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Abstract: A proper understanding and analysis of suitable models involved in forecasting currency
exchange rates dynamics is essential to provide reliable information about the economy. This paper
deals with model fit and model forecasting of eight time series of historical data about currency
exchange rate considering the United States dollar as reference. The time series techniques: classical
autoregressive integrated moving average model, the non-parametric univariate and multivariate
singular spectrum analysis (SSA), artificial neural network (ANN) algorithms, and a recent prominent
hybrid method that combines SSA and ANN, are considered and their performance compared in
terms of model fit and model forecasting. Moreover, specific methodological and computational
adaptations were conducted to allow for these analyses and comparisons.

Keywords: singular spectrum analysis; multivariate singular spectrum analysis; time series forecasting;
artificial neural networks; currency exchange rates

1. Introduction

Apart from other important economic indicators such as interest rates, consumer price index,
money supply and inflation, the currency exchange rate is one of the most important determinants of
a country’s relative level of economic health [1]. Exchange rates play a vital role in any country’s level
of trade, which is critical to every free market economy in the world [2,3]. No economy can operate
in autarky, therefore, exchange rates are among the most analysed and governmentally manipulated
economic indicators in any nation. Recently, exchange rates forecasting have become an important
economic problem that is receiving increasing attention among researchers and policy makers especially
because of its practical national economic significance. A fluctuating (volatile) exchange rate might
lead to an unstable economy where it becomes difficult to predict the value of goods, services and other
important economic components. Exchange rates have been shown, in the literature, to be among the
major challenging and difficult economic measures to accurately forecast because changes in exchange
rates are erratic and can have drastic effects on the economy [4–6]. Erratic behaviour of exchange rate
was also identified in the literature as part of the leading causes of economic recessions [7]. Various
nations adopt different exchange rate systems based on their history and economic goals. For instance,
Brazil, India and South Africa implement a free floating exchange rate system while China and Russia
adopts a system of managing floating exchange rates.

According to the International Monetary Fund (IMF), the countries that form the BRICS nations
(Brazil, Russia, India, China, and South Africa) have more than 25% of the world’s land and 40%
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of the world’s population and about 18.3% of global nominal output [8]. The exchange rate, as the
main system for foreign exchange of a country, has become a key factor affecting the stable economic
development of the BRICS countries. The BRICS nations are the fastest growing in the emerging
economies of the world. However, in recent years, the exchange rates of these economies have all
experienced periods of high volatility [8]. In the context of the gradual recovery of the US economy
and the relatively poor economic situations in Europe, United Kingdom and Japan, these emerging
economies have been experiencing relatively stable economic growth except for recent unpalatable
global circumstances. This article is therefore based on the examination of a suitable forecasting model
for predicting currency exchange rates with special emphasis on the BRICS nations. Here, besides
the currency exchange rates of the BRICS currencies with respect to the United States dollar (USD),
we also consider three other powerful world currencies: the British pound (GBP), the Euro (EUR),
and the Japanese yen (JPY).

The main objective of this paper is to access the performance of classical and contemporary
methods for model fit and model forecasting in currency exchange rates. In particular, we want
to compare the success of recently proposed hybrid methods with classical parametric and
non-parametric, univariate and multivariate methods in the context of currency exchange rates.
To achieve our objectives, we consider daily exchange rates data consisting 4240 observations
each for eight currencies from 01/12/2003 to 28/02/2020 and employ time series techniques such
as the autoregressive integrated moving average (ARIMA) model, the non-parametric univariate
and multivariate singular spectrum analysis (SSA), artificial neural network (ANN) algorithms,
and an hybrid method that combines the SSA with the ANN. Moreover, we adapt the hybrid method
for model fit as it was originally proposed for model forecasting only [9]. Comparisons are made
for model fit and model forecasting by employing the root mean square error (RMSE) and the mean
absolute percentage error (MAPE).

The rest of this paper is structured as follows: Section 2 presents the contextual issues, the models
and methodologies about the considered models for time series model fit and model forecasting.
Section 3 presents the empirical results and discussions, and Section 4 gives a short discussion and
concludes the paper.

2. Materials and Methods

In this section, we present the data used in this study and give a brief description of the forecasting
models employed in this article.

2.1. The Data

This study employs data on daily exchange rate of eight currencies, in reference to the United
States dollar (USD), spanning seventeen years between 1 December 2003 and 28 January 2020
(4240 observations). These data were obtained from www.yahoo.finance. The currencies analysed
and compared (Figure 2) are: Brazilian real (USD/BRL), Russian rouble (USD/RUB), Indian
rupee (USD/INR), Chinese renminby (USD/CNY), South African rand (USD/ZAR), British pound
(USD/GBP), Euro (USD/EUR), and Japanese yen (USD/JPY).

2.2. Autoregressive Integrated Moving Average (ARIMA) Model

In time series analysis, an autoregressive integrated moving average (ARIMA) model is
a generalization of an autoregressive moving average (ARMA) model. Both of these models are fitted to
time series data either to better understand the data or to predict future points in the series (forecasting).
The auto regressive (AR) part of ARIMA indicates that the evolving variable of interest is regressed on
its own lagged or prior values. The moving average (MA) part indicates that the regression error is
actually a linear combination of error terms whose values occurred contemporaneously and at various
times in the past. The “integrated” (I) part of the ARIMA model indicates that the data values were
replaced with the difference between the data values and their previous values [10]. This parametric
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model can then be written as ARIMA(p, d, q), with p, d and q non-negative integers [11]. Given a time
series Y = y1, . . . , yN , the ARIMA(p, d, q) model can be written as:

(1− φ1B1 − · · · − φpBp)(1− B)dyt = c + (1 + θ1B1 + · · ·+ θqBq)εt, (1)

where φ1, . . . , φp are the parameters or coefficients of the p autoregressive terms; B is the time lag
operator, or backward shift, which is a linear operator denoted by Bk such that Bkyt = yt−k, t ∈ Z;
yt the observation at the time point t; c = µ(1− φ1 − · · · − φp); µ is the mean of (1− B)dyt; β1, . . . , βq

are the parameters or coefficients of the q moving average terms; and εt is an error term, usually white
noise with variance σ2. The results presented in this paper are based on an alternative parametrization
of the ARIMA model that is implemented in the arima function of the software R [12].

In this study, we only consider the classical ARIMA-based models from the class of pure
parametric models. However, nonparametric and ANN-based approaches are also considered.
In a recent study by [13] the supremacy of ANN over ARIMA or generalized autoregressive conditional
heteroskedasticity (GARCH) model for time series prediction was discussed. On the other hand,
Ref. [14] compared the methods of ARIMA, ANN and fuzzy systems on 1284 daily observations of
seven major currencies for five years and concluded that ARIMA gives more significant results than
ANN and fuzzy systems.

