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Abstract: We consider testing equivalence to Hardy–Weinberg Equilibrium in case of multiple
alleles. Two different test statistics are proposed for this test problem. The asymptotic distribution
of the test statistics is derived. The corresponding tests can be carried out using asymptotic
approximation. Alternatively, the variance of the test statistics can be estimated by the bootstrap
method. The proposed tests are applied to three real data sets. The finite sample performance of the
tests is studied by simulations, which are inspired by the real data sets.

Keywords: test; testing; equivalence; Hardy; Weinberg; Equilibrium; asymptotic; bootstrap;
simulation study

1. Introduction

Hardy–Weinberg Equilibrium (HWE) plays an important role in the field of the population
genetics and related scientific domains. HWE is a common assumption in many areas of research
so that assessing the compatibility of observed genotype frequencies with HWE is a basic step of a
complete statistical analysis. There are two main approaches to this undertaking: goodness of fit tests
and equivalence tests.

A vast amount of literature exists on the goodness of fit tests for HWE, which includes application
of the asymptotic χ2 and likelihood ratio tests. The specific exact goodness of fit tests for HWE are
developed in [1–5] among others. The null hypothesis of all these tests is that the underlying population
is exactly in HWE. Hence, the goodness of fit tests are tailored to establish lack of compatibility with
HWE.

The equivalence tests are appropriate to establish sufficiently good agreement of the observed
genotype frequencies with HWE. The exact and approximate equivalence tests for the biallelic case are
developed recently in [6–8]. To our best knowledge, there are not any equivalence tests for HWE and
multiple alleles. Two different equivalence tests are developed in this paper for the case of multiple
alleles. The tests can be carried out using the asymptotic approximation or bootstrap method.

A distribution of diploid genotypes at a k-allele locus can be represented as a lower triangular
matrix p, where p (i, j) is the probability of the genotypes with alleles i and j. Let a (p) denote the
allele distribution under p. The probability of the allele i under p can be calculated as a (p, i) =
1
2 ∑k

j=1 (p (i, j) + p (j, i)). If the population is in HWE, then the genotype distribution fulfills the
conditions p(i, j) = 2a(p, i)a(p, j) for i < j and p(i, i) = a(p, i)2. Let e (p) denote the genotype
distribution under the assumption of HWE, which is implied by the allele distribution a (p).

Euclidean distance l2 (p, e(p)) can be considered a conditional distance between the genotype
distributions p and e (p) under the joint allele distribution a (p). The equivalence test problem is then
defined by

H0 = {l2 (p, e (p)) ≥ ε} and H1 = {l2 (p, e (p)) < ε} (1)
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where ε is a tolerance parameter.
LetM denote the family of all possible genotype distributions at HWE. The minimum distance

between p and M is defined by d (p,M) = minq∈M l2 (p, q). The corresponding equivalence test
problem is given by

H0 = {d (p,M) ≥ ε} and H1 = {d (p,M) < ε} (2)

We observe the genotype frequencies pn of the sample size n. The natural test statistic for (1) is

Tc (pn) =
√

n
(

l2
2 (pn, e (pn))− ε2

)
, (3)

which can be easily computed. The appropriate test statistic for (2) is

Tm (pn) =
√

n
(

d2 (pn,M)− ε2
)

, (4)

which requires optimization for the calculation of d (pn,M). The test statistic Tc (pn) can be considered
a numerically efficient approximation to Tm (pn) because of l2 (pn, e (pn)) ≥ d (pn,M). The subscript
∗ will be used instead of c and m in the reminder of the paper, if statements are appropriate for both
cases.

If Hypothesis (1) or (2) of the non-equivalence can be rejected for some appropriate value of ε

then the true underlying genotype distribution is close to HWE with the probability greater than 1− α,
where α is the nominal level of the test. The appropriate value of ε depends on the application and the
available sample size. The value of the parameter ε can be found by simulation as shown in Section 3.2.
Alternatively, the minimum tolerance parameter ε, for which H0 can be rejected, can be computed and
reported, see Section 2 for details.

