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Abstract: This paper aims to solve the problem of fitting a nonparametric regression function
with right-censored data. In general, issues of censorship in the response variable are solved
by synthetic data transformation based on the Kaplan–Meier estimator in the literature. In the
context of synthetic data, there have been different studies on the estimation of right-censored
nonparametric regression models based on smoothing splines, regression splines, kernel smoothing,
local polynomials, and so on. It should be emphasized that synthetic data transformation manipulates
the observations because it assigns zero values to censored data points and increases the size of
the observations. Thus, an irregularly distributed dataset is obtained. We claim that adaptive
spline (A-spline) regression has the potential to deal with this irregular dataset more easily than the
smoothing techniques mentioned here, due to the freedom to determine the degree of the spline,
as well as the number and location of the knots. The theoretical properties of A-splines with synthetic
data are detailed in this paper. Additionally, we support our claim with numerical studies, including
a simulation study and a real-world data example.

Keywords: adaptive splines; nonparametric regression; right-censored data; synthetic
data transformation

1. Introduction

Let (xi, yi), 1 ≤ i ≤ n be a sample of observations where xi’s are values of a one-dimensional
covariate x and yi’s denote the values of the completely observed response (lifetime) variable y.
In medical studies such as clinical trials, y is often subject to random right-censoring and censored by
a random variable c with ci values representing the censorship times, i.e., patient withdrawal time.
In this case, the observed response values at designed points x1, x2, . . . , xn will be ti’s, defined as

ti = min(yi, ci), δi =

{
1 yi ≤ ci (uncensored)
0 yi > ci (censored)

(1)

where δi’s are the values of the censoring indicator function that contains the censoring information.
It should be noted that yi, ci, and ti have distribution functions Fx(s) = P(yi ≤ s), Gx(s) = P(c ≤ s),
and Hx(s) = P(ti ≤ s) for s ∈ R, respectively. Additionally, we assume that yi’s and ci’s are independent,
which is a very common assumption of right-censored analysis (see [1,2]). Thus, the relationship between
the distribution of t and (y, c) can be written as follows, in terms of corresponding survival functions:

1−Hx(s) = [(1− Fx(s)) · (1−Gx(s))] (2)
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This paper considers the problem of fitting a nonparametric regression function with right-censored
data. Based on the condition in Equation (1) and assumption in Equation (2), the nonparametric
regression model yi = f (xi) + εi can be written as

ti = f (xi) + εi, i = 1, 2, . . . , n (3)

where ti = (t1, t2, . . . , tn) are the right-censored response values that solve the censorship problem, f (.)
is the smooth function to be estimated, and εi’s are the normally distributed random errors denoted as
εi ∼ N

(
0, σ2

ε

)
.

In the context of linear regression, the estimation of censored data is performed using the
linear regression model proposed by [3]. Different estimators based on normal least squares for
linear regression under right-censored data were introduced by [4–7]. In addition, some theoretical
extensions are discussed by [8,9]. Note, also, that all the methods discussed by the above-mentioned
authors are based on the assumption that there is a linear relationship between censored responses
and independent variables. In real-world applications, it cannot be known whether the relationship
between the responses and explanatory variables is linear. Although there are some processes to
test linearity, these cannot be applied directly to censored data because they were designed based on
uncensored data. In this scenario, a nonparametric regression model is widely preferred.

There are several various studies to estimate the model in Equation (3) in the literature. These
existing approaches can be classified as spline-based methods, kernel smoothers, or local smoothing
techniques. Spline-based techniques for right-censored data can be categorized as either smoothing
splines ([10,11]) or regression splines [12]. Here, in terms of the estimation of the model in Equation (3),
the difference between smoothing splines and regression splines can be expressed as being that
smoothing splines have to use all unique data points as knots and, because of that, the variance of the
model would be large as the fitted curve tries to pass both increased values and zeros. In regression
splines, knot points can be freely determined. Regression splines perform better than smoothing
splines for this reason already (see [12]). However, as is known, regression splines work based on
truncated power basis polynomials, which force the method to work with a fixed degree. Studies about
kernel smoothers include [13,14]. Research on local smoothing techniques can be found in [15,16].
In this study, an adaptive ridge estimator (or A-spline) is introduced based on a B-spline basis function
to achieve the estimation of the model in Equation (3).

It is obvious that conventional regression estimators, whether nonparametric or not, cannot be
used directly for modeling censored data. To solve this issue, there are three approaches being taken in
the literature; these include using Kaplan–Meier weights [4], synthetic data transformation ([17,18]),
and data imputation techniques. This paper focuses on synthetic data transformation, which is
the most widely used technique in the literature. The main contribution of this technique is that it
provides theoretically equal expected values of both synthetic data

(
yiĜx

)
and the completely observed

response variable (yi) based on a Kaplan–Meier estimator (Ĝx) of the censoring variable (ci) that can
be expressed as E

(
yiĜx

)
� E(yi) by increasing magnitudes of uncensored observations and assigning

zero values to the censored ones. Details about synthetic data transformation are given in Section 2.
The main motivation of this paper is to present a new nonparametric estimator to deal with

synthetic response observations better than existing approaches. All of the methods given above have
some restrictions when modeling synthetic data, which are indicated above. Because of these kinds of
problems, we introduce a modified A-spline estimator, which has no boundary effects for the number
of knots, location of knots, and degree of splines.

