression Depths and Regression Medians

For a better comprehension of depth notions and depth-induced medians in the last section, we
present empirical examples below. We will confine attention to RD and PRD only since DC(β, P) is
just the probability mass carried by the hyperplane determined by y = x>β.

Example 1. Example 3.1 (Empirical RDRH and PRD). What do empirical RDRH and PRD look like?
To answer the question, 30 random bivariate standard normal points are generated (plotted in Figure 1) and
RDRH and PRD are computed w.r.t. these points.

We select 961 equally spaced grid points from the square of [x, y] with range of |x| ≤ 3 and |y| ≤ 3, then
treat each point (x, y) as a β> = (β1, β2) and compute its regression depth (RDRH and PRD) w.r.t. the 30
bivariate normal points. The depths of these 961 points are plotted in Figure 2.

Inspecting the Figure reveals that (i) sample RDRH function is a step-wise increasing function
(each step in this case is 1/30). For this roughly symmetric data case, it can attain maximum depth
around the center of symmetry (the origin), while (ii) on the other hand, PRD is a strictly monotonically
increasing function and attains its maximum value at the center of symmetry, sharply contrasting the
behavior of RDRH around the center (one has a unique maximum depth point and the other is opposite
(multiple maximum depth points)).



Stats 2020, 3 99

−2 −1 0 1

−
2

−
1

0
1

2

scatterplot of 30 normal points

x

y

Figure 1. Thirty bivariate standard normal points.

Figure 2. Regression depth (RDRH) (left) and projection regression depth (PRD) (right) of 961 candidate
parameter β>’s w.r.t. 30 bivariate standard normal points.

Example 2. Uniqueness of medians induced from empirical RDRH and PRD This example illustrates the
uniqueness behavior of the regression depth (RDRH and PRD)-induced medians in the empirical distribution
case via a concrete example on the real data from the Hertzsprung–Russell diagram of the star cluster CYG OB1
(see Table 3 in chapter 2 of [16]), which contains 47 stars in the direction of Cygnus. Here, x is the logarithm
of the effective temperature at the surface of the star (Te), and y is the logarithm of its light intensity (L/L0);
see Figure 3 for the plot of the data set.

Five regression lines are plotted in Figure 3. Among them, three (dashed red, dotted blue,
and dotdash green) are regression medians from RDRH , one (solid black) from PRD, and the
other (longdash purple) is the least squares line. Note that the classical least squares regression
estimator (as well as many traditional regression estimators) could be regarded as a depth-induced
median under the general “objective depth” DObj framework (see [11]). Thus, for the benchmark
purpose, the least squares line is also plotted in Figure 3 alongside the four other median lines.

The LS line also justifies the legitimacy of the existence of RDRH- and PRD-induced medians
(as robust alternatives) since the LS line fails to capture the main-sequence/pattern of the data cloud
(stars) and is heavily affected by four giant stars whereas the other four depth medians resist the four
leverage points (outliers) and catch the main trend/cluster.
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Figure 3. Five regression depth median lines based on the data from Hertzsprung–Russell diagram of
the star cluster CYG OB1 (solid black for β∗PRD; dashed red, dotted blue, and dotdash green all for β∗RD;
longdash purple for LS).

It turns out that there exist three maximum depth lines (medians) induced from RDRH . Each of
the three lines goes through exactly two data points. In terms of (intercept, slope) form, they are
(−6.065000, 2.500000), (−8.586500, 3.075000), and (−7.903043, 2.913043). These lines are plotted by dash
red, dotted blue, and dotdash green in Figure 3. All three possess regression depth 21/47. Note that
the average of the three deepest lines is (−7.518181, 2.829348), which possesses RD 20/47. That is, it no
longer possesses the maximum regression depth.

On the other hand, there exists only one maximum regression line (median), (−7.453665, 2.829416),
induced from PRD, plotted in solid black in Figure 3, with PRD value 0.8585901. Incidentally, the LS
line is (6.7934673, −0.4133039), plotted in longdash purple.

The computation issues of RDRH have been discussed in RH99, Rousseeuw and Struyf (1998) [20],
and Liu and Zuo (2014) [21]. For the discussion on the computation of the PRD and induced regression
medians, see Zuo (2019b) (Z19b) [22].

After obtaining (β̂1, β̂2), one can immediately get the fitted line ŷ = β̂1 + β̂2x (which has actually
already been plotted in Figure 3), and the predicted values: ŷi = β̂1 + β̂2xi, and hence the residuals:
ri := yi − ŷi. All these involve the uniqueness issue, we first need to have a unique fitted line for
each method. Here due to the non-uniqueness of the deepest RD lines, we select the first deepest
line (−6.065000, 2.500000) among the three as a representative. Then we construct a table with nine
columns: 1st is the id’s of observations, 2nd is the explanatory variable xi values, 3rd is dependent
variable yi values, 4th–6th are the predicted ŷi values for LS, RD, PRD methods, respectively, 7th–9th
are the residuals ri for LS, RD, PRD methods, respectively (Table 1).

