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Abstract: The prediction of yearly batting averages in Major League Baseball is a notoriously difficult
problem where standard errors using the well-known PECOTA (Player Empirical Comparison and
Optimization Test Algorithm) system are roughly 20 points. This paper considers the use of ball-by-ball
data provided by the Statcast system in an attempt to predict batting averages. The publicly available
Statcast data and resultant predictions supplement proprietary PECOTA forecasts. With detailed
Statcast data, we attempt to account for a luck component involving batting averages. It is anticipated
that the luck component will not be repeated in future seasons. The two predictions (Statcast and
PECOTA) are combined via simple linear regression to provide improved forecasts of batting average.
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1. Introduction

Prediction in baseball is known to be notoriously difficult [1]. For example, consider the case of
David Clyde who in 1973 was the number one draft pick in Major League Baseball (MLB) and was
selected by the Texas Rangers. He was a much-celebrated prospect, and he first pitched in the major
leagues at the tender age of 18 years. At 18, the famous sports magazine Sports Illustrated published
an article [2] on Clyde, and he was described by some baseball scouts as the “best pitching prospect
they had ever seen” [3]. Partly due to injuries, Clyde’s career ended at the age of 26 with a dismal
18-33 winning record in MLB.

As an example of an established player whose future performance may not have been predicted
accurately, consider the case of Albert Pujols. Pujols had 11 immensely successful seasons with the
St. Louis Cardinals of MLB where he was rookie of the year in 2001, a three-time Most Valuable Player,
a two-time Gold Glove winner and a nine-time All-Star. In St. Louis, Pujols had yearly batting averages
that never dropped below 0.299 and was on a clear track to the Hall of Fame. In 2012, Pujols was
traded to the Los Angeles Angels where he was given a 10-year $240 million contract (third largest in
history at the time). In the past six seasons with Los Angeles (2012-2017), his batting averages have
tumbled to 0.285, 0.258, 0.272, 0.244, 0.268, and 0.241. Some have claimed that Pujols is now MLB'’s
worst player with four years remaining on his contract [4].

Although there are many performance statistics in baseball, our interest is the yearly prediction of
batting averages. The batting average for a player is defined as the player’s number of hits divided
by their number of at-bats. There is considerable interest in batting averages. First, batting averages
are important to fans. The sport of baseball is noted for its careful records, and batting averages have
been recorded for all players for a very long time; the first statistics that are shown when looking
at team rosters are typically batting averages. Second, batting averages are important to managers
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regarding team composition and the negotiation of player salaries [5]. Thirdly, batting averages are
also of interest to those who participate in fantasy sports [6]. In fantasy league baseball, participants
“accumulate” players according to various sets of rules (e.g., restrictions on the number of players,
restrictions on players of a given fielding position, budget restrictions where players are worth varying
amounts, etc.). The participants obtain fantasy points that coincide with performance measures of
their players such as hits, home runs, rbi’s, wins, saves, etc. Participants are sometimes allowed to
trade players, drop players and pick up additional players according to the particular fantasy rules. At
the end of the contest, the participant with the most fantasy points is the winner, and often prizes are
awarded. Fantasy sports have found their way into the “gambling” arena where online sites such as
DraftKings (https:/ /www.draftkings.com) and FanDuel (https:/ /www.fanduel.com) have become
extremely popular.

Perhaps the most well-known of the forecasting methods for batting average is the Player
Empirical Comparison and Optimization Test Algorithm known as PECOTA [7]. Nate Silver developed
this proprietary system in 2002-2003. Silver has gained recognition for many of his predictions that are
of interest to the general public including the accurate predictions of US presidential elections [8]]. His
methods are statistically based, and in the case of PECOTA, the approach relies on relevant baseball
features such as age, position, body type, past performance, etc. However, due to the proprietary nature
of PECOTA, the exact calculations of the predictions are unknown. Baseball Prospectus purchased the
PECOTA system in 2003, and since that time, the annual editions of Baseball Prospectus (e.g., [9]) have
been the sole source of the PECOTA predictions. We note that PECOTA also provides forecasts for
other MLB baseball statistics in addition to batting average.