The A-spline proposed by [19] provides a sparse regression model that is easy to understand and
interpret. A trademark of the A-spline that it can determine suitable knot points for B-splines by using
adaptive ridge regression (see [20] for adaptive ridge regression), based on the approximation of the L0

norm with an iterative procedure (see [19,21] for more details).
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In Section 2, our methodology is presented with a synthetic data transformation, a B-spline
regression, an adaptive ridge approach, and, finally, a modified A-spline estimator for the nonparametric
regression model based on the synthetic responses. We also give an algorithm to obtain the introduced
estimator. Section 3 involves the statistical and asymptotic properties of the obtained estimator.
A simulation study and real-world data application are given in Sections 4 and 5, respectively. Finally,
concluding remarks are presented in Section 6.

2. Materials and Methods

2.1. Synthetic Data Transformation

To account for the right-censored data in the estimation procedure, an adjustment must be applied
to the censored dataset. Otherwise, the methods for estimating f (xi) cannot be applied directly. One of
the most important reasons for this is that the right-censored response variable ti and the actual
response variable yi have different expected values. As indicated in Section 1, to avoid this issue,
synthetic data transformation is used. It can be calculated simply as follows:

tiG =
δiti

1−Gx(ti)
(4)

where Gx(.) is the distribution of the censoring variable ci, which is mentioned in the previous section.
Note that because the distribution Gx is generally unknown, instead of Gx, its Kaplan–Meier estimate
Ĝx is used (see Koul et al. 1981), which can be formulated as

1− Ĝx(s) =
n∏

j=1

(
n− j

n− j + 1

)I[t( j)≤s, δ( j)=0]

, s ≥ 0 (5)

where t( j)’s denote the ordered values of the response observations as t(1) ≤ t(2) ≤ . . . ≤ t(n) and δ( j)’s
are the values ordered associated with t(i)’s. Note that if the distribution Gx is taken arbitrarily, some
values of ti may be identical, which prevents the correct calculation of the Kaplan–Meier estimator.
Therefore, the ordered values t(1) ≤ t(2) ≤ . . . ≤ t(n) might not be unique. It should be emphasized that
the Kaplan–Meier estimator gives an opportunity for ordering the t j’s uniquely. In addition, it is a
widely known property of the estimated distribution Ĝx(s) that its estimated distribution has jumps
only at censored data points (see Paterson, 1977, and Kaplan and Meier, 1958).

After the acquisition of Ĝx, the transformation in Equation (4) can be rewritten as

tiĜ =
δiti

1− Ĝx(ti)
(6)

Thus, the model in Equation (3) is written by using the synthetic response variable tiĜ as follows:

tiĜ = f (xi) + εiĜ where εiĜ = tiĜ − f (xi), i = 1, 2, . . . , n (7)

It is important to mention that the error terms (εiĜ), which depend on synthetic data, are random
variables for given Ĝx. Accordingly, it can be said that n→∞ , E(εiĜ) � 0. Consequently, at each
design point xi, the mean of the distribution function of tiĜ’s can be expressed as E( tiĜ

∣∣∣xi ) = f (xi).
In addition, Lemma 1 assumes that synthetic and true response variables tiĜ and yi have identical
expectations. It is known that the estimation of the smooth function f (xi) is a problem of estimating
the expected value from the right-censored responses.

Lemma 1. In a censorship context, incomplete observations with the associated censoring indicator variable{
(ti, δi

}n
i=1 are used to model the actual values of yi using the regression function f (xi). In this manner, if the
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distribution of censoring variable G is known, then the conditional expectation of f (xi) can be expressed as
E[tiG|xi] = E[yi

∣∣∣xi] = f (xi).

Proof of Lemma 1 is given in the Appendix A. In order to achieve the goal of this study, synthetic
responses are modeled through a modified A-spline approach, which is formed by merging B-splines
and the adaptive ridge penalty. Details are given in the next section.

2.2. B-Spline Approximation

Because our A-spline regression has been constructed based on B-splines, the necessary information
and important basics are described in this section. Let k = {ki| i ∈ Z} be a non-decreasing sequence
given by

k0 ≤ k1 ≤ . . . ≤ km ≤ km+1

where m denotes the number of knots, ki’s are the knot points, and (k0, km+1) are the boundaries of
the knots that cannot be counted as knot points. In this context, the B-splines of degree q ≥ 0 are the
piecewise polynomial function that has nonzero derivatives up to order (q− 1) at each of the given
knot points. From the properties of the B-splines, it can be said that (m + 2q + 1) knots are needed
for (m + q) polynomial pieces. In this case, a B-spline can be described as a non-zero spline between
interval

[
ki, ki+q+1

]
where (i > 0). Therefore, the ith B-spline of degree q is notated as Bi,q(xi), and the

calculation of it is given by

Bi,q(xi) =
xi − ki

ki+q − ki
Bi,q−1(xi) +

ki+q+1 − xi

ki+q+1 − ki+1
Bi+1,q+1(xi), q > 0 (8)

To solve the recursive formula in Equation (8), see the algorithm described in [22]. Note that if
q = 0, then Bi,0(xi) = I(ki ≤ xi ≤ ki+1). Some fundamental properties of B-splines are that:

• The B-spline consists of q-degreed and (q + 1) polynomial pieces.
• Each spline function must be derivable up to (q− 1) order.
• (q + 1) B-splines are nonzero for given xi.
• Each B-spline should be positive between intervals determined by (q + 2) knot points.

