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Abstract: Mutual information is one of the essential building blocks of information theory. It is
however only finitely defined for distributions in a subclass of the general class of all distributions
on a joint alphabet. The unboundedness of mutual information prevents its potential utility from
being extended to the general class. This is in fact a void in the foundation of information theory that
needs to be filled. This article proposes a family of generalized mutual information whose members
are indexed by a positive integer n, with the nth member being the mutual information of nth order.
The mutual information of the first order coincides with Shannon’s, which may or may not be finite.
It is however established (a) that each mutual information of an order greater than 1 is finitely defined
for all distributions of two random elements on a joint countable alphabet, and (b) that each and
every member of the family enjoys all the utilities of a finite Shannon’s mutual information.
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1. Introduction and Summary

This article proposes a family of generalized mutual information whose members are indexed
by a positive integer n, with the nth member being the mutual information of nth order. The mutual
information of the first order coincides with Shannon’s, which may or may not be finite. It is
however established that each mutual information of an order greater than 1 is finitely defined
for all distributions of two random elements on a joint countable alphabet, and that each and every
member of the family enjoys several important utilities of a finite Shannon’s mutual information.

Let Z be a random element on a countable alphabet Z = {zk; k ≥ 1} with an associated
distribution p = {pk; k ≥ 1}. Let the cardinality or support on Z be denoted K = ∑k≥1 1[pk > 0], where
1[·] is the indicator function. K is possibly finite or infinite. Let P denote the family of all distributions on
Z . Let (X, Y) be a pair of random elements on a joint countable alphabet X ×Y = {(xi, yj); i ≥ 1, j ≥ 1}
with an associated joint probability distribution pX,Y = {pi,j; i ≥ 1, j ≥ 1}, let the two marginal
distributions be respectively denoted pX = {pi,· = ∑j≥1 pi,j; i ≥ 1} and pY = {p·,j = ∑i≥1 pi,j; j ≥ 1}.
Let PX,Y denote the family of all distributions on X ×Y . Shannon [1] offers two fundamental building
blocks of information theory, Shannon’s entropy H = H(Z) = −∑k≥1 pk log pk, where the logarithm
is 2-based; and mutual information MI = MI(X, Y) = H(X) + H(Y)− H(X, Y), where H(X), H(Y)
and H(X, Y) are entropies respectively defined with the distributions pX, pY and pX,Y.

Mutual information plays a central role in the theory and the practice of modern data science
for three basic reasons. First, the definition of MI does not rely on any metrization on an alphabet,
nor does it require the letters of the alphabet to be ordinal. This generality allows it to be defined and
used in data spaces beyond the real coordinate space Rn, where random variables (as opposed to
random elements) reside. Second, when X and Y are random variables assuming real values, that is,
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the joint alphabet is metrized, MI(X, Y) captures linear as well as any non-linear stochastic association
between X and Y. See Chapter 5 of [2] for examples. Third, it offers a single-valued index measure
for the stochastic association between two random elements, more specifically MI(X, Y) ≥ 0 for any
probability distribution of X and Y on a joint alphabet and MI(X, Y) = 0 if and only if X and Y are
independent, under a wide class of general probability distributions.

However, mutual information MI, in its current form, may not be finitely defined for joint
distributions in a subclass of PX,Y, partially due to the fact that any or all of the three Shannon’s
entropies in the linear combination may be unbounded. The said unboundedness prevents the
potential utility of mutual information from being fully realized, and hence there is a deficiency of MI,
which leaves a void in PX,Y. (More detailed arguments are provided in Section 2 below). This article
introduces a family of generalized mutual information indexed by a positive integer n ∈ N, denoted
I = {MIn; n ≥ 1}, each of whose members, MIn, is referred to as the nth order mutual information.
All members of I are finitely defined for each and every pX,Y ∈PX,Y, except MI1 = MI, and all of them
preserve the utilities of Shannon’s mutual information when it is finite.

