
Article

Evaluating the Performance of Multiple Imputation
Methods for Handling Missing Values in Time Series
Data: A Study Focused on East Africa,
Soil-Carbonate-Stable Isotope Data

Hossein Hassani 1,* , Mahdi Kalantari 2 and Zara Ghodsi 3

1 Research Institute of Energy Management and Planning (RIEMP), University of Tehran,
Tehran 1417466191, Iran

2 Department of Statistics, Payame Noor University, Tehran 19395-4697, Iran; kalantarimahdi@pnu.ac.ir
3 PHASTAR, London W4 5LE, UK; zara.ghodsi@phastar.com
* Correspondence: hassani.stat@gmail.com

Received: 18 November 2019; Accepted: 11 December 2019; Published: 16 December 2019 ����������
�������

Abstract: In all fields of quantitative research, analysing data with missing values is an excruciating
challenge. It should be no surprise that given the fragmentary nature of fossil records, the presence
of missing values in geographical databases is unavoidable. As in such studies ignoring missing
values may result in biased estimations or invalid conclusions, adopting a reliable imputation method
should be regarded as an essential consideration. In this study, the performance of singular spectrum
analysis (SSA) based on L1 norm was evaluated on the compiled δ13C data from East Africa soil
carbonates, which is a world targeted historical geology data set. Results were compared with
ten traditionally well-known imputation methods showing L1-SSA performs well in keeping the
variability of the time series and providing estimations which are less affected by extreme values,
suggesting the method introduced here deserves further consideration in practice.
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1. Introduction

Handling missing values is a common challenge in almost all areas of study: from economics and
social sciences to geology, archaeology and medicine [1–3]. As the primary aim of any data collection
process is to obtain a more profound domain knowledge, the presence of missing values which causes
failure in “complete-case” analysis is clearly undesirable.

Although almost all quantitative studies are affected by incomplete data, missing values are
particularly prominent in longitudinal data. In this study, we introduce a new method of missing
values imputation using a non-parametric time series analysis technique: singular spectrum analysis
(SSA). Imputing missing values using this relatively new but powerful time series analysis method
was expected to provide analytical improvements, which are discussed in the subsequent sections.

We used the East Africa soil-carbonate-stable isotope (δ13C) dataset, which is an excellent example
of a widely used dataset with large proportions of missing data. East Africa soil-carbonate-stable
isotope (δ13C) was collected from multiple sites of Ethiopia, Kenya and Tanzania, and later compiled
by Levin in 2013 [4] (see Figure 1). The stable carbon isotopic has been widely used in archaeology to
infer paleodiet, artefact provenance, and paleoenvironment [5]. The presence of considerable missing
values in this data introduces an element of ambiguity into inferential analysis by affecting properties
of statistical estimators such as variance or periodicity.
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Figure 1. Soil carbonate stable isotope (δ13C) collected from various sites of East Africa [4].

Also, as discussed in several studies, ignoring missing values of the East Africa
soil-carbonate-stable isotope (δ13C) or other similar datasets may lead to misinterpretation of
macroevolutionary patterns [6], drawing inaccurate connections existed among lineages [7] or even
invalid timing estimation of diversification events [6].

In this study, a comparison was performed on several imputation techniques and the estimated
values produced by SSA. We first provide a brief introduction to SSA and its characteristics which make
it a suitable candidate for imputing missing values in such a powerful and prominent archaeological
time series data with the oldest observation related to four million years ago. We will then briefly
discuss the selection of methods which have been applied to deal with this problem.

Our results suggest that the newly introduced method based on SSA technique produces a robust
estimation of missing values and deserves further consideration in practice.

The remainder of this paper is organised such that Section 2 presents an outline of the steps
underlying the SSA techniques and describes the newly introduced approach. Section 3 provides an
overview of the other imputation techniques evaluated in this study. Section 4 explains the data under
study, and in Section 5, the results obtained using the East Africa soil-carbonate-stable isotope data are
discussed. The paper concludes with a concise summary in Section 6.

2. Review of SSA

The SSA technique includes two complementary stages: decomposition and reconstruction,
each of which consists of two separate steps. The first stage decomposes a time series into several
components that allows for signal extraction and noise reduction. The reconstruction stage leads to
a less noisy series using the leading eigentriples of the trajectory matrix. The most common version
of SSA is called basic SSA. It is noteworthy that the matrix norm used in basic SSA is the Frobenius
norm or L2-norm. A newer version of SSA which is based on L1-norm, and is therefore, called L1-SSA,
has been introduced and further explained in [8,9]; and it has been confirmed that L1-SSA is robust
against outliers. In the following, the steps of these two versions of SSA are concisely presented and
differences highlighted. The theory underlying basic SSA is explained in detail in [10]. For more
detailed information on L1-SSA, see [8].

Stage 1: Decomposition (Embedding and Singular Value Decomposition)

In embedding step, the time series YN = {y1, . . . , yN} is mapped into the vectors X1, . . . , XK
where Xi = (yi, . . . , yi+L−1)

T and K = N − L + 1. The single choice of this step is the integer number
L such that 2 ≤ L ≤ N − 1 called window length. The output of the embedding step is the trajectory



Stats 2019, 2 459

matrix X = [X1 : · · · : XK] whose columns are the vectors Xi. The trajectory matrix is a Hankel matrix
in the sense that all elements on the anti-diagonal are equal.