From the information given above, a fitted smooth function f̂(xi) for data synthetic data pairs
{xi, yiĜ}

n
i=1 can be written as a linear combination of B-splines for k knots by

f̂(xi) =
∑k

j=1
α̂jBj,q(xi) (9)

Equation (9) is useful only for a mathematical approximation. Note, also, that B-splines are a
widely-used approximation for the estimation of a single-index (univariate) nonparametric regression
model (see [22] for details). From this, a minimization problem emerges with a smoothness penalty
written as follows:

PSS(α;λ) =
n∑

i=1

tiĜ −
k∑

j=1
αjBj,q(xi)


2

+ λ
∫ xmax

xmin

 k∑
j=1
αjB

′′

j,q(x)


2

dx (10)

where λ > 0 is the smoothing parameter that controls the smoothness of the estimated curve. Checking
the amount of the penalty term has a very crucial role in the accuracy of the model estimation. This
is very similar to the smoothing parameter described by [23]. In B-spline regression, one important
issue is the order of the derivative determined for the penalty term, because for its higher orders,
some calculation problems may be exposed. Choosing the number and positions of the knots
are very substantial decisions in the minimization of the problem in Equation (10), especially for
right-censored datasets.
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In this paper, setting the locations and numbers of the knots is a prior aim because it has a direct
relationship with the accuracy of the estimated model, as mentioned above. To provide a suitable
solution for this issue, an adaptive ridge penalty is used instead of the penalty term in Equation (10)
proposed by [19]. Note, also, that the smoothing parameter is chosen by an improved AICc criterion,
as proposed by [24]. In the next section, the adaptive ridge penalty is introduced.

2.3. Adaptive Ridge

The adaptive ridge method promises the best tradeoff between the goodness of fit (the left part of
Equation (10)) and the number of knots, which provides a more powerful regression model. To achieve
this purpose, it uses a large and equally spaced number of knots, then modifies the penalty term by
using this number of knots.

Let a B-spline define the knot points k1, k2, . . . , km, and assume that for interval rth knot,
∆q+1(αr) = 0. From that, the given knots are updated as k1, k2, . . . , kr−1, kr+1, . . . , km. Thus, the penalty
term changes from the overall number of knots to the number of non-zero (q + 1) order differences
given by

λ
2

m∑
i=q+2

‖∆q+1(αi)‖0 (11)

where ‖∆q+1(αi)‖0 denotes the L0-norm of the difference term ∆q+1(αi), which means that if
∆q+1(αi) = 0 then ‖∆q+1(αi)‖0 =0, and ‖∆q+1(αi)‖0=1 otherwise. Here, λ > 0 is a smoothing

parameter. The point of this penalty term is that it deletes the rth knot and works by using the intervals
[kr−1, kr)∩ (kr, kr + 1]. Thus, the modeling process is completed using the remaining knot points.

Note that Equation (11) cannot be differentiable, which prevents the acquisition of the fitted
model. The adaptive ridge method provides an approximation of the L0 norm given in Equation (11)
(see [21] for a more detailed discussion). The main idea of the adaptive ridge method is using weights
to approximate the L0-norm. In this context, the penalized minimization criterion in Equation (10) is
rewritten by using a weighted new penalty as follows:

WPSS(α;λ) =
n∑

i=1

tiĜ −
k∑

j=1
αjBj,q(xi)


2

+ λ
2

q+m+1∑
j=q+2

wj
[
∆q+1(αj)

]2
(12)

and the vector and matrix form of Equation (12) is

WPSS(α;λ) = ‖tĜ −Bα‖22 + λDTWDα (13)

where tĜ is the vector of the synthetic response values, W = diag
(
wj

)
and wj’s represent positive

weights, and D involves the values of ∆q+1(αj), which is the first difference operator and can be
calculated as

∆
(
aj

)
= aj − aj−1 and ∆q

(
aj

)
= ∆q−1

(
∆
(
aj

))
(14)

and α =
{
αj

}q+k+1

j=1
is the vector of coefficients for the B-spline design matrix B =({

Bj,q(xi)
}
i,j

, 1 ≤ i ≤ n, 1 ≤ j ≤ q + m + 1
)
, illustrated in Equation (8). In order to make more explicit

the ith row of the B matrix, it is given as

Bi =
[
B1,q(xi), B2,q(xi), . . . , B(q+m+1),q(xi)

]
It should be noted that wj’s provide the approximation of the penalty term in Equation (12) to the
L0-norm and also in the adaptive-ridge procedure; weights are of crucial importance to the choice of
a perfect location for the knots. To approximate to L0-norm, weights are determined by an iterative
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process from the previous values of the coefficients αj’s, which can be realized by the formula given
in [19] as follows:

wj =
[(

∆q+1
(
αj

))2
+ γ2

]−1
, γ > 0 (15)

where γ > 0 is constant, and it can be seen that the approximation ‖∆q+1(αi)‖0 ≈ wj
(
∆q+1(αi)

)2

depends on γ.