Our research question is whether the prediction of batting averages can benefit from the wave
of data that is now available via the big data revolution in baseball. Specifically, we are interested in
whether the detailed ball-by-ball data provided by the Statcast system [10] contains information that
is relevant to the prediction of batting averages. Sportvision created the Statcast system, and it was
introduced in the 2015 regular season for every MLB game. Statcast provides publicly available data on
every pitch that is thrown and is based on both Doppler radar (for tracking balls) and video monitoring
(for tracking players). Given that PECOTA is complex and proprietary, it would be interesting whether
a simple and fully prescribed prediction system can be developed based on data that is freely available
to everyone.

This paper is based on the work of [11] where the motivating idea is the detection of a luck
component in a batter’s season which may not persist and is not predicted to continue in subsequent
seasons. The luck component may be either good luck or bad luck. In using the term “luck”, we
recognize that luck may be explained as a consequence of regression towards the mean [12]. Luck is
established by looking at the characteristics of the detailed player at-bats using the Statcast data. The
Statcast variables that we consider in estimating the probability of a hit are the launch angle, the exit
velocity and the distance that the ball is hit. In addition, we supplement that Statcast dataset with other
publicly available datasets that provide information on the handedness of hitters and their footspeed.

In the literature, various defensive independent pitching statistics (DIPS) have been proposed.
These statistics are also rooted in the recognition of the role of luck in baseball [13]. In an
oversimplification of DIPS, the idea is that a pitcher has ultimate control over strikeouts, walks, home
runs and hit by pitches whereas other batting outcomes are subject to fielding and luck. Therefore,
DIPS statistics focus on the controllable outcomes. [14] has also considered luck as an element of
batting and pitching performance by proposing random-effects models on components of performance
where the components have different levels of luck. Albert’s components are characterized by at-bats
that are distinguished according to strike-outs, home runs and balls put into play. Shrinkage ideas
are also pertinent to the luck phenomena, and various shrinkage methods have been proposed in the
literature for prediction in baseball. For example, [15] develop a Bayesian model that is used to predict
home run totals.
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In Section 2, we carry out a data analysis that is based on two years (2015-2016) of Statcast data
and auxiliary data. First, we check the integrity of the 2015 data and observe that apart from some
missingness, the data is reliable. Based on the Statcast data for all players in 2015, logistic regression
models are used to estimate the probability of a hit. From these probabilities, we obtain predicted
Statcast batting averages for 2016. We then use the 2016 Statcast predictions, the 2016 PECOTA
predictions and the actual 2016 batting averages to obtain combined (Statcaset and PECOTA) 2017
predictions. In Section 3, the 2017 predictions are assessed where we observed that the combined
predictions are an improvement over straight PECOTA. We also derive approximate standard errors
for the combined predictions. We conclude with a short discussion in Section 4.

The main contribution of our paper is the demonstration that using publicly available data
(Statcast) and some simple tools, one can investigate notoriously difficult prediction problems in
MLB. Moreover, the methods that are proposed here already compete with state-of-the-art proprietary
methods. With more investigation, it would not be surprising that modifications could lead to
improved predictions.

2. Data Analysis

Although the data analysis procedure is not complicated, it consists of various steps. In these
steps, we have been careful not to error by making double use of the data (i.e., using the same data for
both model fitting and model assessment). The data analysis steps are summarized in Figure 1.
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Figure 1. Overview of the analysis.

We remark that Statcast data is “big data”. For every pitch that is thrown, Statcast records over 30
variables related to defensive, offensive and pitching outcomes. With 30 teams in MLB, 162 matches
in a season and roughly 150 pitches per game, this leads to over 10 million data values collected
per season.