In the next subsection we briefly describe the ANN that is also considered in this paper.

2.3. Artificial Neural Network (ANN)

Neurons are the main cells that make up the nervous system and are responsible for conducting,
receiving, and transmitting nerve impulses throughout the body, causing it to respond to stimuli in
the environment, for example. The brain is a complex network of neurons that process information
through a system of several interconnected neurons. It has always been challenging to understand
brain functions; however, due to advances in computing technologies, we can now program neural
networks artificially [15].

Neural networks were originally developed in cognitive science and later used in engineering for
pattern recognition and classification [16]. Neural networks are particularly useful because they can
be used to model nonlinear behaviour in economics and financial markets, in contrast to traditional
linear models which are more restrictive. They also have the capability of being able to approximate
any nonlinear function and decompose “noisy” data. They proved, in some instances, to be more
effective in describing the dynamics of nonstationary time series due to their unique nonparametric,
noise-tolerant, and adaptive properties [17]. Over the last few decades, researchers and practitioners
alike showed growing interests in applying modified versions of ANNs for time series analysis and
forecasting [18]. ANNs are an effective tool to realize any nonlinear input-output mapping. It was
demonstrated that with a sufficient number of hidden layer units, an ANN is capable of approximating
any continuous function to any desired degree of accuracy [17]. Due to the nature of their learning
process, ANNs can be regarded as nonlinear autoregressive models [19].

Artificial neural networks (ANNs) have gained tremendous popularity and use as a promising
alternative technique for forecasting time series because of their several distinguishing features.
The first networks developed were the Perceptron and Adaline networks, developed in the 1950s
and 1960s by Rosenblatt [20] and Widrow [21] respectively. Perceptron networks were developed
with the objective of recognizing images, being a model that received a set of input data and returned
a single binary output. Adaline networks were developed to be used for pattern recognition, signal
processing and regression. Similar to the perceptron network in that it has several input layers and
only one output, it differs in that its output is not binary but an activation function f .

Similar to the biological structure of neurons, artificial neural networks define the neuron as
a central processing unit, which performs a mathematical operation that generates an output from
a set of inputs [15]. The output of a neuron is a function of the weighted sum of the inputs plus the
bias. The scheme of a simple artificial neural network can be seen in Figure 1.
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Figure 1. Representation of an artificial neural network.

An ANN is composed of the layers of input, output, and the so-called hidden layers, which are
in the center of the network and with the help of so-called weights (Wi), bias (b) and the activation
function f , converts the input data to the expected output. The weights in a neural network are the
most important factor in the transformation of the input data at the output, functioning similarly to
the functioning of the slope in linear regression. The weights here are numerical parameters that
determine how strongly each neuron affects the other. Meanwhile, the bias is like the intercept added
in a linear equation, being an additional parameter that is used to adjust the output together with the
weighted sum of the neuron inputs, and in each neuron there is still an activation process, through the
z function as

z =
L

∑
l=1

Wl ∗ Xl + b. (2)

Finally, a function is applied to z, which is called the activation function f . The types of neurons
are differentiated by the activation function attributed to them, and in practice the three most used
functions are the sigmoid function, hyperbolic tangent and ReLU (rectified linear unit). There is
also the loss function, which is the function used as a minimization criterion when estimating the
parameters of a neural network. The most common loss function is the sum of squares of errors.

The neural network model for time series was applied with the aid of the R package forecast,
through the nnetar function, which generates a feed-forward neural network with a single hidden
layer and lagged inputs to forecasting univariate time series.

2.4. Singular Spectrum Analysis (SSA)

There is a vast literature on the non-parametric technique for time series modelling and forecasting
SSA. SSA incorporates elements of classical time series analysis, matrix algebra, and multivariate
statistics, and aims at decomposing a time series into a set of components that can be interpreted as
trend components, seasonal and cyclic components and noise components [22–25]. This relatively
new technique for time series analysis proved to be widely useful and applicable to many fields of
application [9,26–38], with applications ranging from parameter estimation to time series filtering,
and forecasting.

The basic SSA method consists of three complementary stages: decomposition, reconstruction
and forecasting. The first stage is divided in two steps where the time series is decomposed in several
components, in the second stage (two steps) the noise free time series is reconstructed and in the third
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stage the reconstructed time series is used for out-of-sample forecasting. A short description of the
SSA technique is given below. More information can be found in, e.g., [23–25,39].

2.4.1. First Stage: Decomposition

1st step: Embedding. Let y1, . . . , yN be a time series of length N. Considering a window
length L the result of this step is a L × K matrix Y = [Y1 : . . . : YK], where K = N − L + 1 and
Yi = (yi, . . . , yi+L−1)

T , 1 ≤ i ≤ K.

2nd step: Singular value decomposition (SVD). In this step, the matrix Y will be decomposed using
SVD as Y = Y1 + · · ·+ YL, where Yi =

√
λiUiVi

T , Yi = 0 when λi = 0, and Vi = YTUi/
√

λi with
λ1, . . . , λL, the eigenvalues of YYT and U1, . . . , UL, the corresponding eigenvectors.

2.4.2. Second Stage: Reconstruction

3rd step: Grouping. The grouping step corresponds to splitting the elementary matrices into m
disjunct subsets I1, . . . , Im, and summing the matrices within each group. In our application we will
focus on m = 2, i.e., only two groups. I1 = {1, . . . , r} and I2 = {r + 1, . . . , L} are associated with the
signal and noise components, respectively.

4th step: Diagonal averaging. This step transforms each matrix YIj into a new series of length N.

Using diagonal averaging we have that Y = ỸI1 + · · · + ỸIm , where ỸIj is the Hankelized form

of YIj , j = 1, . . . , m. Considering ỹ
(Ij)
m,n the (m, n)th entry of the estimated matrix ỸIj and denoting

by
{

ỹj1 , . . . , ỹjN
}

the reconstructed components in the matrix ỸIj , j = 1, . . . , m, applying diagonal
averaging follows that

ỹjl =


1

j`−1 ∑
j`−1
n=1 ỹ

(Ij)

n,j`−n 2 ≤ j` ≤ L− 1,
1
L ∑L

n=1 ỹ
(Ij)

n,j`−n L ≤ j` ≤ K + 1,
1

K+L−j`+1 ∑L
n=n−K ỹ

(Ij)

n,j`−n K + 2 ≤ j` ≤ K + L.