Remark 1. As mentioned above, because the weights are determined by an iterative procedure using
Equation (15), it is important to determine γ > 0 appropriately. If

(
∆q+1

(
αj

))
< γ then the wj’s obtained may

be extremely large, causing
(
∆q+1

(
αj

))
≈ 0, and therefore, the resulting all penalty term is wj

(
∆q+1(αi)

)2
≈ 0.

However, if
(
∆q+1

(
αj

))
� γ, then the approximation of ‖∆q+1(αi)‖0 ≈ wj

(
∆q+1(αi)

)2
is realized. In this

matter, [20] obtain the value γ = 10−5 after some numerical computations, which can be accepted as a suitable
value of γ.

In the next section, the modified A-spline estimator is introduced based on the given adaptive-ridge
penalty and synthetic response values.

2.4. Modified A-Spline Estimator

In this section, the estimation coefficient vector α is given, and, to provide a more precise and
detailed explanation, an algorithm is presented. A modified A-spline estimator to estimate the
right-censored nonparametric regression model in Equation (7) is obtained by minimizing Equation (13)
after some algebraic operations that are given in Appendix A.1. In this case, the vector of the estimated
coefficients of the A-spline regression (α̂) is computed by using the formula

α̂ =
(
BTB + λDTWD

)−1
BTtĜ (16)

where λDTWD denotes the adaptive ridge-penalty, which involves both the difference-matrix D and
weight matrix W. From here, fitted values for the model in Equation (7) can be obtained as

E[ti|xi] � E
[
tiĜ

∣∣∣xi
]
= f̂(xi) = Bα̂ = HAtĜ (17)

where HA = B
(
BTB + λDTWD

)−1
BT is a hat matrix. It should be emphasized that because of

computational difficulties, instead of calculating values of matrix D, the all penalty term
(
DTWD

)
is

obtained by an iterative algorithm, which is the most efficient method. The algorithm for our modified
A-spline estimator is shown in Algorithm 1.

Algorithm 1. Algorithm for the modified A-spline estimator α̂.

Input: covariate xi, synthetic responses tiĜ, constant γ = 10−5

output: α̂ =
(
α̂1, α̂2, . . . , α̂q+m+1

)T

1: Begin
2: Give initial values α(0) = 0q+m+1 and W(0) = I to start iterative process
3: do until converges weighted differences to L0 − norm

4: α̂(s) =
(
BTB + λDTWD

)−1
BTtĜ

5: w(s)
j =

[(
∆q+1

(
α(s)j

))2
+ γ2

]−1

6: α̂ = α̂(s), W = diag
(
w(s)

j

)
7: end

8: Obtain ks by
(
∆q+1(α)

)2
Ws

9: Return α̂ =
(
α̂1, α̂2, . . . , α̂q+m+1

)T

10: End
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3. Statistical Properties of the Estimator

It is implicit that an A-spline estimator is a different kind of ridge-type estimator and is used
for the estimation of the right-censored nonparametric regression model in this paper. It follows
that the expressions given below can be written about using the random error terms of the model in
Equation (3).

E[εi|xi] = 0, Var[εi|xi] = σ2
εI (18)

However, in this paper, because of censoring, instead of employing the model in Equation (3),
that in Equation (7), which involves synthetic responses, is used. In this case, the distribution properties
in Equation (18) are changed depending on Lemma 1 and are rewritten as follows:

E
[
εiĜ

∣∣∣xi
]
� 0, Var

[
εiĜ

∣∣∣xi
]
= σ2

εG
I (19)

where εiĜ =
(
ti − t̂iĜ

)
, σ2

εG
is the variance of the right-censored nonparametric model based on the

synthetic response variable, I is the n× n identity matrix, and t̂iĜ denotes fitted values. It should be
noted that the obtained estimator is a vector of coefficients α̂, and therefore, the quality of the model
is measured partially based on the bias and variance of α̂. In this context, from the ordinary ridge
regression method, the variance–covariance matrix of α̂ can be approximated by using σ2

εG
as follows:

Cov(α̂) = σ2
εG

1
n

(
BTB + λDTWD

)−1(
BTB

)(
BTB + λDTWD

)−1
(20)

If MA =
(
BTB + λDTWD

)−1
, then the covariance matrix of the fitted values of the model can be

given by

Cov
(
f̂
)
= σ2

εG

1
n

(
BMABT

)(
BMABT

)T
(21)

Because of σ2
εG

is generally unknown, it needs to be estimated as follows:

σ̂2
εG

=
‖t− f̂‖

2

n− tr(HA)
(22)

where tr(.) indicates the sum of the diagonal elements of a matrix. Additionally, the bias of α̂ is one
of the quality measurements for the estimated model. In order to calculate the bias, the conditional
expected values of the estimator E[α̂|xi] have to be obtained by

E[α̂|xi] =
(
BTB + λDTWD

)−1
BTBα (23)

Following on from Equation (23), the bias can be written as

Bias(α̂) = E[α̂|xi] −α =
[(

BTB + λDTWD
)−1
−

(
BTB

)−1
]
BTBα

=
(
BTB + λDTWD

)−1
BTB

(24)

In this study, Equations (20)–(22) and (24) are used as quality measures to evaluate the performance
of the estimated right-censored model. In addition, the mean squared errors (MSE) commonly employed
in the literature is also used for measuring the quality of the fitted model. It is obtained as follows:

MSE
(
f̂
)
=

1
n

 n∑
i=1

(
ti − f̂i

)2
 = ‖t− f̂‖

2
/n (25)
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3.1. Extended Properties of the Estimator

The modified A-spline estimator introduced in this paper is a smoothing technique that allows for
the optimal selection of base functions, penalties, knot points, and the location of knots. It achieves
that by using adaptive (weighted) ridge penalty via approximating the L0 norm.