The said deficiency of MI is due to the fact that Shannon’s entropy may not be finite for
“thick-tailed” distributions (with pk decaying slowly in k) in P . To address the deficiency of MI,
the issue of unboundedness of Shannon’s entropy on a subset of P must be addressed, through some
generalization in one way or the other. The effort to generalize Shannon’s entropy has been long
and extensive in the existing literature. The main perspective in the generalization in the existing
literature is based on axiomatic characterization of Shannon’s entropy. Interested readers may refer
to [3,4] for details and references therewithin. In a nutshell, with respect to the functional form,
H = ∑k≥1 h(pk), under certain desirable axioms, for example, [5,6], h(p) = −p log p is uniquely
determined up to a multiplicative constant; if the strong additivity axiom is relaxed to be one of the
weaker versions, say α-additivity or composability, then h(p) may be of other forms, which give rise to
Rényi’s entropy [7], and the Tsallis entropy [8]. However, all such generalization effort does not seem
to lead to an information measure on a joint alphabet that would possess all the desirable properties
of MI, in particular MI(X, Y) = 0 if and only if X and Y are independent, which is supported by an
argument via the Kullback–Leibler divergence [9].

Toward repairing the said deficiency of MI, a new perspective of generalizing Shannon’s entropy
is introduced in this article. In the new perspective, instead of searching for alternative forms of h(p)
in H = ∑k≥1 h(pk) under weaker axiomatic conditions, it is sought to apply Shannon’s entropy not to
the original underlying distribution p but to distributions induced by p. One particular set of such
induced distributions is a family, each of whose members is referred to as a conditional distribution
of total collision (CDOTC) indexed by n ∈ N. It is shown that Shannon’s entropy defined with every
CDOTC induced by any p ∈ P is bounded above, provided that n ≥ 2. The boundedness of the
generalized entropy allows mutual information to be defined for any CDOTC of degree n ≥ 2 for any
pX,Y ∈PX,Y. The resulting mutual information is referred to as the nth order mutual information index
and is denoted MIn, which is shown to possess all the desired properties of MI but with boundedness
guaranteed. The main results are given and established in Section 3 after several motivating arguments
for the generalization of mutual information in Section 2.

2. Generalization Motivated

To further motivate the generalization of mutual information in this article, let the definition
of mutual information be considered in a broader perspective. Inherited from the Kullback–Leibler
divergence, mutual information on a joint alphabet, MI(X, Y) = ∑i≥1,j≥1 pi,j log(pi,j/(pi,· × p·,j)),
is unbounded for a large subclass of distributions in PX,Y. Example 1 below demonstrates the
existence of such a subclass of joint distributions.

Example 1. Let p = {pk; k ≥ 1} be a probability distribution with pk > 0 for every k but unbounded entropy.
Let pX,Y = {pi,j; i ≥ 1 and j ≥ 1} be such that pi,j = pi for all i = j and pi,j = 0 for all i 6= j, hence pX =
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{pi,· = pi; i ≥ 1} and pY = {p·,j = pj; j ≥ 1}. Then MI(X, Y) = ∑i≥1,j≥1 pi,j log(pi,j/(pi,· × p·,j)) =
−∑k≥1 pk log pk = ∞.

One of the most attractive properties of mutual information is that mutual information MI(X, Y)
is finitely defined for all joint distributions such that pi,j = pi,· × p·,j for all i ≥ 1 and j ≥ 1 and
MI(X, Y) = 0 if and only if the two random elements X and Y are independent. However, the utility
of mutual information is beyond a mere indication of whether it is zero or not. The magnitude of
mutual information is also of essential importance, although Shannon did not elaborate on that in his
landmark paper [1]. The said importance is perhaps best illustrated by the notion of the standardized
mutual information defined as κ(X, Y) = MI(X, Y)/H(X, Y) and Theorem 1 below.

Remark 1. There are several variants of standardized mutual information proposed in the existing literature.
Interested readers may refer to [10–13]. Not all variants of the standardized mutual information have the
properties given in Theorem 1. A summary of standardized mutual information is found in Chapter 5 of [2].