2.1. Using 2015 Data and Predictions

As Statcast is a relatively new tracking system, we began by investigating aspects of its reliability.
Each case (each thrown ball) in the Statcast dataset has many associated variables including the
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identification of the batter, the identification of the pitcher and the properties of the thrown ball. We
used the event variable in the Statcast dataset to determine the outcome of each at-bat (e.g., fielding
error, strikeout, double play, etc.) In doing so, we used the resultant outcomes to calculate the batting
average for batters during the 2015 regular season. We then compared the batting averages and
the number of bats for five randomly selected players with the reported values from www.baseball-
reference.com. The five players were Aramis Ramirez, Troy Tulowitzki, Trevor Plouffe, Omar Infante,
and Bobby Wilson. In each case, both their number of at-bats and the number of hits matched exactly.

Our first decision in the data analysis was to restrict the prediction of batting averages to players
for whom we had adequate data in the previous season. Without sufficient at-bats, there may be
great variation in the predicted batting averages. Therefore, for the 2015 regular season, we only
considered players who had at least 200 at-bats. We were left with 334 players who met the threshold.
Consequently, we used 84.1% of all at-bats in the 2015 dataset (i.e., 140,896 of the 167,606 at-bats).

In the next step of our procedure, we want to estimate the probability of a hit based on the
characteristics of the particular at-bat. The variables that we used in assessing the characteristics of
an at-bat were the exit velocity (x1) the launch angle (x;) and the distance that the ball was hit (x3).
Our intuition is that these are physically meaningful variables regarding the probability of a hit. For
example, we believe that the harder the ball is hit (i.e., the greater the exit velocity), the greater the
chance of a hit. It also seems that the relationship between p = Prob(hit) and the three variables are
not necessarily linear and that interactions may exist. We also consider two further variables that
are provided by auxiliary datasets. We introduce the indicator variable x4 which characterizes the
handedness of the batter with the idea that a left-handed batter is closer to first base than a right
handed batter, and may, therefore, be advantaged in running out a ground ball. We also introduce the
continuous variable x5 which is the footspeed of players. The variable x5 is obtained from the webpage
www.baseballsavant.mlb.com/sprint_speed_leaderboard where the idea again is that faster runners
may be advantaged in running out a ground ball. These observations are therefore suggestive of a
logistic regression model where logit(p) is regressed against covariates originating from xj, xp, x3, x4
and xs.

However, before proceeding with logistic regression, missing Statcast data is a concern since
missingness can introduce bias. There are some batting outcomes for which covariates are systematically
missing. For example, when there is a strikeout, x1, x7, and x3 are always missing since the ball is not
put into play. Therefore, in the case of strikeouts, we assigned p = 0. There were 29,713 strikeouts of
the 140,896 at-bats in the restricted dataset (i.e., 21.1%).

High angled pop-outs are another case that requires special attention. Our investigation found
that radar sometimes loses track of the ball, and in these instances, imputed values of x1, x2, and x3
were provided, and these imputed values cannot be deemed reliable [16]. Although this is not the
same sort of missingness as with strikeouts, almost all pop-outs result in outs. Therefore, in the case of
pop-outs, we also assigned p = 0. There were 7341 pop-outs of the 140,896 at-bats in the restricted
dataset (i.e., 5.2%).

There was one more remaining case of systematic missingness that proved problematic, and it
involved ground balls. With ground balls, the hit distance variable x3 was missing when the ball was
stopped by an infielder before it could reach its true hit distance. Our solution to this problem was to
take all ground balls and carry out a logistic regression of p solely against the exit velocity variable x;
given by Statcast and the auxilary variables x4 and x5. There were 50,717 ground balls of the 140,896
at-bats in the restricted dataset (i.e., 36.0%). The fitted logistic regression model was

log (1fp> = 4515+ 0.039x,. 1)

To compare (1) versus our intuition, consider batted balls with exit velocities x; = 20 mph and
x1 = 120 mph. The fitted probabilities of a hit are 0.023 and 0.541, respectively. As is reasonable, the


www.baseball-reference.com
www.baseball-reference.com
www.baseballsavant.mlb.com/sprint_speed_leaderboard

Stats 2020, 3 88

ball which is hit harder has the greater probability of a hit. The AIC fit diagnostic for (1) is 57011
whereas it is 57170 for the null model with only the intercept term.