In this section, some large sample properties of the modified A-spline estimator are given under
right-censoring. It is worth noting that the theoretical properties of the A-spline estimator have not
been deeply inspected in the literature. There have been some important studies about adaptive
ridge estimators, such as [20,21,25]. This section provides some initial inferences about the A-spline
estimator in a nonparametric context and under censorship conditions.

Before we describe the asymptotic properties of the estimator, it should be emphasized that the
flexibility of the A-spline estimator allows the choice of penalty and knot points, causing difficulties
in the theoretical inferences. As is already known, the A-spline estimator is a specialized version of
the P-splines proposed by [26]. Its major difference is that the A-spline changes the penalty terms
using weights that are iteratively obtained and by approximating the L0-norm. Because of this,
some assumptions and inferences are derived based on the known properties of P-splines.

The main function of the A-spline estimator is given in Equation (12), which can be rewritten
as follows:

WPSS(α;λ) =
n∑

i=1

tiĜ −
k∑

j=1
α jB j,q(xi)


2

+ λ
2

m∑
i=q+2

‖∆q+1(αi)‖τ (26)

where ‖.‖τ denotes the τ –norm. To obtain substantial results, for this study, we assume that τ→ 0
because solving L0-norm requires complex calculations. Accordingly, it can be said that minimizing
Equation (26) has good potential for both estimating α j’s and determining the optimal knot points,
such as model selection for sufficiently large λ > 0. As is known from the literature, model selection
with τ→ 0 is realized by penalizing non-zero parameters, which is a limiting case of the bridge
estimation introduced by [27] and given as

lim
τ→0

m∑
i=q+2

‖∆q+1(αi)‖τ =
m∑

i=q+2

I
[
∆q+1(αi) , 0

]
(27)

For τ ≥ 1, the objective function in Equation (26) has a convex structure, and its global minimum
can be obtained easily by using numerical algorithms. However, when τ→ 0 and τ = 0, the criterion
in Equation (26) is no longer convex and its computation is non-trivial. In the L0-norm context, there is
no guarantee of reaching a global minimum. Moreover, more than one local minimum could exist.
Thus, there is no unique solution of this estimator, and it depends on the iterative process. In [21],
it is shown that a minimum of 5 and maximum 40 iterations provide reasonable convergence of the
estimator to real parameters.

When estimator α̂ is inspected asymptotically, although its objective function in Equation (26)
is non-convex, calculations about asymptotic consistency can be guided. In this case, the following
condition is assumed:

Rn =
1
k

k∑
j

B jBT
j → R (28)

where R is a non-negative definite matrix, and also assumed is that

1
q + m + 1

max
1≤ j≤k

BT
j B j → 0 (29)

In general, the obtained explanatory variables included by B are scaled. Accordingly, all of the

diagonals of R are equal to 1. Note that it must be assumed that BT
j B j and

(
BT

j B j

)−1
are nonsingular
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matrices; consequently, R are full rank matrices to the obtained identifiable properties. Using the
conditions in Equations (28) and (29), the limiting behavior of estimator α̂ can be observed by inspecting
the asymptotic state of affairs of the minimization problem in Equation (12). To see the consistency of
α̂n, the function is given as

Un(α̂n) =
n∑

i=1

tiĜ −
k∑

j=1
α̂njB j,q(xi)


2

+ λn
2

m∑
i=q+2

‖∆q+1(α̂i)‖τ (30)

where α̂n is a consistent estimator for λn = o(n). This result is confirmed by following theorem:

Theorem 1. If R is a full rank-matrix and λn
2 → λ ≥ 0 , then α̂n

p
→ argmin(U) where

U(α̂n) = (α̂n −α)
TR(α̂n −α) + λ

m∑
i=q+2

‖∆q+1(αi)‖τ (31)

Thus, λn = o(n) and α̂n is a consistent estimator of α. It could therefore be said that

|α̂n| → α, as n→∞ (32)

Proof of Theorem 1 is given in the Appendix A.

Because Un is not convex due to the degree of norm τ→ 0 , and to ensure the accuracy of
Equation (32), some additional notes are needed. Accordingly, it can be said that λn = O

(√
n
)

is
essential for τ→ 0 . From that, if λ

√
n
→ λ ≥ 0 and τ→ 0 , then it can be written that

√
n(α̂n −α)

d
→ R−1J ∼ N

(
0, σ2R−1

)
(33)

where J has a distribution N
(
0, σ2

ε

)
and its elements consist of the random error terms εi’s.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions that can be drawn.