2.4.3. Third Stage: Forecasting

Two main algorithms for out-of-the-sample forecasting in the context of SSA are available:
the recurrent SSA forecasting algorithm [23,40,41], and the vector SSA forecasting algorithm [23,42,43].
Here we will be interested in the recurrent SSA forecasting algorithm, which is briefly described below.

The basic requirement to obtain SSA out-of-sample forecasts is that the time series Yt =

(y1, . . . , yN) satisfies a linear recurrent formula, i.e., if a given observation can be written as a linear
combination of the last d observations:

yt = a1yt−1 + a2yt−2 + . . . + adyt−d, t = d + 1, . . . , N. (3)

Let us assume that UO
j is the vector of the first L− 1 components of the eigenvector Uj and πj is

the last component of Uj (j = 1, . . . , r). Denoting υ2 = ∑r
j=1 π2

j we define the coefficient vector R as:

R =
1

1− υ2

r

∑
j=1

πjUO
j .

Considering the above notation, the recurrent SSA forecasts (ŷN+1, . . . , ŷN+h) can be obtained by

ŷi =

{
ỹi, i = 1, . . . , N

RTZi, i = N + 1, . . . , N + h
(4)
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where Zi = [ŷi−L+1, . . . , ŷi−1]
T and ỹ1, . . . , ỹN , are the SSA reconstructed values obtained from 4th step

of the SSA algorithm described above.

2.4.4. SSA Parameter Selection

The SSA calibration depends on two parameters: the window length L, and the number of
eigentriples used for reconstruction r. The choice of improper values for the parameters L or r
yield incomplete reconstruction and the forecasting results might be misleading [41,43]. Despite the
importance in choosing proper values for these parameters, no theoretical solution was proposed to
solve this problem. An overall agreeable suggestion to choose the window length is to have it close
to the middle of the series and proportional to the number of observations per period (e.g., to 12 for
monthly time series, to four for quarterly time series, etc.). However, this choice does not guarantee
the best predictions [41,43], being advisable a parameter choice made accordingly to the available data
and intended analysis.

Among the alternative ways described in the literature to determine the number of eigentriples
used for reconstruction r, the most widely used is the w-correlations approach. Considering two vectors
Y(1) = [y(1)1 , . . . , y(1)N ]T and Y(2) = [y(2)1 , . . . , y(2)N ]T , the w-correlation between them can be written as

ρw =

N
∑

j=1
wL,N

j y(1)j y(2)j√
N
∑

j=1
wL,N

j

(
y(1)j

)2
×

N
∑

j=1
wL,N

j

(
y(2)j

)2
, (5)

where wL,N
j = min{j, L, N − j + 1} and 2 ≤ L ≤ N − 1. According to this measure, two series

(e.g., signal and noise components) are separable if the absolute value of their w-correlation is small.
Therefore, we determine r in such a way that the reconstructed series and residual have a small
w-correlation between them. Another way to determine r is by examining the forecast accuracy, i.e., r is
determined in such a way that the minimum error in forecasting will be obtained.

2.5. Multivariate Singular Spectrum Analysis (MSSA)

Multivariate SSA is a natural extension of the univariate SSA for analysing multivariate time
series data. The algorithm is similar to the univariate SSA and has the same range of applications.
Complete details about MSSA can be found in [23,39,44], and a brief description is presented below.

Let Yt =
[
y(1)t , . . . , y(M)

t

]
, t = 1, . . . , N, denote a sample of a M-variate time series with length N.

Let us assume that Yt can be written in terms of a signal plus noise model as:

Y =


Y1

Y2
...

YN

 = S + N =


s(1)1 . . . s(M)

1

s(1)2 . . . s(M)
2

... . . .
...

s(1)N . . . s(M)
N

+


n(1)

1 . . . n(M)
1

n(1)
2 . . . n(M)

2
... . . .

...

n(1)
N . . . n(M)

N

 . (6)

As with the univariate SSA, the goal here is to remove the noise, N, from the original data and
to obtain an estimate for the signal, S, without having to specify a parametric form for the signal,
which then can then be used to obtain out-of-the-sample forecasts. The MSSA algorithm also consists of
three complementary stages just like the univariate case: decomposition, reconstruction and forecasting.
In the first stage the series is decomposed; in the second stage the noise free series is reconstructed;
and in the final stage the reconstructed time series is used to forecast new data points. Each stage in
this algorithm includes two steps.
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2.5.1. First Stage: Decomposition

1st step: Embedding. Considering the window length L, a full augmented trajectory matrix is
constructed by a L-dimensional embedding of the time series with lag l, resulting in a block Hankel
trajectory matrix Y. Suppose Y(m), m = 1, . . . , M, denotes the Hankel matrix of dimension L × k,
k = T − L + 1, associated with the time series m, m = 1, . . . , M. The trajectory matrix in MSSA can be
defined as two different alternatives:

• Horizontal form:
Y =

[
Y(1), . . . , Y(M)

]
(7)

• Vertical form:

Y =

 Y(1)

...
Y(M)

 . (8)

2nd step: Singular value decomposition. Let U = [U1, . . . , Ud] and Σ = diag{λ1, . . . , λd} denote the
matrices with the eigenvectors and eigenvalues of YY′, respectively. Then, we have YY′ = UΣU′ and
Y can be decomposed by singular value decomposition as:

Y = UU′Y =
d

∑
i=1

UiU′i Y = Y1 + . . . + Yd, (9)

where Yi = UiU′i Y is a unitary matrix corresponding to the ith largest singular value (
√

λi), and d is
the rank of Y.

2.5.2. Second Stage: Reconstruction

3rd step: Grouping. Considering Yi to be associated with the ith largest singular value of Y, this step
intends to separate the signal and noise components as follows:

Y = Ŝ + N̂, (10)

where Ŝ = Y1 + . . . + Yr and r < d is the number of components associated with the signal.

4th step: Diagonal averaging. In this step, using anti-diagonal averaging on each block of Ŝ,
the de-noised/smoothed time series will be reconstructed.

2.5.3. Third Stage: Forecasting

5th step: Forecast engine. The forecast engine of MSSA, which is a linear function of the last
L observations of the de-noised/smoothed time series, will be constructed in this step [39,44].
These forecasts are obtained by using the linear recurrent formula in a similar manner and detailed
above for the univariate SSA algorithm. By considering the two versions of the trajectory matrix
defined in the 1st step of this algorithm, we obtain the forecasts based on the horizontal MSSA
(H-MSSA) and the forecasts based on the vertical MSSA (V-MSSA).

6th step: Out-of-the sample forecasting. In this step, h-steps ahead forecasts will be produced by
using the forecast engine [39,44].