In the main logistic regression, we removed observations corresponding to strikeouts, pop-outs
and ground balls. We were left with only 3280 missing values which we attribute to missing at
random. The missing values constitute only 2.3% of the restricted dataset involving 140,896 at-bats.
Therefore, the complete data logistic regression involves 49,845 of the 140,896 at-bats (i.e., 35.4%).
We characterize these remaining observations as fly-balls. We considered all third-order covariates
involving x1, x, and x3 since there could be complex interactions between some of the covariates.
For example, with launch angle x», it is intuitive that balls hit at a higher angle relative to the ground
will have a greater probability of resulting in a hit. However, there is a caveat in that if the ball is
a little too high, then it will provide the fielder with more time to reach the ball and make a catch.
Looking ahead to Equation (2), we indeed see that the covariate x5 has a negative coefficient. We did
not include x4 (handedness)and x5 (footspeed) as our physical understanding of baseball suggests that
these variables should not be relevant in the prediction of hits from fly-balls. Then, after removing
covariates with correlations exceeding 0.95, we carried out stepwise regression on the remaining
variables. We obtained the fitted logistic regression model

log (1fp> = —1.370 + 0.0215x; + 0.00312x3 — 0.0000265x3 — 0.000152x,x3, @)

where all included variables are highly significant. We note that each of the estimated parameters of
the first order terms have signs that correspond to our intuition. The AIC fit diagnostic for (1) is 54587
whereas it is 68801 for the null model with only the intercept term.

Now, the final step involving the 2015 data involves the 2016 Statcast predictions. The simple
philosophy is that players will behave similarly in 2016 as they did in 2015 with the exception that their
“luck” is modified. Consider the jth player who had m; at-bats in 2015. In his ith at-bat during the 2015,
we determine the probability of a hit p;; where pj;; = 0 if his at-bat was either a strikeout or a pop-out,
pji is calculated according to (1) if his at-bat was a ground ball, and pj; is calculated according to (2),
otherwise. Therefore, the Statcast predicted batting average for player j in the 2016 season is given by

"
(s) _ Yo pji
vy = T] 3)
Figure 2 provides a scatterplot of the 2016 Statcast predictions versus the 2016 PECOTA predictions.
We observe a similarity between the two sets of predictions as they appear scattered about the straight
line y = x. We do note that the Statcast predictions are slightly more extreme as they have both larger
and smaller predictions than PECOTA.
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Figure 2. Statcast and PECOTA predictions for 2016 season. The line y = x has been added to aid

in interpretation.

2.2. Using 2016 Data and Predictions

We recall that the Statcast 2016 predictions are not sophisticated in that they do not consider
important variables such as age, injuries and player speed. However, what the Statcast 2016 forecasts
do implicitly include is information concerning the luck of the player during the 2015 season. If he
was lucky in 2015 (had more hits than implied by (3)), then his 2016 prediction will be less than his
actual 2015 batting average. On the other hand, if he was unlucky in 2015 (had fewer hits than implied
by (3)), then his 2016 prediction will be greater than his actual 2015 batting average.

There is a wisdom of the crowd philosophy (also related to model averaging) that suggests that
information from various sources is often superior to information from a single source. Following
these beliefs, we consider the simple linear regression model

v = Bo+ Bsyl” + pryl” + ¢ @

where y(A) is the actual batting average in 2016 for player j, y](s) is the 2016 Statcast prediction for

player j, y](P) is the 2016 PECOTA prediction for player j and €; is a random error term.
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The least squares fit of the simple linear regression model (4) leads to

vt = 00257 + 02577y + 0.6482y.", ®)
where we refer to y(-c) as the combined predictor for player j in 2016. In (5), we observe the fit

]
diagnostic R? = 0.29. Of course, it would not be fair to assess y(-c) versus y(-A) since that would be

a violation of data analytic principles where the same data are used for both model fit and model
assessment. From (5), we observe that the existence of the intercept term implies that there is some
bias (although small) in the Statcast and PECOTA predictors. We also observe that more weight is
placed on the PECOTA predictor than on the Statcast predictor.