4. Simulation Study

In this section, a simulation study is carried out to see the behaviors of the modified
A-spline estimator when estimating the right-censored nonparametric model. Before the results
of simulation experiments, datasets for the different simulation combinations are generated
using by the “simcensdata” function in the R software, which can be accessed via this link:
https://github.com/yilmazersin13/simcensdata-generating-randomly-right-censored-data. Our data
generation procedure, with accompanying descriptions, is given in Table 1.

Table 1. Data generation procedure with explanations.

Steps Explanation

Step 1. Decide nobs, nsim, and L Sample size of simulated dataset and number of
repetitions and censoring level, respectively

Step 2. Produce, ti’s, f (.), and εi’s
Nonparametric covariate, real smooth function,

and random error terms

Step 3. Obtain, yi’s Actual (complete-uncensored) data points

Step 4. Generate δi’s using Bernoulli distribution Values of censoring indicator

Step 5. Obtain ci’s i.i.d. with yi’s Censoring values that cut the actual lifetimes

Step 6. Find ti = min(yi, ci) Obtain partly observed response values

https://github.com/yilmazersin13/simcensdata-generating-randomly-right-censored-data
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For this simulation study, within the scope of Step 1, nobs = (35, 100, 350), nsim = 1000, and the
censoring levels L = (5%, 20%, 40%). The nonparametric covariate and random errors in Step 2 are
generated as xi = θ

(
i− 1

2

)
/n and εi ∼ N

(
0, σ2

ε

)
, where θ is a constant that determines the shape of the

curve. Note that, in this study, two different types of function are used to test the introduced method
under various conditions. These functions are given below with their formulations as follows:

Panel (a) and Panel (b) represent two different datasets that were formed based on nonlinear
functions f1 and f2. The plots of Figure 1 are drawn for n = 100 and L = 20%. It should be noted that
the optimal selection of numbers and the positions of knots are extremely important for the functions
represented in these panels. In the context of synthetic data transformation, censored data points take
zero values and completed points take higher values than they are. In this case, deciding the properties
of knots will be crucial.Stats 2020, 3 FOR PEER REVIEW  10 
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Figure 1. Scatter plots of both censored data and incomplete response data points over the smooth
functions to be estimated by A-splines.

From the data generation procedure given above, the right-censored nonparametric model can be
written as follows:

ti = fh(xi) + εi, i = 1, . . . , nobs, h = 1, 2 (34)

Then, to use censorship information in the estimation process, a synthetic data transformation
is done, as in Equation (6). Therefore the final model to be estimated, as given by the simulation
experiments, is

tiĜ = fh(xi) + εiĜ, i = 1, . . . , nobs, h = 1, 2 (35)

In this simulation study, for three sample sizes, three censoring levels, and two functions,
18 configurations are obtained. All the outcomes for the model in Equation (34) under these conditions
are given in the following figures and tables.

Table 2 represents the scores of all the evaluation metrics for each of the simulation configurations.
The results are inspected from three essential aspects in terms of the estimation performance of the
A–spline estimator that are the effects of the sample size, censoring level, and shape of the data. For the
first aspect, it can be seen from the table that σ̂εĜ

, MSE and Var(α̂) decrease when the sample size
increases. This can be interpreted as practical proof of the asymptotic convergence that is one of
the main purposes of this simulation study. This interpretation is consistent for all censoring levels.
The censoring level naturally affects the performance of the estimator contrary to sample size; however,
there is a sensitive point, which depends on the reaction of the estimator to variation in the censoring
level, which makes this paper significant. If the scores are inspected carefully, it can be clearly seen
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that there are no huge differences between low and high censoring levels, which can also be seen in the
figures given below. This case proves that the A-spline estimator achieves mitigation of the effect of the
censoring level on selecting the optimal knot points, as expected. Finally, two different function types
are used in this paper. f1 has a shape that is similar to that of a sinus function and is not hard to catch
for any smoothing technique. f2 is an almost linear function but has one big peak; this is a challenge
for the estimator, especially under censoring. The outcomes in Table 2 demonstrate this. Although the
results for f̂1 are smaller than those for f̂2, it can be said that the A-spline estimator shows a satisfactory
performance for both datasets.

Table 2. Variances and biases of α̂, variance of the model
(
σ̂εĜ

)
, and MSE of f̂ for all

simulation combinations.

Function Type f̂1(x) f̂2(x)

L n σ̂εĜ
MSE Bias(α̂) Var(α̂) σ̂εĜ

MSE Bias(α̂) Var(α̂)

5%
35 1.2151 1.2064 0.9971 0.0911 1.2151 1.2064 0.9971 0.1347

100 1.1929 1.1957 0.9979 0.0215 1.1733 1.1804 0.9979 0.0212
350 1.2089 1.2186 0.9982 0.0052 1.1750 1.1861 0.9982 0.0051

20%
35 2.3410 2.5041 0.9971 0.1756 2.3410 2.5041 0.9971 0.2140

100 2.3098 2.4858 0.9979 0.0417 2.3827 2.5881 0.9979 0.0430
350 2.2610 2.4481 0.9982 0.0098 2.3724 2.5716 0.9982 0.1031