Next the residuals of three methods are plotted below in the Figure 4.
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Table 1. Residuals analysis for three regression methods.

ŷ r

i x y ls rd prd ls rd prd

1 4.37 5.23 4.987329 4.860 4.910883 0.2426707 0.370 0.3191171
2 4.56 5.74 4.908802 5.335 5.448472 0.8311985 0.405 0.2915280
3 4.26 4.93 5.032793 4.585 4.599647 −0.1027927 0.345 0.3303528
4 4.56 5.74 4.908802 5.335 5.448472 0.8311985 0.405 0.2915280
5 4.30 5.19 5.016261 4.685 4.712824 0.1737395 0.505 0.4771762
6 4.46 5.46 4.950132 5.085 5.165530 0.5098681 0.375 0.2944696
7 3.84 4.65 5.206380 3.535 3.411292 −0.5563803 1.115 1.2387076
8 4.57 5.27 4.904668 5.360 5.476766 0.3653315 −0.090 −0.2067661
9 4.26 5.57 5.032793 4.585 4.599647 0.5372073 0.985 0.9703528

10 4.37 5.12 4.987329 4.860 4.910883 0.1326707 0.260 0.2091171
...

...
...

...
...

...
...

...
...

45 4.55 5.54 4.912935 5.310 5.420178 0.62706545 0.230 0.1198222
46 4.45 4.98 4.954265 5.060 5.137236 0.02573506 −0.080 −0.1572362
47 4.42 4.50 4.966664 4.985 5.052354 -0.46666406 −0.485 −0.5523537

Figure 4. Residuals plots for three types of regression methods for the star cluster data. (a) Residuals
plot for the LS method. (b) Residuals plot for one of deepest line induced from RD. (c) Residuals plot
for the unique deepest line induced from PRD.

Inspecting the residuals plot immediately reveals that in this case, the residuals of LS method are
rather deceptively homogeneous, its plot fails to identify any outliers whereas the robust regression
median lines all can easily spot the four obvious outliers and two groups of stars. Based on the residual
plot, one can make some conclusions. For example, the four outliers are not necessarily errors but
might be exceptional observations (they come from a different group of stars), and LS line does not
provide a good fit (only explained 4.4% of total variation in observations of y).
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In the empirical distribution case, one can always take the average over all regression medians to
take care of the non-uniqueness issue. Nevertheless, challenges arise computationally if there exist
infinitely many medians in higher dimensions. Furthermore, the average sometimes will no longer be
a deepest line/hyperplane (as seen in this example and more in Section 4).

The non-uniqueness issue is more vital with the population case since without the uniqueness,
there will be no uniquely defined median and it is impossible to discuss the convergence
(or consistency) and the limiting distribution of the unique empirical regression median.

4. Uniqueness of Regression Medians

From the empirical example in the previous section, we see that there can exist multiple
empirical regression medians induced from RDRH while in the case of PRD there exists a unique one.
These results are just empirical special examples and not for general cases. In the following, we address
general cases and draw general conclusions.

4.1. Non-Uniqueness of β∗RDRH
and β∗DC

Under certain symmetry assumption (e.g., regression symmetry of Rousseeuw and
Struyf (2004) (RS04)) [19] and other conditions, the regression median induced from RDRH can be
unique (see Theorem 3 and Corollary 3 of [19]). However, generally speaking, we have

Proposition 2. β∗RDRH
(F(y, x)) is not unique in general. The average of all β∗RDRH

(F(y, x)) might not possess
the maximum depth any more.

Proof. A counterexample suffices.
In fact, the real data example 3.2 could serve as one counterexample, where one has three

maximum depth lines and the average line no longer possesses the maximum RDRH value.
An even simpler counterexample could be constructed. Assume that there are three sample points

A = (−1, 0), B = (0, 1) and C = (1, 0). Then it is readily seen that three lines each of which formed by
two sample points are (1,−1); (1, 1) and (0, 0) in terms of (intercept, slope) form and each line has the
maximum RDRH 2/3 whereas the average of all maximum depth lines is (2/3, 0) which has RDRH
only 1/3.

For special distributions, the median induced from Carrizosa depth can also be unique. But
generally speaking, it is not.

Proposition 3. β∗DC
(F(y,x)) is not unique in general. The average of all β∗DC

(F(y,x)) might not possess the
maximum depth value any more.