2.6. Hybrid Approach

To improve the results for model fit and model forecasting in time series many hybrid models,
which combine more than one time series methodology, have been developed [9]. In some of those
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cases, the SSA is first applied to the raw data in order to extract the deterministic component and then
another method such as ANN is applied to the residuals of the SSA to fit/forecast the stochastic part
of the time series [9,45]. In this analysis we will consider one of the methods proposed by [9] where
the SSA, together with the recurrent SSA forecasting algorithm, is used to forecast the deterministic
part of the series and an ANN is used to forecast the stochastic part associated with the signal left from
the SSA fit. As with the methods presented before, this hybrid approach will be considered for both
model fit and model forecasting.

2.7. Accuracy Measure

Here we will evaluate two types of errors: (i) in sample errors associated with model fit; and
(ii) out-of-sample errors, associated with model forecasting. For each of the two types of errors,
two measures will be considered: the RMSE, and the MAPE.

For model fit, the RMSE and MAPE are used as a criterion for accessing the quality of a model to
fit the data, and it can be written, respectively, as:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ỹt)2, (11)

and

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − ỹt

yt

∣∣∣∣, (12)

where yt are the observed values and ỹt the fitted values by the considered model/algorithm
(i.e., ARIMA, SSA, MSSA, ANN), and N the length of the time series.

For model forecasting, let us assume that the last g observations, e.g., g = 12, are used as the test
set. The RMSE and MAPE to measure the out-of-sample forecasting error for a given model can be
written, respectively, as:

RMSE =

√√√√ 1
g

N

∑
t=N−g+1

(yt − ỹt)2, (13)

and

MAPE =
1
g

N

∑
t=N−g+1

∣∣∣∣yt − ỹt

yt

∣∣∣∣, (14)

where yt are the last g observed values and ỹt the respective h-steps-ahead forecast values.
Other measures such as the symmetric mean absolute percentage error or the mean directional
accuracy can also be used to evaluate both model fit and model forecasting.

In this paper, we considered purely symmetric loss functions where the under-prediction and
over-prediction of the currency exchange rates are considered to have the same importance. However,
depending on the scope of the analysis, asymmetric loss functions that, e.g., give higher weights to
losses of the currency exchange rates in relation to the USD, should be considered.

3. Results and Discussion

In this section, we will analyse the historical data from the eight currency exchange rates. This data
will be used to compare: (i) the classical ARIMA model, (ii) the classical SSA algorithm, (iii) the
classical MSSA algorithm, (iv) the artificial neural network algorithm, and (v) the hybrid algorithm
that combines SSA and ANN, in terms of computational time and accuracy for model fit and model
forecast. In terms of model assumptions, stationarity is of key importance. While many of the standard
parametric time series methods (e.g., ARIMA) require the data to be stationary, the non-parametric SSA
and MSSA do not require the this assumption in the data [23]. As for ANN, overfitting may ease the
problem of having non-stationary time series significantly and might be a key to success for complex
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financial time-series analysis [46]. The computational times presented in this section were obtained by
a laptop with processor 2.00 GHz Intel Core i3-6006U, 4 GB RAM of memory and operational system
of 64 bits with Windows 10.

Table 1 shows the descriptive statistics for the eight currency exchange rates, including the
minimum, maximum, mean, standard deviation and coefficient of variation. Figure 2 shows the
behaviour of the eight currency exchange rates along the time. From the analysis of these plots, it is
possible to observe a different behaviour between series, and no clear pattern among developed or
developing countries.

Table 1. Descriptive measures for the eight currency exchange rates.

Currency Minimum Mean Maximum Standard Deviation Coefficient of Variation

Brazilian real (USD/BRL) 1.53 2.57 4.48 0.769 0.2992
Chinese renminby (USD/CNY) 6.03 6.93 8.28 0.691 0.0997
Euro (USD/EUR) 0.63 0.80 0.96 0.076 0.0951
British pound (USD/GBP) 0.47 0.64 0.83 0.090 0.1411
Indian rupee (USD/INR) 39.04 54.35 74.60 10.411 0.1916
Japanese yen (USD/JPY) 75.74 103.93 125.63 12.780 0.1230
Russian rouble (USD/RUB) 23.17 40.27 82.90 15.984 0.3969
South African rand (USD/ZAR) 5.60 9.71 16.87 3.050 0.3141
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Figure 2. Time series for the exchange rates of the eight currencies against the USD. From top to bottom
and from left to right: USD/BRL, USD/CNY, USD/EUR, USD/GBP, USD/INR, USD/JPY, USD/RUB
and USD/ZAR. The vertical axes show the exchange rate and the horizontal axes shows the time.

3.1. Model Fit

The models/algorithms under comparison for model fit are: (i) ARIMA; (ii) SSA (with three
alternative parameter choice); (iii) multivariate SSA (two algorithms); (iv) artificial neural networks
(ANN); and (v) hybrid algorithm that combines SSA and ANN.

The parameters of the ARIMA model were estimated with the function “auto.arima” from the R
package “forecast” [47], that does model selection based on either the Akaike information criterion or
the Bayesian information criterion. The model parameters for the ARIMA models, together with the
observed values of the test statistic and p-values of the Dicky-Fuller test (obtained using the function
adf.test of the R package tseries) are given in Table 2. These results provide evidence that the
stationarity requirement of the ARIMA model is met.
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Table 2. Parameters for the ARIMA model, and observed valued of the test statistic and p-values for
the Dickey-Fuller test.

Dickey-Fuller Test
Currency AR(p) I(d) MA(q) Test Statistic p-Value

Brazilian real (USD/BRL) 5 2 0 −13.586 0.01
Chinese renminby (USD/CNY) 5 2 0 −13.189 0.01
Euro (USD/EUR) 1 1 1 −15.531 0.01
British pound (USD/GBP) 0 1 0 −15.420 0.01
Indian rupee (USD/INR) 1 1 0 −15.313 0.01
Japanese yen (USD/JPY) 0 1 1 −16.261 0.01
Russian rouble (USD/RUB) 2 1 2 −14.292 0.01
South African rand (USD/ZAR) 0 1 0 −16.945 0.01

As mentioned above, for the SSA and multivariate SSA algorithms, there are two choices to
be made by the researcher: (i) the window length L; and (ii) the number of eigentriples used for
reconstruction r. The values for L were chosen for each time series as defined in Table 3: L1 = N/20,
L2 = N/2 and Lp, being the Lp obtained from the periodogram, based on the largest cycle for each
time series [48] (i.e., about one trimester for all time series), being N the length of the time series length.
The number of eigentriples used for reconstruction r, for each of the considered window lengths
and each of the time series, was obtained by analysing the w-correlations between components [23].
The number of eigentriples r should be chosen in order to maximize the w-correlation among signal
components, maximize the w-correlation among noise components, and minimize the w-correlation
between signal and noise components, i.e., in order to maximize the separability between signal
components and noise components.