However, before stating Theorem 1, Definition 1 below is needed.

Definition 1. Random elements X ∈ X and Y ∈ Y are said to have a one-to-one correspondence, or to be
one-to-one corresponded, under a joint probability distribution pX,Y on X ×Y , if:

1. for every i satisfying P(X = xi) > 0, there exists a unique j such that P(Y = yj|X = xi) = 1, and
2. for every j satisfying P(Y = yj) > 0, there exists a unique i such that P(X = xi|Y = yj) = 1.

Theorem 1. Let (X, Y) be a pair of random elements on alphabet X ×Y with joint distribution pX,Y ∈PX,Y
such that H(X, Y) < ∞. Then:

1. 0 ≤ κ(X, Y) ≤ 1,
2. κ(X, Y) = 0 if and only if X and Y are independent, and
3. κ(X, Y) = 1 if and only if X and Y are one-to-one corresponded.

A proof of Theorem 1 can be found on page 159 of [2]. Theorem 1 essentially maps the
independence of X and Y (the strongest form of unrelatedness) to κ = 0, one-to-one correspondence
(the strongest form of relatedness) to κ = 1, and everything else in between. In so doing, the magnitude
of mutual information is utilized in measuring the degree of dependence in pairs of random elements,
which could lead to all sorts of practical tools for evaluating, ranking, and selecting variables in
data space.

It is important to note that the condition of H(X, Y) < ∞ is essential in Theorem 1, since obviously,
without it, κ may not be well defined. In fact, if H(X, Y) < ∞ is not imposed, and even observing
reasonable conventions such as 1/∞ = 0 and 0/∞ = 0, the statements of Theorem 1 may not be true.
To see this, consider the following constructed example.

Example 2. Let p = {pk; k ≥ 1} be a probability distribution with pk > 0 for every k but unbounded entropy.
Let pX,Y = {pi,j; i = 1 or 2 and j ≥ 1} be such that

pi,j =


pj i = 1 and j is odd
pj i = 2 and j is even
0 otherwise,
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hence pX = {p1,·, p2,·} = {∑k=odd pk, ∑k=even pk} and pY = {p·,j = pj; j ≥ 1}. X and Y are obviously not
independent, and

0 < MI(X, Y) = ∑
i≥1,j≥1

pi,j log(pi,j/(pi,· × p·,j)) = H(X) < ∞.

It follows that κ = MI(X, Y)/H(X, Y) = H(X)/H(X, Y) = 0 but in this case MI(X, Y) > 0. Therefore
Part 2 of Theorem 1 fails.

Example 2 indicates that mutual information in its current form is deprived of the potential utility
of Theorem 1 for a large class of joint distributions and therefore leaves much to be desired.

Another argument for the generalization of mutual information can be made in a statistical
perspective. In practice, mutual information is often to be estimated from sample data. For statistical
inference to be meaningful, the estimand MI(X, Y) needs to exist, i.e., MI(X, Y) < ∞. More specifically,
in testing the hypothesis of independence between X and Y, H0 : pX,Y ∈ P0, where P0 ⊂ PX,Y is
the subclass of all joint distributions for independent X and Y on X ×Y , and MI(X, Y) needs to be
finitely defined in an open neighborhood of P0 in PX,Y, or else the logic framework of statistical
inference is not well supported. Let P∞ be the subclass of PX,Y such that MI(X, Y) = ∞. In general,
it can be shown that P∞ is dense in PX,Y with respect to the p-norm for p ≥ 1. Specifically, for any
pX,Y ∈P0, there exists a sequence of distributions {pm,X,Y} ∈P∞ such that ‖pm,X,Y − pX,Y‖p → 0. See
Example 3 below.

Example 3. Let pX,Y = {pi,j; i = 1, 2 and j = 1, 2} where pi,j = 0.25 for all (i, j) such that 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2. Obviously X and Y are independent under pX,Y, that is, pX,Y ∈P0. Let pm,X,Y be constructed based
on pX,Y as follows.