Proof. A counterexample suffices.
Denote by Hβ the hyperplane determined by y = x>β for any β ∈ Rp and by θβ the acute angle

formed between the hyperplane Hβ and the horizontal hyperplane Hh (y=0).
Assume that βi ∈ Rp, (i = 1, 2), β1 6= β2, and Hβi

each contains 1/2 probability mass;
any hyperline in Hβi

contains no probability mass (i = 1 or 2); θβ1
= θβ2

, and Hβ1
intersects with Hβ2

at a hyperline in the horizontal hyperplane Hh.
Now in light of characterization (5) of DC, it is readily seen that at each βi, DC(βi; P) attains the

maximum depth value 1/2.
Let γ = (β1 + β2)/2, then it is readily seen that the DC(γ; P) = 0, and Hγ is no longer a

hyperplane with the maximum depth value.
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4.2. Uniqueness of β∗PRD

For two univariate random variables X, Y defined on the sample space Ω , X < Y stands
for X(ω) < Y(ω), ∀ ω ∈ Ω. We say that T(F(y−x>β)/x>v) is strictly monotonic at point β0 iff
T(F(y−x>β0)/x>v) > T(F(y−x>β1)/x>v) whenever −x>β0 > −x>β1 ∀ β1 ∈ Rp, for any v ∈ Sp−1.

Proposition 4. If (A0) holds and T(F(y−x>β)/x>v) (i) is strictly monotonic at 0 and (ii) satisfies (A1), (A2),
and (A3), then β∗PRD(F(y, x)) exists uniquely.

Proof. To prove the proposition, we first invoke the following result.

Lemma 1 ([11]). The PRD and β∗PRD satisfy the following propoerties.

(i) The β∗PRD(F(y, x>)) is regression, scale and affine equivariant in the sense that

β∗(F(y+x>b, x>)) = β∗(F(y, x>)) + b, ∀ b ∈ Rp;

β∗(F(sy, x>)) = sβ∗(F(y, x>)), ∀ scalar s( 6= 0) ∈ R;

β∗(F(y, A>x)) = A−1β∗(F(y, x>)), ∀ nonsingular A ∈ Rp×p,

respectively.
(ii) The maximum of PRD(β; F(y,x>)) exists and is attained at a β0 ∈ Rp with ‖β0‖ < ∞.

(iii) The PRD(β; F(y,x>)) monotonically decreases along any ray stemming from a deepest point in the sense
that for any β ∈ Rp and λ ∈ [0, 1],

PRD(λβ∗ + (1− λ)β; F(y, x>)) ≥ PRD(β; F(y, x>)),

where β∗ is a maximum depth point of PRD(β; F(y,x>)) for any β ∈ Rp.

Now we are in a position to prove the proposition.
Assume, w.l.o.g., that S(Fy) = 1 (since it does not involve v and β, it has nothing to do with the

maximum depth point β∗PRD). The existance of the maximum depth point (the regression median) is
guaranteed in light of Lemma 4.1 above. We thus focus on the uniqueness. Assume that there are two
maximum depth points β∗1 6= β∗2 . We seek a contradiction.

Let β∗0 = (β∗1 + β∗2)/2. By virtue of Lemma 4.1 above, β∗0 is also a maximum depth point. By the
invariance of the projection regression depth functional (see [11]) and Lemma 4.1 above, assume
(w.l.o.g.) that β∗0 = 0.

For a given β ∈ Rp, write g(β, v) := T(F(y−x>β)/x>v). In light of the continuity of T in v,
the generalized extreme value theorem on a compact set, and (A1), there exists a vβ ∈ Sp−1 such that

g(β, vβ) = sup
v∈Sp−1

|T(F(y−x>β)/x>v)| (14)

For simplicity, denote by v0 for vβ∗0
. Then we have

g(β∗0 , v0) = T(F(y−x>β∗0)/x>v0)
) = T(Fy/x>v0) = sup

v∈Sp−1
|T(F(y−x>β∗0)/x>v)| := α∗. (15)

Denote by l(β∗1 , β∗2) the hyperline that connects β∗1 and β∗2 in the parameter space of β ∈ Rp.
Consider two cases.
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Case I x does not concentrate on any single hyperplane. In light of this assumption, there exists at least
one γ ∈ Rp on l(β∗1 , β∗2) in the parameter space Rp such that −x>γ 6= 0. Assume (w.l.o.g.) that
−x>γ < 0 = −x>β∗0 . By (15) and the strictly monotonicity of T, one has that for the vγ defined in (14)

α∗ = inf
β∈Rp

sup
v∈Sp−1

|T(F(y−x>β)/x>v)| ≤ sup
v∈Sp−1

|T(F(y−x>γ)/x>v))| = T(F(y−x>γ)/x>vγ
)

< T(F(y−x>β∗0)/x>vγ
) ≤ sup

v∈Sp−1
|T(Fy/x>v)|

= T(Fy/x>v0)
) = α∗ (16)

which is a contradiction. This completes the proof of the Case I.