2. Equivalence Tests

In this section, we derive the asymptotic distributions of the test statistics Tc (pn) and Tm (pn).
We provide also an algorithm for the asymptotic and bootstrap-based tests.

Let v be the usual bijective mapping of the matrix p to the vector (p(1, 1), p (1, 2) , . . . , p (k, k)).
Let d̊c denote the derivative of the function q 7→ l2

2
(
v−1 (q) , e

(
v−1 (q)

))
, where q is a vector of length

k2. The derivative d̊c can be derived using the chain rule. Let p0 ∈ H0 fulfill the boundary condition
l2 (p0, e (p0)) = ε and let q0 = v (p0). Then the asymptotic distribution of Tc (pn) under p0 is Gaussian
with mean zero and variance σ2

c (p0) = d̊c (q0)Σ (q0) d̊c (q0)
t, where Σ (q0) = Dq − qqt is a covariance

matrix and Dq is a square diagonal matrix, whose diagonal entries are elements of q. The proof of the
statement can be found in [9].

The test statistic Tm (pn) converges weakly under the assumption that there exists a continuous
function h on an open neighborhood of p0 such that h (p) ∈ M and d (p,M) = l2 (p, h (p)).
The existence of a continuous minimizer h is also an important requirement for the numerical
computation of d (p,M). We assume the existence of a continuous minimizer h on an open
neighborhood of p0 for the reminder of the paper. Let d̊m denote the derivative of the function
q 7→ l2

2
(
v−1 (q) , h (p0)

)
. Then the asymptotic distribution of Tm (pn) under p0 is Gaussian with mean

zero and variance σ2
m (p0) = d̊m (q0)Σ (q0) d̊m (q0)

t, see [10] for details.
The asymptotic variance σ2

∗ (p0) is unknown and can be estimated by σ2
∗ (pn). The asymptotic

test can be carried out as follows:

1. Given are the genotype frequencies pn, the tolerance parameter ε and the significance level α.
2. Compute the tests statistic T∗ (pn).
3. Estimate the asymptotic variance by σ2

∗ (pn).
4. Reject H0 if T∗ (pn) ≤ cασ∗ (pn), where cα is the lower α-quantile of the normal distribution.
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The minimum tolerance parameter ε, for which the asymptotic test can reject H0, can be computed

as
√

l2
2 (pn, e (pn))− n−

1
2 cασc (pn) or

√
d (pn,M)− n−

1
2 cασm (pn) correspondingly.

To improve the finite sample performance of the proposed tests, the bootstrap method is applied
to estimate the variance of T∗ (pn), see [11], Section 6 for details. The estimator σ∗ (pn) is then replaced
by the bootstrap estimator of the variance. Otherwise, everything stays the same.

3. Simulation Study

The proposed tests are implemented in R and are freely available on GitHub under https://github.
com/TestingEquivalence/HardyWeinbergEquilibriumR. All simulations are performed in R-Studio
on a usual scientific workstation.

3.1. Real Data Sets

The equivalence tests are applied to the following data sets, which are already analyzed in the
literature on the goodness of fit tests: 1. from rheumatoid arthritis study [12]; 2. from the documentation
included with the GENEPOP software package [13]; 3. genotype frequency data at Rhesus locus [14].
The genotype distributions of the data sets are given in Table 1.

The minimum tolerance parameters ε, for which the tests can reject the corresponding H0, are
displayed in Table 2. The distances d (pn,M) and l2 (pn, e (pn)) are close to each other in all cases so
that l2 (pn, e (pn)) provides a good approximation to d (pn,M). The test results are also similar for Tc

and Tm. The bootstrap tests are slightly more conservative than the asymptotic tests in all cases.
It could not be shown that data sets 1 and 2 are close to HWE. All goodness of fit tests in [15]

reject also the null hypothesis of HWE for data set 2 at the nominal level 0.05. Data set 3 is very close
to HWE. This observation corresponds to the results of the goodness of fit tests in [5,15].

Table 1. The data sets: (1) from rheumatoid arthritis study, [12]; (2) from the documentation included
with the GENEPOP software package, [13]; (3) genotype frequency data at Rhesus locus, [14].