Remove an arbitrarily small quantity ε/4 > 0 where ε = 1/m away from each of the four positive
probabilities in pX,Y so each becomes pm,i,j = 0.25− ε/4 for all (i, j), such that 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2.
Extend the range of (i, j) to i ≥ 3 and j ≥ 3, and allocate the mass ε over the extended range according to

pm,i,j =


c

i(log i)2 i ≥ 3, j ≥ 3 and i = j

0 i ≥ 3, j ≥ 3 and i 6= j,

where c is such that ∑k≥3 c/[k(log k)2] = ε. Under the constructed {pm,i,j}, for any ε = 1/m, X and Y are
not independent, and the corresponding mutual information is

∑
i≥1,j≥1

pm,i,j log

[
pm,i,j

(pm,i,·pm,·,j)

]

=4(0.25− ε/4) log
[

0.25− ε/4
(0.5− ε/2)2

]
− ∑

k≥3

c
k(log k)2 log

c
k(log k)2 = ∞.

However, noting that as m→ ∞, ε→ 0 and hence c→ 0,

‖pm,X,Y − pX,Y‖2
2 = 4ε2 + ∑

k≥3

[
c

k(log k)2

]2
= 4ε2 + c2 ∑

k≥3

1
k2(log k)4 → 0.

All things considered, it is therefore desirable to have a mutual information measure, say
MIn(X, Y), or for that matter a family of mutual information measures indexed by a positive integer n,
such that MIn(X, Y) < ∞ for all distributions in PX,Y, and with an accordingly defined standardized
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mutual information measure κn = κn(X, Y) such that the utility of Theorem 1 is preserved with κn in
place of κ for all distributions in PX,Y.

3. Main Results

Given Z = {zk; k ≥ 1} and p = {pk}, consider the experiment of drawing an identically
and independently distributed (iid) sample of size n. Let Cn denote the event that all observations
of the sample take on a same letter in Z , and let Cn be referred to as the event of total collision.
The conditional probability, given Cn, that the total collision occurs at letter zk is

pn,k =
pn

k
∑i≥1 pn

i
. (1)

It is clear that pn = {pn,k} is a probability distribution induced from p = {pk}. For each n, pn,k of (1)
is the conditional distribution of total collision (CDOTC) with n particles.

Remark 2. It is to be noted that, given a p, pn = {pn,k; k ≥ 1} of (1) is a special member of the family of the
escort distributions introduced by [14]. The escort distributions are a useful tool in thermodynamics. Interested
readers may refer to [15] for a concise introduction.

Lemma 1. For each n, n ≥ 1, p and pn uniquely determine each other.

Proof. Given p = {pk; k ≥ 1}, by (1), pn = {pn,k;≥ 1} is uniquely determined. Conversely, given
pn = {pn,k;≥ 1}, for each n and all k ≥ 1, pn

k /pn
1 = pn,k/pn,1 and therefore

pk = p1

(
pn,k

pn,1

)1/n
, ∑

i≥1
pi = p1 ∑

i≥1

(
pn,i

pn,1

)1/n
= 1, p1 =

[
∑
i≥1

(
pn,i

pn,1

)1/n
]−1

,

pk =

[
∑
i≥1

(
pn,i

pn,1

)1/n
]−1 (

pn,k

pn,1

)1/n
=

[
∑
i≥1

(
pn,i

pn,k

)1/n
]−1

=
p1/n

n,k

∑i≥1 p1/n
n,i

. (2)

The lemma follows.

Lemma 2. For each n, n ≥ 2, and for any p ∈P , Hn(Z) = −∑k≥1 pn,k ln pn,k < ∞.