Table 3. Window length L1 = N/20, L2 = N/2 and Lp, and number of eigentriples r considered for
model fit and model forecast for each of the currency exchange rates.

Currency Exchange Rate L1 r1 L2 r2 Lp rp LH−MSSA rH−MSSA LV−MSSA rV−MSSA

Brazilian real (USD/BRL) 212 11 2120 7 60 20 60 30 60 21
Chinese renminby (USD/CNY) 212 11 2120 7 60 18 60 30 60 21
Euro (USD/EUR) 212 12 2120 14 60 13 60 30 60 21
British pound (USD/GBP) 212 10 2120 19 60 10 60 30 60 21
Indian rupee (USD/INR) 212 10 2120 7 60 17 60 30 60 21
Japanese yen (USD/JPY) 212 7 2120 10 60 16 60 30 60 21
Russian rouble (USD/RUB) 212 9 2120 7 60 15 60 30 60 21
South African rand (USD/ZAR) 212 8 2120 11 60 15 60 30 60 21

Figure 3 shows the w-correlation matrices for each of the eight currency exchange rates,
considering the window length Lp obtained based on the periodogram. Figures A1 and A2 of the
appendix show the w-correlation matrices for each of the eight currency exchange rates, considering the
window L1 = N/20 and L2 = N/2, respectively. Figure A3 of the appendix show the w-correlations
for the horizontal and vertical MSSA. These w-correlation plots can be obtained with the function
“wcor” of the R package “Rssa” [49]. These w-correlation plots intend to help with the decision about
the separability between signal and noise components (3rd step of the SSA and MSSA algorithms).
Being the darker colors of Figure 3 associated with higher w-correlations and lighter colors associated
with lower w-correlations, we intend to choose the “best” cut-point that maximizes the separability,
i.e., high w-correlations between signal components, high w-correlations between noise components,
and low w-correlations between signal and noise components.
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Figure 3. W-correlation matrices for each of the eight currency exchange rates, considering an window
length Lp. The vertical and horizontal lines in each w-correlations plot indicate the selected cut-point
that maximize separability between signal and noise components.

To access and compare the ability for model fit, the RMSE and the MAPE were calculated for
each of the eight models/algorithms, one ARIMA, three SSA, two MSSA, one ANN, and one hybrid
SSA-ANN, in each time series (Table 4 and Table 5, respectively). The results for the univariate and
multivariate SSA are for the parameters defined in Table 3. The parameter for the SSA part of the
hybrid method that combines SSA and ANN were chosen to be Lp and rp (Table 3) because of the best
fit when compared with the other parameter choices for SSA.

The results in Tables 4 and 5 show that the overall best SSA algorithm to fit the time series was
the one with parameter Lp and rp (Table 3), which also outperformed the ARIMA model and, in most
cases, the ANN. The best multivariate SSA algorithm was the one that uses the horizontal form of
the trajectory matrix (H-MSSA), that also outperformed all SSA algorithms and the ANN. However,
the best overall model for model fit in the considered eight time series of exchange currency rates,
was the hybrid model that combined the SSA and the ANN.

Table 4. Root mean square error for model fit for each of the eight currency exchange rates, considering
each of the eight models/algorithms, ARIMA, SSA for the window length and number of eigentriples
for reconstruction as defined in Table 3, multivariate SSA for the window length and number of
eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that combines SSA
and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H − MSSA V − MSSA ANN SSA − ANN

Brazilian real (USD/BRL) 0.0317 0.0293 0.1235 0.0215 0.0124 0.0545 0.0291 0.0074
Chinese renminby (USD/CNY) 0.0129 0.0144 0.0773 0.0072 0.0050 0.0259 0.0119 0.0020
Euro (USD/EUR) 0.0057 0.0062 0.0151 0.0039 0.0025 0.0332 0.0053 0.0016
British pound (USD/GBP) 0.0038 0.0055 0.0169 0.0028 0.0015 0.0301 0.0039 0.0013
Indian rupee (USD/INR) 0.2767 0.3013 1.2830 0.1738 0.1163 0.2988 0.2727 0.0498
Japanese yen (USD/JPY) 0.7668 1.1127 2.5112 0.5831 0.3389 0.6140 0.6146 0.1812
Russian rouble (USD/RUB) 0.4739 0.6480 2.2367 0.4268 0.1775 0.4763 0.3839 0.0849
South African rand (USD/ZAR) 0.1109 0.1466 0.3833 0.0769 0.0434 0.2023 0.1114 0.0255
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Table 5. Mean absolute percentage error for model fit for each of the eight currency exchange rates,
considering each of the eight models/algorithms, ARIMA, SSA for the window length and number
of eigentriples for reconstruction as defined in Table 3, multivariate SSA for the window length and
number of eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that
combines SSA and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H − MSSA V − MSSA ANN SSA − ANN

Brazilian real (USD/BRL) 0.82% 0.78% 3.71% 0.57% 0.32% 1.50% 0.75% 0.21%
Chinese renminby (USD/CNY) 0.11% 0.14% 0.80% 0.06% 0.05% 0.27% 0.10% 0.02%
Euro (USD/EUR) 0.47% 0.58% 1.45% 0.33% 0.20% 3.34% 0.45% 0.13%
British pound (USD/GBP) 0.43% 0.64% 2.05% 0.32% 0.17% 3.67% 0.44% 0.15%
Indian rupee (USD/INR) 0.33% 0.38% 1.81% 0.22% 0.14% 0.38% 0.33% 0.06%
Japanese yen (USD/JPY) 0.47% 0.79% 1.89% 0.38% 0.20% 0.40% 0.43% 0.10%
Russian rouble (USD/RUB) 0.52% 0.77% 3.49% 0.48% 0.21% 0.57% 0.50% 0.12%
South African rand (USD/ZAR) 0.80% 1.09% 2.98% 0.56% 0.31% 1.55% 0.80% 0.19%

Table 6 shows the computational time for each of the eight currency exchange rates, considering
each of the eight models/algorithms, ARIMA, SSA for the window length and number of eigentriples
for reconstruction as defined in Table 3, multivariate SSA for the window length and number of
eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that combines SSA
and ANN. It can be seen that, although the hybrid algorithm that combines the SSA and ANN takes
longer that the competing methods, the computational times are under three minutes.