(1)

5
40 12
6 32 2

30 55 15 33

(2)

2
12 24
30 34 54
22 21 20 10

(3)

1236
120 3
18 0 0
982 55 7 249
32 1 0 12 0

2582 132 20 1162 29 1312
6 0 0 4 0 4 0
2 0 0 0 0 0 0 0

115 5 2 53 1 149 0 0 4

Table 2. Minimum tolerance parameter ε, for which H0 can be rejected at the nominal level 0.05.
A stands for the asymptotic test and B stands for the bootstrap test.

Data Set n l2 (pn, e (pn)) d (pn,M) Tc A Tc B Tm A Tm B

1 230 0.102 0.101 0.130 0.134 0.130 0.132
2 229 0.126 0.118 0.159 0.164 0.149 0.153
3 8295 0.013 0.013 0.017 0.019 0.018 0.018

https://github.com/TestingEquivalence/HardyWeinbergEquilibriumR
https://github.com/TestingEquivalence/HardyWeinbergEquilibriumR
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3.2. Test Power

In this subsection we study the test power at HWE. We restrict yourself to the genotype
distributions at HWE, which are implied by the real data sets from Section 3.1, because the familyM
is very large. To shed some light on the appropriate values of the tolerance parameter ε, the test power
is computed for different values of ε, see Table 3. The value of ε may be considered appropriate if the
test power is approximately 0.9. Hence, the appropriate value of ε is 0.1 for data set 1, 0.1 for data set 2
and 0.018 for data set 3.

The observed genotype frequencies pn are subjected to the sampling error. It is important for the
test efficiency that the sampling error has a small influence on the test power at HWE. The test power
is computed at 100 random genotype frequencies, where the corresponding random samples of size n
are drawn from the implied genotype distribution e (pn). The simulation results are summarized in
Table 4. The power of all considered tests varies little from point to point. Hence, the impact of the
sampling error on the test power at HWE is very small.

Table 3. Simulated rejection probability of the equivalence tests at the nominal level 0.05. The rejection
probability is simulated for different values of the tolerance parameter ε at the HWE distributions
e (pn), which are implied by data sets 1, 2 and 3. The sample size equals the size of the corresponding
data set. The number of replications is 1000 for each experiment. A stands for the asymptotic test and
B stands for the bootstrap test.

Data set 1 Data set 2 Data set 3
ε 0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.10 0.012 0.014 0.016 0.018

Tc, A 0.56 0.75 0.87 0.95 0.53 0.74 0.87 0.94 0.67 0.82 0.91 0.96
Tc, B 0.40 0.63 0.79 0.90 0.40 0.62 0.80 0.90 0.50 0.71 0.83 0.91
Tm, A 0.54 0.74 0.87 0.94 0.58 0.78 0.89 0.96 0.61 0.77 0.88 0.95
Tm, B 0.49 0.70 0.85 0.93 0.53 0.74 0.86 0.94 0.58 0.75 0.86 0.94

Table 4. Summary of the simulated rejection probabilities at the nominal level 0.05. The rejection
probabilities are simulated at the 100 random samples from the HWE distributions e (pn), which are
implied by data sets 1, 2 and 3. The sample size equals the size of the corresponding data set. The
number of replications is 1000 for each experiment. A stands for the asymptotic test and B stands for
the bootstrap test.

Data set 1, ε = 0.1 Data set 2, ε = 0.1 Data set 3, ε = 0.018
min max mean dev min max mean dev min max mean dev

Tc, A 0.93 0.97 0.95 0.008 0.93 0.97 0.94 0.008 0.94 0.98 0.97 0.007
Tc, B 0.87 0.92 0.90 0.010 0.88 0.94 0.90 0.012 0.89 0.94 0.91 0.010
Tm, A 0.92 0.96 0.95 0.009 0.93 0.99 0.96 0.012 0.92 0.97 0.95 0.007
Tm, B 0.90 0.95 0.93 0.010 0.91 0.99 0.95 0.015 0.91 0.96 0.94 0.009