Proof. Write ηn = ∑k≥1 pn
k . Noting 0 < ηn ≤ 1, 0 ≤ −p ln p ≤ 1/e and therefore −p log p ≤

1/(e log 2) for all p ∈ [0, 1],

Hn(Z) = − ∑
k≥1

pn,k log pn,k = − ∑
k≥1

pn
k

∑i≥1 pn
i

log
pn

k
∑i≥1 pn

i

= − n
ηn

∑
k≥1

pn
k log pk + log ηn ≤

(
n

e log 2

)(
ηn−1

ηn

)
+ log ηn < ∞.

The lemma follows.

On the joint alphabet X ×Y = {(xi, yj)} with distribution pX,Y = {pi,j}, consider the associated
CDOTC for an n and all pairs (i, j) such that i ≥ 1 and j ≥ 1,

pn,i,j =
pn

i,j

∑s≥1,t≥1 pn
s,t

. (3)
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Let pn,X,Y = {pn,i,j; i ≥ 1, j ≥ 1}. It is to be noted that pn,X,Y ∈PX,Y. The two marginal distributions
of (3) are pn,X = {pn,i,·} and pn,Y = {pn,·,j}, respectively, where

pn,i,· = ∑
j≥1

pn,i,j = ∑
j≥1

(
pn

i,j

∑s≥1,t≥1 pn
s,t

)
=

∑j≥1 pn
i,j

∑s≥1,t≥1 pn
s,t

, (4)

pn,·,j = ∑
i≥1

pn,i,j = ∑
i≥1

(
pn

i,j

∑s≥1,t≥1 pn
s,t

)
=

∑i≥1 pn
i,j

∑s≥1,t≥1 pn
s,t

. (5)

Lemma 3. pX,Y = {pi,j} = {pi,· × p·,j} if and only if pn,X,Y = {pn,i,j} = {pn,i,· × pn,·,j}.

Proof. For each positive integer n, if pi,j = pi,· × p·,j for all pairs (i, j), i ≥ 1 and j ≥ 1, then

pn,i,j =
pn

i,j

∑s≥1,t≥1 pn
s,t

=
pn

i,·p
n
·,j

∑s≥1,t≥1 pn
s,·pn
·,t

=

(
pn

i,·
∑s≥1 pn

s,·

)(
pn
·,j

∑t≥1 pn
·,t

)

where the two factors of the last expression above are respectively P(X1 = · · · = Xn = xi|Cn) and
P(Y1 = · · · = Yn = yj|Cn), (Xr, Yr), r = 1, · · · , n, are letter values of the n observations in the sample.

Conversely, if pn,i,j = p∗n,i× p∗n,j where p∗n,i ≥ 0 depends only on n and i and p∗n,j ≥ 0 only depends
on n and j, then by (2),

pi,j =
p1/n

n,i,j

∑s≥1,t≥1 p1/n
n,s,t

=
(p∗n,i)

1/n(p∗n,j)
1/n

∑s≥1(p∗n,s)
1/n ∑t≥1(p∗n,t)

1/n

=

(
(p∗n,i)

1/n

∑s≥1(p∗n,s)
1/n

)
×
(

(p∗n,j)
1/n

∑t≥1(p∗n,t)
1/n

)
.

The lemma immediately follows the factorization theorem.

For each n ∈ N, let Hn(X, Y), Hn(X) and Hn(Y) be Shannon’s entropies defined with the joint
CDOTC, {pn,i,j; i ≥ 1} as in (3), and the marginal distributions {pn,i,·; i ≥ 1} and {pn,·,j; j ≥ 1} as in (4)
and (5), respectively. Let

MIn = MIn(X, Y) = Hn(X) + Hn(Y)− Hn(X, Y). (6)

Theorem 2. For every n ≥ 2 and any pX,Y ∈PX,Y,

1. 0 ≤ MIn(X, Y) < ∞,
2. MIn(X, Y) = 0 if and only X and Y are independent.

Proof. In Part 1, MIn ≥ 0, since MIn is a mutual information and MIn < ∞ by Lemma 2. Part 2 follows
Lemma 3 and the fact that MIn is a mutual information.