Table 6. Computational time, in minutes, for model fit, for each of the eight currency exchange rates,
considering each of the eight models/algorithms, ARIMA, SSA for the window length and number
of eigentriples for reconstruction as defined in Table 3, multivariate SSA for the window length and
number of eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that
combines SSA and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H-MSSA1 V -MSSA1 ANN SSA − ANN

Brazilian real (USD/BRL) 0.3847 0.0360 0.8881 0.0132 0.0133 0.0923 0.1048 2.4027
Chinese renminby (USD/CNY) 0.2677 0.0290 0.8860 0.0172 0.0133 0.0923 0.1038 1.8119
Euro (USD/EUR) 0.2218 0.0281 0.9392 0.0145 0.0133 0.0923 0.2378 2.7058
British pound (USD/GBP) 0.0712 0.0259 0.9157 0.0139 0.0133 0.0923 0.0806 2.6205
Indian rupee (USD/INR) 0.1378 0.0412 0.8880 0.0186 0.0133 0.0923 0.1804 2.2644
Japanese yen (USD/JPY) 0.1970 0.0223 10.111 0.0112 0.0133 0.0923 1.6194 2.6516
Russian rouble (USD/RUB) 0.1064 0.0305 0.8561 0.0105 0.0133 0.0923 0.8474 2.6506
South African rand (USD/ZAR) 0.0859 0.0300 1.0156 0.0146 0.0133 0.0923 0.0746 1.6494

1 The reported times are to obtain the results for the eight time series together.

Figure 4 shows the original time series, the smoothed time series after applying the SSA
considering a window length Lp and rp eigentriples (Table 3) and the model fit by the hybrid algorithm
that combines the SSA and the ANN, for each of the eight currency exchange rates. It can be seen
that the model fits almost overlap with the original time series, which was expected because of the
overall low values for the RMSE (Table 4) and MAPE (Table 5). Similar behaviour was obtained by all
considered methods.
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Figure 4. Original time series (black line), smoothed time series after applying the SSA considering
a window length Lp and rp eigentriples (Table 3) (red line) and model fit by the hybrid algorithm
that combines the SSA and the ANN (green line), for each of the eight currency exchange rates.
From top to bottom: USD/BRL, USD/CNY, USD/EUR, USD/GBP, USD/INR, USD/JPY, USD/RUB,
and USD/ZAR. The vertical axes show the exchange rate and the horizontal axes shows the time.
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3.2. Model Forecasting

In this section, we compare the forecasting ability of the eight models/algorithms under study:
(i) ARIMA; (ii) SSA (with three alternative parameter choice); (iii) multivariate SSA (two algorithms);
(iv) artificial neural networks (ANN); and (v) hybrid algorithm that combines SSA and ANN.
Tables 7 and 8 give the RMSE and MAPE forecasting values, respectively, for each method/algorithm
applied to each time series. These values are obtained by considering a test set of g = 12 observations
from each time series, obtained for one, five and ten steps ahead out-of-sample forecast, i.e., one day
ahead, one week ahead and two weeks ahead. The overall best performance, based on both RMSE and
MAPE was obtained by the hybrid algorithm that combines the SSA and the ANN, for any number of
steps ahead out-of-sample forecasts. For one-step-ahead out of sample forecasting, the second best
overall performance was obtained by the SSA based on Lp and rp (Table 3) and the multivariate SSA
algorithms (Tables 7 and 8). For five and ten steps-ahead out of sample forecasting, the models ARIMA,
SSA with L1 = N/20 and r1, SSA with Lp and rp, both versions of the multivariate SSA algorithm and
the ANN, perform similarly in terms of RMSE (Table 7). When considering the MAPE (Table 8 for
five and ten steps-ahead out of sample forecasting, the second best performance alternates between
the multivariate versions of the SSA algorithm, the ANN and the SSA algorithms based on Lp and rp,
and based on L1 and r1 (Table 3).

Although Tables Tables 7 and 8 only give the point estimates for the RMSE and MAPE, respectively,
a measure of variability such as the standard errors could also be obtained based on resampling.
To reduce the variability in these measure, the test size could also be increased which, in this case,
provides similar results.

Table 7. Root mean square error for model forecasting for each of the eight currency exchange rates,
considering each of the eight models/algorithms, ARIMA, SSA for the window length and number
of eigentriples for reconstruction as defined in Table 3, multivariate SSA for the window length and
number of eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that
combines SSA and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H-MSSA V -MSSA ANN SSA − ANN

one-step-ahead

Brazilian real (USD/BRL) 0.1323 0.0370 0.2580 0.0372 0.0410 0.0348 0.0494 0.0247
Chinese renminby (USD/CNY) 0.0239 0.0183 0.1644 0.0148 0.0248 0.0135 0.0407 0.0091
Euro (USD/EUR) 0.0110 0.0095 0.0076 0.0038 0.0029 0.0037 0.0056 0.0017
British pound (USD/GBP) 0.0056 0.0030 0.0461 0.0037 0.0042 0.0035 0.0048 0.0026
Indian rupee (USD/INR) 0.3448 0.2141 2.5460 0.2521 0.2231 0.2069 0.2802 0.1498
Japanese yen (USD/JPY) 0.9702 0.8953 11.461 0.7099 0.6853 0.6515 0.7578 0.4927
Russian rouble (USD/RUB) 2.1820 0.9059 1.5589 0.4637 0.6613 0.5168 1.4898 0.2807
South African rand (USD/ZAR) 0.4340 0.2963 0.2387 0.1040 0.1273 0.1023 0.2165 0.0723

five-steps-ahead

Brazilian real (USD/BRL) 0.2280 0.0544 0.2727 0.0648 0.0788 0.0645 0.0804 0.0209
Chinese renminby (USD/CNY 0.0273 0.0179 0.1738 0.0282 0.0489 0.0303 0.0418 0.0078
Euro (USD/EUR) 0.0107 0.0124 0.0070 0.0087 0.0088 0.0094 0.0071 0.0025
British pound (USD/GBP) 0.0056 0.0124 0.0469 0.0044 0.0063 0.0056 0.0047 0.0025
Indian rupee (USD/INR) 0.3632 0.2212 2.5601 0.5689 0.4848 0.3977 0.2850 0.1209
Japanese yen (USD/JPY) 0.9709 0.9186 11.842 1.2772 1.5018 1.0590 0.7407 0.5181
Russian rouble (USD/RUB) 2.1820 1.1078 1.6070 0.9951 1.3190 1.1384 1.4981 0.2759
South African rand (USD/ZAR) 0.4340 0.3613 0.2444 0.2105 0.2776 0.2053 0.1728 0.0470