3. Assessing 2017 Predictions

To assess the combined predictor (5), we shift our comparison to the subsequent year, 2017.

Accordingly, we determine the Statcast predictors y(-s) for 2017 where we again evaluate (3). However,
this time the calculation of (3) was based on the pji from the 2016 regular season. The pji were obtained
from the same fitted logistic regression Equations (1) and (2) but we used the 2016 covariates x1, x
and x3 for each at-bat.

Once we obtained the Statcast predictors y(.s) for 2017, we plugged those values into (5) together

]
with the 2017 PECOTA predictors y](.P). The fitted regression (5) gives the 2017 combined predictors

(© ()

Y where we emphasize that y; ’ has not used 2017 data in any way.

Given y](-s), y](P), /(-C) and y](-A)

diagnostic we consider is mean absolute error

for 2017, there are various comparisons of interest. The first

1 i
MAE = - 3" Iyt —y), ®)
j=1

where n = 333 is the number of players that are considered in 2017 and i = S, P, C. MAE measures the
average discrepancy between actual batting average and the particular prediction method. In Table 1,
we provide the MAE values for 2017 and other prediction statistics. Referring back to the comments in
the Introduction, we observe that the prediction of batting averages is a difficult task. For example,
even with the well-established PECOTA system, the average error in predicting a batting average is
roughly 21 batting points. This level of error is a meaningful difference in the perceived quality of a
batter. The next thing that we observe from Table 1 is that there is not a great difference between the
three predictions methods; the combined predictor is best, PECOTA slightly trails, and then Statcast is
the weakest.

Table 1. Comparison of the three prediction methods in 2017. We include mean absolute error (MAE),
95% CI for MAE based on 100 bootstrap samples, ME (mean error), average prediction, standard
deviation of the prediction and prediction percentiles.

Method MAE MAE CI ME Avg Sd  5th Perct 95th Perct
Statcast 0.0236  (0.0229,0.0233) —0.0009 0.260 0.026 0.212 0.299
PECOTA  0.0209 (0.0205,0.0209) —0.0017 0.261 0.018 0.234 0.291
Combined  0.0208 (0.0198,0.0202)  0.0000  0.262 0.017 0.233 0.287

To get a visual sense of the 2017 Statcast and PECOTA predictions, Figure 3 provides scatterplots
of the predictions versus the actual batting averages. We observe a little more variation in the Statcast
predictions. However, the overall impression is that the two prediction approaches are comparable;
this reinforces the message that predictions can be made using simple methods and publicly available
data (Statcast) that compete with sophisticated and proprietary methods (PECOTA).
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Figure 3. Scatterplots of the Statcast and PECOTA predictions for the 2017 season plotted against actual
batting averages. Simple linear regression lines have been added to both plots.

However, our initial concern was not whether Statcast predictions would be better than PECOTA.
We anticipated that Statcast would be weaker because it did not take into account important variables.
The real question was whether Statcast could assist PECOTA through the construction of the combined

predictor y}c). Recall that Statcast data is freely and publicly available, and therefore can be used
by anyone.

We now look at a second diagnostic for comparison purposes. We calculated the percentage of the
time that the combined predictors y]gc) are closer to the actual batting average y](A) than the PECOTA
values y(.P). It turns out that the combined predictor is closer 56% of the time, a meaningful difference.
Together, these two diagnostics suggest that when Statcast is bad, it can be quite bad. This observation
may have been anticipated by the more extreme predictions observed in Figure 2.

Finally, we investigate the two players whose 2017 predictions were the poorest. Tyler Saladino of
the Chicago White Sox had comparable predictions of y(©) = 0.260, y(*) = 0.257 and y(5) = 0.264, yet
his actual batting average was y(4) = 0.178. Saladino was plagued with injuries during 2017 which
contributed to a lower than expected performance. He had only 253 bats which also contributed to the
variability of his performance.