Let

κn = κn(X, Y) =
Hn(X) + Hn(Y)− Hn(X, Y)

Hn(X, Y)
(7)

be referred to as the nth order standardized mutual information, and write IS = {κn; n ≥ 1}. Let
(X∗, Y∗) be a pair of random elements on X × Y according to the induced joint distribution pn,X,Y

with index value n ≥ 1.

Lemma 4. X and Y have a one-to-one correspondence if and only if X∗ and Y∗ have one.
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Proof. If X and Y have a one-to-one correspondence, then for each i, there is a unique ji such that
pi,ji > 0 and pi,j = 0 for all other j, j 6= ji. By (3), pn,i,ji > 0 and pn,i,j = 0 for all other j, j 6= ji. That is,
X∗ and Y∗ have a one-to-one correspondence.

Conversely, if X∗ and Y∗ have a one-to-one correspondence, then for each i, there is a unique ji
such that pn,i,ji > 0 and pn,i,j = 0 for all other j, j 6= ji. On the other hand, by (2),

pi,j =
p1/n

n,i,j

∑s≥1,t≥1 p1/n
n,s,t

,

it follows that pi,ji > 0 and pi,j = 0 for all other j, j 6= ji. That is, X and Y have a one-to-one
correspondence.

Corollary 1. For every n ≥ 2 and any pX,Y ∈PX,Y,

1. 0 ≤ κn(X, Y) ≤ 1,
2. κn(X, Y) = 0 if and only if X and Y are independent, and
3. κn(X, Y) = 1 if and only if X and Y are one-to-one corresponded.

Proof. By Lemma 3, X and Y are independent if and only if X∗ and Y∗ are. By Lemma 4, X and Y are
one-to-one corresponded if and only if X∗ and Y∗ are. The statement of Corollary 1 follows directly
from Theorem 1.

Theorem 2 and Corollary 1 together fill the void in PX,Y left behind by MI.

4. Concluding Remarks

The main results of this article may be summarized as follows. A family of generalized mutual
information indexed by a positive integer n is proposed. The member corresponding to n = 1 is
Shannon’s mutual information for a given joint distribution, pX,Y. The other members of the family
correspond to other integer values of n. They are also Shannon’s information defined, not with pX,Y,
but with induced distributions based on the given distribution pX,Y. These induced distributions are
called conditional distributions of total collision (CDOTC), which collectively is a special subset of a
more general family called the escort distributions, which is often studied in extensive thermodynamics.
The main motivation of the generalized mutual information is to resolve the issue of the fact that the
standard mutual information is not finitely defined for all distributions of a countable joint alphabet
PX,Y = {all probability distributions on X ×Y }, which leads to the issue of mutual information’s
utility only realized on a fraction of P .

On a more specific and finer level, the following facts are established.

1. There is a one-to-one correspondence between each CDOTC and the given distribution p on
a countable alphabet, and hence each CDOTC is a characteristic representation of the original
distribution p. One of the implications of this fact is that understanding the underlying p is
equivalent to understanding one of its CDOTC. It can be shown that the CDOTC with an order
greater than 1 is much easier to estimate than p with sparse data.

2. Each generalized mutual information is guaranteed to be finite. This result essentially guarantees
the validity of statistically testing the null hypothesis of independence of two discrete random
elements, as it guarantees the existence of (generalized) mutual information anywhere in the
alternative space of dependent join distributions.

3. It is shown that a particular form of standardized mutual information κ, defined with any CDOTC
of any order greater than 1, preserves the zero-to-one scale with independence on one end and
total dependence on the other, which is enjoyed by Shannon’s entropy only when it is finite.
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In short, the family of conditional distributions of total collision embeds the underlying probability
distribution p as a special member, and the family of generalized mutual information embeds
Shannon’s mutual information as a special member. Consequently, the stochastic association on
joint alphabets can be measured by not only one index but by a host of indices, which collectively offer
a much extended space to study stochastic dependence in information theory.
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