40%
35 3.7614 4.3230 0.9971 0.2822 3.7614 4.3230 0.9971 0.3465

100 3.5616 4.1446 0.9979 0.0643 4.4640 5.1566 0.9979 0.0806
350 3.4012 3.9752 0.9982 0.0147 4.5578 5.2489 0.9982 0.1980

Table 3 represents the comparative outcomes for the introduced estimator modified A-spline
and commonly used SS and RS. The best scores are indicated with bold colored text. As can be seen,
the results indicate that the modified A-spline estimator shows the best performance from a general
perspective. Additionally, as mentioned in the introduction section, RS has smaller MSEs than SS.
From here, it can be said that the introduced method gives more satisfying results, which can be
explained by its adaptive nature. If Table 3 is inspected carefully, it can be realized that for the results
obtained from f̂2(x), the RS method has attractive outcomes when the censoring level is 40%. It is an
understandable situation because of the shape of the function.

Table 3. MSE values for the A-spline, smoothing spline (SS), and regression spline (SS) methods to
make comparisons.

Function Type f̂1(x) f̂2(x)

L n A−spline RS SS A−spline RS SS

5%
35 1.2064 1.9622 1.9581 1.2064 1.6632 1.9527
100 1.1957 1.2386 1.5765 1.1804 1.4327 1.7061
350 1.2186 1.1975 1.2644 1.1861 1.2760 1.6197

20%
35 2.5041 3.2386 3.6733 2.5041 2.9084 3.1748
100 2.4858 3.1953 3.2851 2.5881 2.6006 2.7318
350 2.4481 2.5459 2.7270 2.5716 2.5591 2.4059

40%
35 4.3230 5.5459 5.5779 4.3230 4.5839 5.3468
100 4.1446 4.6522 5.0570 5.1566 5.1013 5.1927
350 3.9752 4.0440 4.0591 5.2489 4.9741 5.0198

Figure 2 aims to show how the modified A-spline estimator behaves when the sample size is
exceedingly small, under various censoring levels. It is obvious that the estimation of f1 is easier than
that of f2, which is explained below. Figure 2 shows this more clearly. In addition, it can be said
that the method is successful for even extremely small sample sizes (n = 35). This is an important
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contribution of this method for right-censored data because in a medical dataset and especially in
clinical observations, many data may frequently be unobtainable.
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Figure 2. Fitted curves to see the performance of the estimator for n = 35,L = 5%, 40%.

Figure 3 presents the effects of sample sizes by keeping the censoring level constant at 20%. Model
I was obtained using f1; similar fitted curves are obtained for n = 100 and n = 350, and these curves
seem to be good representations of the data. This inference is also valid for Model II. Both plots show
that the fitted curves successfully model right-censored data.
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Figure 3. Fitted curves to see the performance of the estimator for n = 100, 350, L = 20%.

Figure 4 demonstrates how the method works under heavy censoring. To that end, fitted curves
are shown for a moderate sample size together with the lowest and the highest censoring levels, 5% and
40%. As we expected, the A-spline estimator demonstrates its ability to handle data with zero values
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obtained by synthetic data transformation, and it can be clearly seen that there is a difference between
the two graphs. This inference is also supported by the results in Table 2.

Stats 2020, 3 FOR PEER REVIEW  13 

 

 

 

Figure 4. Fitted curves to observe the quality of the estimates for 𝑛 = 100, ℒ = 5%, 40%. 

 

Figure 4 demonstrates how the method works under heavy censoring. To that end, fitted curves 

are shown for a moderate sample size together with the lowest and the highest censoring levels, 5% 

and 40%. As we expected, the A-spline estimator demonstrates its ability to handle data with zero 

values obtained by synthetic data transformation, and it can be clearly seen that there is a difference 

between the two graphs. This inference is also supported by the results in Table 2. 

 

 

 

Figure 4. Fitted curves to observe the quality of the estimates for n = 100, L = 5%, 40%.

Figure 5 depicts bar plots of the measurement tools for both the estimated A-spline coefficients
and the estimated model. In each panel, A1.5%, A1.20%, and A1.40% denote the obtained scores
of the evaluation metric for L = 5%, 20%, and 40%, respectively, for n = 35. In a similar manner,
A2.5%, A2.20%, and A2.40% represent the scores for n = 100 and all the censoring levels, and A3.5%,
A3.20%, and A3.40% denote the results for n = 350 for all the censoring levels. The top panels of
Figure 5 include bar plots for the bias values. As in Table 2, it can be seen here that the biases for
the two models are very similar and, as expected, become smaller in larger samples. The panels in
the middle show bar plots for the variances of the coefficients. The plots appear similar for the two
models, but, as has been said before, because the estimation of Model II is more difficult than that of
Model I, the y-axis is significantly wider in scope. The panel at the bottom is drawn for the MSE values
of the estimated model, and it is similar to the variance plots. Essentially, these plots prove that the
A-spline estimator can estimate the model by overcoming the effect of censorship in terms of various
evaluation metrics.
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5. Real Data Application