ten-steps-ahead

Brazilian real (USD/BRL) 0.3498 0.0891 0.2909 0.0941 0.0890 0.0974 0.1499 0.0232
Chinese renminby (USD/CNY) 0.0457 0.0481 0.1862 0.0516 0.0653 0.0415 0.0434 0.0080
Euro (USD/EUR) 0.0107 0.0157 0.0059 0.0134 0.0137 0.0138 0.0090 0.0023
British pound (USD/GBP) 0.0056 0.0066 0.0478 0.0070 0.0060 0.0044 0.0047 0.0024
Indian rupee (USD/INR) 0.3836 0.3020 2.5821 0.5738 0.5168 0.4507 0.3151 0.1011
Japanese yen (USD/JPY) 0.9709 0.9404 12.293 1.0223 1.2728 1.1189 0.8205 0.3122
Russian rouble (USD/RUB) 2.1820 1.5443 1.6784 0.8272 1.6145 1.2535 1.8017 0.2482
South African rand (USD/ZAR) 0.4340 0.3854 0.2467 0.2894 0.3442 0.2878 0.2019 0.0470
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Table 8. Mean absolute percentage error for model forecasting for each of the eight currency exchange
rates, considering each of the eight models/algorithms, ARIMA, SSA for the window length and
number of eigentriples for reconstruction as defined in Table 3, multivariate SSA for the window length
and number of eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that
combines SSA and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H-MSSA V -MSSA ANN SSA − ANN

one-step-ahead

Brazilian real (USD/BRL) 2.82% 0.64% 5.84% 0.71% 0.76% 0.62% 1.02% 0.51%
Chinese renminby (USD/CNY) 0.31% 0.20% 2.32% 0.15% 0.29% 0.14% 0.48% 0.09%
Euro (USD/EUR) 1.12% 0.91% 0.77% 0.32% 0.26% 0.31% 0.53% 0.13%
British pound (USD/GBP) 0.58% 0.33% 5.95% 0.39% 0.47% 0.40% 0.49% 0.31%
Indian rupee (USD/INR) 0.37% 0.25% 3.54% 0.31% 0.28% 0.24% 0.35% 0.17%
Japanese yen (USD/JPY) 0.58% 0.52% 10.35% 0.45% 0.49% 0.40% 0.56% 0.39%
Russian rouble (USD/RUB) 3.07% 1.02% 2.18% 0.52% 0.83% 0.63% 1.99% 0.38%
South African rand (USD/ZAR) 2.66% 1.62% 1.19% 0.54% 0.71% 0.55% 1.27% 0.37%

five-steps-ahead

Brazilian real (USD/BRL) 5.10% 1.08% 6.17% 1.17% 1.44% 1.22% 1.52% 0.39%
Chinese renminby (USD/CNY) 0.32% 0.20% 2.46% 0.37% 0.58% 0.35% 0.50% 0.08%
Euro (USD/EUR) 1.10% 1.21% 0.70% 0.83% 0.82% 0.90% 0.71% 0.23%
British pound (USD/GBP) 0.58% 0.41% 6.05% 0.43% 0.66% 0.63% 0.49% 0.31%
Indian rupee (USD/INR) 0.39% 0.24% 3.56% 0.66% 0.60% 0.42% 0.36% 0.12%
Japanese yen (USD/JPY) 0.58% 0.55% 10.69% 0.86% 1.02% 0.71% 0.56% 0.40%
Russian rouble (USD/RUB) 3.07% 1.42% 2.25% 1.33% 1.75% 1.36% 2.01% 0.36%
South African rand (USD/ZAR) 2.66% 1.94% 1.22% 1.22% 1.51% 1.20% 0.92% 0.26%

ten-steps-ahead

Brazilian real (USD/BRL) 7.93% 1.96% 6.59% 1.93% 1.80% 2.07% 3.27% 0.46%
Chinese renminby (USD/CNY) 0.56% 0.55% 2.64% 0.69% 0.79% 0.53% 0.52% 0.09%
Euro (USD/EUR) 1.10% 1.61% 0.56% 1.28% 1.32% 1.32% 0.91% 0.21%
British pound (USD/GBP) 0.58% 0.77% 6.17% 0.73% 0.61% 0.49% 0.50% 0.34%
Indian rupee (USD/INR) 0.42% 0.35% 3.59% 0.64% 0.58% 0.52% 0.41% 0.11%
Japanese yen (USD/JPY) 0.58% 0.57% 11.10% 0.86% 0.94% 0.92% 0.57% 0.21%
Russian rouble (USD/RUB) 3.07% 2.26% 2.36% 0.95% 2.06% 1.54% 5.20% 0.30%
South African rand (USD/ZAR) 2.66% 2.08% 1.23% 1.54% 2.00% 1.49% 0.99% 0.25%

The computational times to obtain the RMSE and MAPE values in Tables 7 and 8 are presented in
Table 9. The lowest computational time was obtained for the multivariate SSA algorithms (the times
reported in Table 9 are to obtain the forecast values for the eight time series together) in every number
of steps ahead. These are followed by the SSA algorithms with L1 and Lp (Table 3) because of the more
rectangular trajectory matrices used in the singular value decomposition, the most time consuming
step of the SSA algorithm. As expected from the analysis of the computational times for model fit in
Table 6, the hybrid model was the highest computational costly with times between 15 and 31 min,
which was compensated with the excellent results in terms of model forecasting (Tables 7 and 8).

Table 9. Computational time, in minutes, for model fit, for each of the eight currency exchange rates,
considering each of the eight models/algorithms, ARIMA, SSA for the window length and number
of eigentriples for reconstruction as defined in Table 3, multivariate SSA for the window length and
number of eigentriples for reconstruction as defined in Table 3, ANN, and the hybrid method that
combines SSA and ANN.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H-MSSA 1 V -MSSA 1 ANN SSA − ANN

one-step-ahead

Brazilian real (USD/BRL) 4.3655 0.5333 17.699 0.1891 0.2323 0.2755 0.8877 28.337
Chinese renminby (USD/CNY) 3.7305 0.4544 18.158 0.2448 0.2323 0.2755 0.8795 15.076
Euro (USD/EUR) 2.9998 0.4562 17.755 0.1813 0.2323 0.2755 0.9253 29.917
British pound (USD/GBP) 0.9440 0.5494 17.549 0.1530 0.2323 0.2755 0.8994 29.427
Indian rupee (USD/INR) 1.8074 0.4961 17.675 0.2385 0.2323 0.2755 2.2634 27.408
Japanese yen (USD/JPY) 2.9255 0.4253 17.502 0.2316 0.2323 0.2755 20.062 30.499
Russian rouble (USD/RUB) 1.3511 0.6087 17.294 0.3392 0.2323 0.2755 4.2888 29.711
South African rand (USD/ZAR) 1.1148 0.6444 17.377 0.2995 0.2323 0.2755 0.8910 19.033
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Table 9. Cont.