At the other end of the scale, Avisail Garcia, also of the Chicago White Sox had predictions
of y©) = 0.262, yP) = 0.263 and y(°) = 0.256, yet is actual batting average was an outstanding
y(4) = 0.330. Garcia had a breakout 2017 season which seemed unexpected. He batted only 0.257 and

0.245 in the 2015 and 2016 regular seasons.

Approximate Standard Errors

Predictions are rarely exact and it is, therefore, useful to have a sense of prediction error. Since
our prediction approach involves multiple steps, it is difficult (impossible) to obtain an exact standard
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error for the combined predictor (5). Instead, we consider an approximation of the standard error
where we assume that the coefficients in (5) are known. This leads to the variance expression

Var(y\) ~ (0.2577)2Var(y{*)) + (0.6428)2Var(y|")) +2(0.2577) (0.6428)Cov (y{*, y"),  (7)

(P)
J

PECOTA predictions. We estimate Cov(y](.s), ](p )) = 0.00030 by calculating the sample covariance
from the values displayed in Figure 2. Referring to (3), the Statcast variance is estimated by

Var(y](.s)) = (1/m;)? 221 (SE(pji))* where SE(pj;) is the approximate standard error of pj; obtained

from logistic regression output. Having substituted the aforementioned estimates in (7), we then

In (7), we estimate Var(y; ') = 0.00029 by squaring the sample standard deviation of the 2016

obtain the approximate standard error SE(y](C)) =\ /Var(y](c)).

In Table 2, we provide the approximate standard errors of the combined predictor (5) for the first
10 batters (alphabetical) during the 2017 season. We observe that the standard errors are roughly 16
batting points; this is slightly favorable to the PECOTA sample standard deviation which is roughly 17
batting points.

Table 2. Predictions and approximate standard errors for the first 10 batters (alphabetically) in the
2017 season.

Batter y}c) SE(y’(C))
Aaron Hicks (New York Yankees) 0.245 0.0162
Adam Duval (Cincinnati Reds) 0.240 0.0157
Adam Jones (Baltimore Orioles) 0.267 0.0160
Adam Lind (Seattle Mariners) 0.269 0.0164
Adam Rosales (San Diego Padres) 0.224 0.0157
Addison Russell (Chicago Cubs) 0.241 0.0159

Adeiny Hechavarria (Miami Marlins) 0.262 0.0158
Adrian Gonzalez (Los Angeles Dodgers) 0.272 0.0158
Adrian Beltre (Texas Rangers) 0.292 0.0158
Albert Pujols (Los Angeles Angels) 0.269 0.0158

4. Discussion

We have observed a big data phenomenon; that the detailed information provided by the Statcast
dataset in MLB can help improve the well-established PECOTA forecasts. The assistance is facilitated
through the combined predictor y](.c) in (5).

It is worth asking how prediction might be improved. As previously noted, the Statcast system is
relatively new with only three seasons of data, 2015-2017. As more data comes on board, it may be
possible to improve estimation. This may be possible by improving the logistic regression equations
given by (1) and (2). It may also be possible to include auxiliary information to Statcast data (e.g.,
age, injuries) to improve the Statcast prediction so that it is comparable to the proprietary predictions
given by PECOTA. It may also be possible to improve predictions using various machine learning
methods such as random forests and neural networks instead of the basic regression techniques used
in this paper.

In MLB, we chose Jose Altuve of the Houston Astros as a player of interest as he had the highest
batting average (0.346) in 2017. Our proposed Statcast methods predicted a 2018 batting average of
0.269 for Altuve. Our 2018 prediction for Altuve suggests that he benefitted from luck in 2017. Altuve’s
actual batting average in 2018 was 0.316; therefore although our prediction was on the low side, Altuve
did not repeat his remarkable performance from 2017. In this example, PECOTA did extremely well by
predicting a 0.315 batting average for Altuve in 2018.
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