This section is prepared to show the performance of the modified A-spline estimator on real
right-censored data. The dataset represents data from colon cancer patients in İzmir. The dataset
involves the survival times, censoring indicator (δi), and albumin (i.e., the most common protein
found in the blood) values of patients. To provide continuity, the logarithms of the survival times are
considered as a response variable (survival time), and albumin is taken as a nonparametric covariate
(albumin). The right-censored regression model is thus given by

ti = log(survival timei) = f (albumini) + εi, 1 ≤ i ≤ 97 (36)

Note, also, that because ti’s cannot be used directly in the estimation procedure, they have
been replaced by the synthetic responses shown in Equation (6). The model in Equation (36) is thus
rewritten as

tiĜ = log
(
survival timeiĜ

)
= f (albumini) + εiĜ (37)

The dataset contains information for 97 patients to be used for this analysis. However, the records
of 32 of these patients are incomplete, containing right-censored observations; the data of the remaining
65 patients are uncensored (deceased). Consequently, in this dataset, the censoring level is L = 32.98.
The outcomes calculated for the model in Equation (37) are given the following table and figure.

Table 4 summarizes the performance of the modified A-spline estimator. Note that the values
of σ̂εĜ

, MSE and Var(α̂) are better than the results of Aydın and Yilmaz (2018), who previously used
regression splines to model right-censored data. In addition, to provide a healthier comparison,
the results of the RS and SS methods are given in the table. As can be seen, the results are pretty similar
to the simulation results. Here, A-spline gives the best score, which proves the benefit of the introduce
method. Additionally, when the shape of the dataset is inspected from Figure 6, it can be described
as having an irregular shape, and it can be seen that this irregularity increases after synthetic data
transformation, which is demonstrated by the blue dots in the figure. Despite this challenging case,
the A-spline fit seems to represent the data well.
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Table 4. Outcomes for the estimated regression model for colon cancer data.

σ̂εĜ
MSE Var(α̂) L n

f̂ (Albumin) 0.0051 0.0814 0.0037
32.98% 97f̂RS(Albumin) 0.0540 0.0821 -

f̂SS(Albumin) 0.0895 0.0863 -

6. Concluding Remarks

This paper demonstrates that a modified A-spline estimator can be used to estimate the
right-censored nonparametric regression model successfully. This is because it uses an adaptive
procedure for determining the penalty term and works with only optimum knot points. A simulation
study and real data example were carried out to demonstrate the performance of the method, and it
can be seen from our findings that the modified A-spline estimator has merit for the estimation of
right-censored data.

In the general frame of the numerical examples, incremental changes in the sample size affect
the performance of the method, which gives closer results to real observations. This can be
seen in Figures 3–5. Moreover, changes to the censoring level also influence the goodness of fit,
and, as expected, when the censoring level increases, the performance of the method is negatively
affected. However, there is an important difference here in terms of the modified A-spline. The main
purpose of the usage of this method is to diminish the effect of censorship on the modeling process,
and most of our results show that the introduced method achieves this purpose. For an example of
these results, see Table 2. In the simulation study, two different function types are used to generate
the model. f1 is a cliché pattern of the sinus curve and is not difficult to estimate for any smoothing
method. f2 is a little bit more difficult to handle, especially by the smoothing techniques that use all
data points as knots. In this paper, it can be seen that for almost all of the simulation configurations,
the modified A-spline estimator gives really close values in terms of all evaluation metrics.

The real-world application uses the dataset of colon cancer patients. Their survival times are
estimated by using albumin values in their blood. Figure 6 and Table 4 show the outcomes of this
study. As mentioned above, our method does a good job despite the unsteadily scattered data points.
The confidence interval given by the shaded region in Figure 6 seems wide because synthetic data
transformation puts censored points (as zeros) far from the uncensored points. Considering the
mentioned properties, it can be said that the modified A-spline estimator can be counted as a robust
estimator for right-censored datasets. As a result of this study, we recommend that the modified
A-spline estimator is appropriate for modeling clinical datasets.
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Appendix A

Appendix A.1 Proof of Lemma 1

Lemma 1 can be proven by using the common independency assumption between ci and yi,
which is given in Section 1. From that, proof is given as follows:

E[tiG|xi] = E
[

δiti
1−G(ti)

|xi

]
= E

[
δiti

G(ti)
|xi

]
= E

[
I(yi≤ci)min(yi,ci)

G(min(yi,ci))
|xi

]
= E

[
I(yi ≤ ci)

yi

G(ti)
|xi

]
= E

[
E
[

yi

G(ti)
I(yi ≤ ci)|xi, yi

]
|xi

]
= E

[
yi

G(ti)
G(ti)|xi

]
= E(yi|xi) = f (xi)

Thus, proof of Lemma is completed. Note that because of distribution of censoring distribution G
is unknown, it is replaced by its Kaplan–Meier estimator Ĝ that is given in Equation (5).

Appendix A.2 Proof of Theorem 1

The equations given below need to be shown for validation of Theorem 1:

sup
α̂n∈Q

∣∣∣Un(α̂n) −U(α̂n) − σ
2
ε

∣∣∣ p
→ 0 (A1a)

where σ2
ε is the variance of the model defined in (Section 3.1), Q is a compact set in a metric space and

using by Equations (28)–(32), it can be said that

|α̂n| → α, as n→∞ (A1b)

(See [28], for more details).
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