3.3. Type I error

We study the type I error rates of the proposed tests in this subsection. The boundary of H0 is so
complex that it is very difficult to find boundary points, which have the largest rejection probability.
We consider therefore randomly selected boundary points of H0, which are based on the three real
data sets from Section 3.1. The boundary points are generated using the following algorithm:

1. Given are pn and ε.
2. Draw a sample of size n from pn and compute the sample genotype frequency p̃n.
3. If T∗ ( p̃n) < 0 then reject p̃n and repeat step 2. Otherwise accept p̃n.
4. Consider the linear combination ap̃n + (1− a) e (pn) for a ∈ [0, 1]. Find an ∈ [0, 1] such that

T∗ (an p̃n + (1− an) e (pn)) = 0. The value of an can be found using any line search method.
5. Return an p̃n + (1− an) e (pn), which is a random boundary point of H0.
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The tolerance parameter ε is close to l2 (pn, e (pn)) for each data set under consideration so that
an is usually not far from 1. The corresponding random boundary point is then close to pn. Hence,
we explore the boundary of H0 in the neighborhood of the given data set. The test power at 100
random boundary points is summarized in Table 5. The test power varies considerable from point
to point. The asymptotic test based on Tc is not conservative for all three data sets. The asymptotic
test based on Tm shows some anti-conservative tendencies for data sets 2 and 3. The bootstrap test
based on Tc is conservative for all three data sets. The bootstrap test based on Tm shows slight non
conservative tendencies.

The power at the boundary points is larger than the nominal level due to the following reasons.
If the number of observations npn (i, j) is too small for some i and j then the distribution of T∗ (pn)

may be far away from the normal approximation and also may have considerable jumps. The critical
values of the asymptotic and bootstrap tests are then incorrect. If the vector d̊∗ (v (pn)) contains zero
elements then the power of the asymptotic tests tends to be above the nominal level α. The power of
the bootstrap tests is closer to α in this case because the vector d̊∗ (v (pn)) is not used for the variance
estimation by the bootstrap method.

Table 5. Summary of the simulated rejection probabilities at the nominal level 0.05. The rejection
probabilities are simulated at the 100 randomly selected boundary points of H0. The sample size equals
the size of the corresponding data set. The number of replications is 1000 for each experiment. A stands
for the asymptotic test and B stands for the bootstrap test.

Data set 1, ε = 0.1 Data set 2, ε = 0.1 Data set 3, ε = 0.018
min max mean dev min max mean dev min max mean dev

Tc, A 0.017 0.060 0.035 0.009 0.023 0.065 0.044 0.009 0.051 0.114 0.090 0.011
Tc, B 0.005 0.036 0.018 0.006 0.013 0.048 0.029 0.006 0.012 0.052 0.033 0.008
Tm, A 0.019 0.049 0.031 0.006 0.025 0.077 0.046 0.009 0.034 0.075 0.051 0.008
Tm, B 0.011 0.042 0.022 0.006 0.016 0.064 0.034 0.008 0.025 0.064 0.038 0.008

4. Summary

Two different test statistics are proposed to establish equivalence of the genotype distributions
to HWE. The critical values of the tests are calculated using the asymptotic approximation by the
normal distribution. The variance of the test statistic is estimated asymptotically or by the bootstrap
method. The minimum tolerance parameter ε, for which H0 can be rejected, is derived. The tests are
successfully applied to three real data sets, which are frequently considered in the literature. The test
power at HWE and the type I error rates are studied at a large number of points, which are inspired
by the real data sets. The asymptotic tests have anti-conservative tendencies and should be used
with caution. The bootstrap-based tests are sufficiently conservative for the most practical situations.
If more conservative tests are required then the nominal level may be halved or the tolerance parameter
ε may be reduced. We recommend to perform all proposed tests in any case and compare the results.
The appropriate value of ε depends on the application and the available sample size. The reasonable
values of the parameter ε can be found by simulation as shown in Section 3.2. Additionally, the
rejection probabilities at the close random boundary points may be studied as shown in Section 3.3.
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