Currency Exchange Rate ARIMA SSAL1 SSAL2 SSALp H-MSSA 1 V -MSSA 1 ANN SSA − ANN

five-steps-ahead

Brazilian real (USD/BRL) 4.5827 0.5158 17.352 0.1827 0.2112 0.2532 0.8935 28.563
Chinese renminby (USD/CNY) 4.0223 0.4433 17.328 0.2371 0.2112 0.2532 0.8928 15.157
Euro (USD/EUR) 3.3133 0.4625 17.574 0.1825 0.2112 0.2532 0.9231 30.004
British pound (USD/GBP) 1.0444 0.4335 17.296 0.1478 0.2112 0.2532 0.8987 29.270
Indian rupee (USD/INR) 1.9946 0.5102 17.376 0.2310 0.2112 0.2532 2.1407 26.658
Japanese yen (USD/JPY) 2.8206 0.3862 17.437 0.2172 0.2112 0.2532 19.977 30.510
Russian rouble (USD/RUB) 1.7594 0.4156 17.064 0.2088 0.2112 0.2532 4.1824 29.583
South African rand (USD/ZAR) 1.5077 0.4542 17.382 0.2100 0.2112 0.2532 0.8782 19.019

ten-steps-ahead

Brazilian real (USD/BRL) 4.6075 0.5136 17.217 0.1833 0.2335 0.2865 0.8950 28.491
Chinese renminby (USD/CNY) 4.0933 0.4469 17.272 0.2396 0.2335 0.2865 0.8961 15.133
Euro (USD/EUR) 3.3071 0.4646 17.442 0.1862 0.2335 0.2865 0.9321 29.974
British pound (USD/GBP) 1.0325 0.4219 17.230 0.1477 0.2335 0.2865 0.9158 29.441
Indian rupee (USD/INR) 1.9575 0.4892 17.271 0.2319 0.2335 0.2865 2.1563 26.646
Japanese yen (USD/JPY) 2.8240 0.3899 17.338 0.2184 0.2335 0.2865 20.062 30.689
Russian rouble (USD/RUB) 1.5355 0.4161 16.986 0.2080 0.2335 0.2865 4.2013 29.597
South African rand (USD/ZAR) 1.2403 0.4578 17.209 0.2099 0.2335 0.2865 0.8795 19.178

1 The reported times are to obtain the results for the eight time series together.

4. Discussion and Conclusions

In this paper, we compared standard and advanced, parametric and non-parametric,
and univariate and multivariate models to access the ability for model fit and model forecasting.
The models under consideration were: (i) the ARIMA model; (ii) the univariate SSA model, considering
three different choices for the window length L and the number of eigentriples used for reconstruction r;
(iii) the multivariate SSA model, considering the horizontal and vertical forms of the trajectory matrix
and the linear recurrent algorithm; (iv) the ANN; and (v) a hybrid model that uses the SSA to
fit/forecast the deterministic part of the data and the ANN to fit/predict the stochastic part of the data.

Based on previous analysis and comparisons, the non-parametric SSA proved to outperform
standard methods such as the Holt–Winters and ARIMA models [38,50]. Another advantage of SSA
in comparison with other standard methods for time series analysis and forecasting is that, contrary
to those, it does not require the time series to be stationary. However, when the time series data
includes outliers, the SSA which uses an SVD based on the least squares L2 norm, might not be
appropriated and gives worse results than a robust SSA algorithm which uses an SVD based on the
L1 norm [38,51]. For the case of multivariate time series data, the MSSA tends to outperform its
univariate counterpart because as the co-integration between time series is considered in MSSA and
not in SSA. The performance of MSSA for forecasting improves when there is dependency among
time series [39]. Further developments in the field of time series forecasting have been obtained
by combining different methods in hybrid methodologies which have proven to outperform most
competing methods [9,52,53].

Although part of the initial motivation of using data on currency exchange rates from developing
and developed countries, no specific similarity in behaviour was found nor specific interpretable
cluster was obtained (Figure A4).

For both model fit and model forecasting, the best performance in terms of RMSE and MAPE was
obtained by the hybrid method that combines the SSA and the ANN, although more expensive
computationally. This was followed by the multivariate SSA algorithms with a much lower
computational time. These results allow for possible further promising research directions such
as the combination of the robust SSA algorithm [38,51,54] with ANN to model time series with data
contamination with outlying observations, the combination of the randomized SSA algorithm [55]
with ANN to reduce the computational time for long time series, and the combination of multivariate
SSA algorithms [39] with ANN for multivariate time series analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network
ARMA autoregressive moving average
ARIMA autoregressive integrated moving average
BRICS Brazil, Russia, India, China, South Africa
BRL Brazilian real
CNY Chinese renminby
EUR Euro
GBP British pound
H-MSSA horizontal form of the MSSA algorithm
INR Indian rupee
JPY Japanese yen
MAPE mean absolute percentage error
MSSA multivariate singular spectrum analysis
RUB Russian rouble
SSA singular spectrum analysis
SVD Singular value decomposition
RMSE Root mean square error
USD United States dollar
V-MSSA vertical form of the MSSA algorithm
ZAR South African rand

Appendix A

Figure A1. W-correlation matrices for each of the eight currency exchange rates, considering an window
length L1 = N/20. The vertical and horizontal lines in each w-correlations plot indicate the selected
cut-point that maximize separability between signal and noise components.
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Figure A2. W-correlation matrices for each of the eight currency exchange rates, considering an window
length L2 = N/2. The vertical and horizontal lines in each w-correlations plot indicate the selected
cut-point that maximize separability between signal and noise components.
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Figure A3. W-correlation matrices for the horizontal (H-MSSA; left hand side plot) and vertical
(V-MSSA; right hand side plot) versions of the multivariate SSA that combines all eight currency
exchange rate time series, considering window lengths of LH−MSSA and LV−MSSA (Table 3),
respectively. The vertical and horizontal lines in each w-correlations plot indicate the selected cut-point
that maximize separability between signal and noise components.

Figure A4. Dendrogram for the hierarchical cluster analysis for the eight currency, obtained using the
“TSclust” package [56] of the R software.
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