Case II x concentrates on a single hyperplane. This implies that there is a v ∈ Sp−1 such that x>(ω)v = 0
for any ω ∈ Ω. This contradicts (A0), however. This completes the proof of Case II and thus
the proposition.

Remark 1. (I) (A0) automatically holds if x has density or if x is not degenerated to concentrate on a single
(p− 1) dimensional hyperplane. The latter means all x lie on the same point for p = 1, and they lie on a single
line for p = 2, and lie on a plane for p = 3, and so on.
(II) (A1), (A2) and (A3) hold for a large class of T, such as the mean, weighted mean (Wu and Zuo (2009) [23]),
and quantile functionals.
(III) There also exists a large class of T that is strictly monotonic. For example (i) If T(F(y−x>β)/x>v)=
E
(
(y− x>β)

/
x>v

)
, then T is strictly monotonic at any β as long as the related expectations exist and

E(x>α/x>v) > 0 whenever x>α > 0 for any α ∈ Rp and v ∈ Sp−1. (ii) When T(F(y−x>β)/x>v)) =

Qq
(
(y− x>β)

/
x>v

)
, q ∈ (0, 1), where Qq(Z) is the qth quantile associated with the random variable

Z (i.e., Qq(Z) = inf{z : P(Z ≤ z) ≥ q}), then T is strictly monotonic at any β as long as the CDF of
Z(β; v, y, x) := (y− x>β)

/
x>v is not flat at β for a given v ∈ Sp−1.

(IV) The proposition covers the sample case. That is, when F(y,x>) is replaced by its sample version in the
proposition, we have the uniqueness of the sample regression median induced from PRD, which is very helpful in
the practical computation of the median and consistent with the finding in Figure 2.

5. Concluding Remarks

5.1. Why Do We Care About the Non-Uniqueness of Regression Medians?

Uniqueness is actually implicitly assumed when we discuss the property (such as the Fisher
consistency, regression, scale and affine equivariance, or asymptotic breakdown point) of regression
medians. Without the uniqueness, (i) the sample regression median can never converge in probability
or in distribution to its population version, (ii) deepest regression will yield more than one response
and residual for a given x, (iii) algorithms for the approximate computation of sample medians can
never converge.

Uniqueness is so essential in our discussion of medians that there is a conventional remedy
measure for non-uniqueness: to take average of all medians. This works in many scenarios, but not for
β∗RDRH

and β∗DC
. This phenomenon for β∗RDRH

was first noticed by Mizera and Volauf (2002) [24] and
Van Aelst et al. (2002) [25]. Concrete examples such as the real data Example 3.2 and the artificially
constructed one in the proof of Proposition 4.1 are presented here though.

5.2. Why Do We Just Treat Three Regression Medians?

DC ([12]) and RDRH ([10]) are two pioneer notions of regression depth. PRD was recently
introduced in [11]. The latter systematically studied the three regression depth notions w.r.t. four
axiomatic properties, that is, (P1), (P2), (P3) and (P4) (see Section 2). It is found out that both regression
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depth RDRH and projection regression depth PRD are real depth notions in regression since both
satisfy (P1)–(P4). While the former needs an extra assumption (A) (see Section 2.2), the latter does not
need any extra assumptions. On the other hand, Carrizosa depth DC violates (P3) in general, hence is
not a real regression depth notion w.r.t. the definition in [23]. That motivates us to just focus on RDRH
and PRD throughout.

5.3. Summary and Conclusions

In terms of robustness, both depth-induced medians are indeed robust. In fact, the median
β∗RDRH

can asymptotically resist up to 33% [13] contamination, whereas β∗PRD can resist up to 50% [14]
contamination without breakdown, sharply contrasting to the 0% of the classical LS estimator.

In terms of efficiency, sample β∗PRD could possess a higher relative efficiency when compared
with sample β∗RDRH

(see [22]).
Now in terms of uniqueness, β∗PRD again distinguishes itself from the leading depth median

β∗RDRH
by generally possessing the desirable uniqueness property.

From the computational point of view, RD (and β∗RDRH
) has an edge over PRD (and β∗PRD).

The former is relatively easier to compute than the latter (see [22]).
By virtue of the performance criteria above, we conclude that PRD and β∗PRD are promising

options among the leading regression depths and their induced medians.
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