In the singular value decomposition (SVD) step, the SVD of the trajectory matrix X is performed.
The eigenvalues of XXT and corresponding eigenvectors are denoted by λ1, . . . , λL (in decreasing
order of magnitude) and (U1, . . . , UL). If d = max{i, such that λi > 0} = rank(X), then the SVD of
the trajectory matrix in basic SSA can be written as X = X1 + · · ·+ Xd, where Xi =

√
λiUiVi

T and
Vi = XTUi/

√
λi (i = 1, . . . , d). The collection (

√
λi, Ui, Vi) is called ith eigentriple of the SVD.

In L1-SSA, the matrices Xi have the form Xi = wi
√

λiUiVi
T where wi is the weight

of singular value
√

λi. These weights are diagonal elements of the diagonal weight matrix
W = diag(w1, w2, . . . , wd, 0, 0, . . . , 0) and are computed such that

∥∥X−UWΣVT
∥∥

L1
is minimised;

where U = [U1 : · · · : UL], V = [V1 : · · · : VL], Σ = diag(
√

λ1,
√

λ2, . . . ,
√

λL) and ‖.‖L1
is the L1 norm

of a matrix. For more information, see [8].

Stage 2: Reconstruction (Grouping and Hankelization)

In the grouping step, the set of indices {1, . . . , d} is partitioned into m disjoint subsets I1, . . . , Im.
The matrix XI corresponding to the group I is defined as XI = Xi1 + · · ·+ Xip where I = {i1, . . . , ip}.
For example, if I = {2, 5, 6}, then XI = X2 + X5 + X6. After computing that matrices for the groups
I = I1, . . . , Im, the SVD of X can be written as

X = XI1 + · · ·+ XIm . (1)

In Hankelization step, we seek to transform each matrix XI of the grouping step into a Hankel
matrix so that these can subsequently be converted into a time series by combining the first column
(row) and the last row (column) of the Hankel matrix. In basic SSA, Hankelization is obtained via
diagonal averaging of the matrix elements over the anti-diagonals. Let A be an L× K matrix with
elements aij, 1 ≤ i ≤ L, 1 ≤ j ≤ K. By diagonal averaging, the matrix A is transferred into the Hankel
matrixHA with the elements ãs over the anti-diagonals (1 ≤ s ≤ N) using the following formula:

ãs = ∑
(l,k)∈As

alk
|As|

, (2)

where As = {(l, k) : l + k = s + 1, 1 ≤ l ≤ L, 1 ≤ k ≤ K} and |As| denotes the number of elements
in the set As. By applying diagonal averaging (2) to all the matrix components of (1), the following
expansion is obtained: X = X̃I1 + · · ·+ X̃Im , where X̃Ij = HXIj , j = 1, . . . , m. In L1-SSA, Hankelisation
corresponds to computing the median of the matrix elements over the anti-diagonals [8].

Imputation Based on SSA

Generally, in the iterative SSA imputation method, first, missing values are replaced by initial
values, and then reconstructed repeatedly until convergence occurs [11]. The last reconstructed values
are considered imputed values. This imputation algorithm contains the following steps:

1. Set suitable initial values in place of missing data (e.g., mean of the non missing data).
2. Choose reasonable values of window length (L) and the number of leading eigentriples (r).
3. Reconstruct the time series where its missing data are replaced with initial values.
4. Replace the values of time series at missing locations with their reconstructed values.
5. Reconstruct the time series.
6. Repeat steps 4 and 5 until the maximum absolute value of the difference between consecutive

replaced values of the time series by their reconstructed value is less than δ (δ is the convergence
threshold and is a small positive number).

7. Consider the final values replaced to be the imputed values.

It is noticeable that the SSA-based imputation can be performed via basic SSA or L1-SSA.
We applied both basic SSA and L1-SSA to impute missing values in this investigation. It is worth
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mentioning that the mean of the non-missing data was utilised as an initial value for a missing data
and not the final estimate. In the iterative SSA algorithm, initial values are replaced with reconstructed
value until convergence occurs.

3. Other Imputation Methods

The other imputation algorithms of univariate time series which were used in this study are
as follows:

1. Interpolation: linear, spline and Stineman interpolation.
2. Kalman smoothing (ARIMA): the Kalman smoothing on the state space representation of

an ARIMA model.
3. Kalman smoothing (StructTS): the Kalman smoothing on structural time series models fitted by

maximum likelihood.
4. Last observation carried forward (LOCF): each missing value is replaced with the most recent present

value prior to it.
5. Next observation carried backward (NOCB): the LOCF is done from the reverse direction, starting

from the back of the series.
6. Weighted moving average: Missing values are replaced by weighted moving average values.

The average in this implementation is taken from an equal number of observations on either
side of a missing value. For example, to impute a missing value at location i, the observations
yi−2, yi−1, yi+1, yi+2, are used to calculate the mean for moving average window size 4 (2 left and
2 right). Whenever all observations in the current window are not available (NA), the window
size is incrementally increased until there are at least 2 non-NA values present. The weighted
moving average is used in the following three ways:

• Simple moving average (SMA): all observations in the moving average window are equally
weighted for calculating the mean.

• Linear weighted moving average (LWMA): Weights decrease in arithmetical progression.
The observations directly next to the ith missing value (yi−1, yi+1) have weight 1/2,
the observations one further away (yi−2, yi+2) have weight 1/3, the next yi−3, yi+3 have
weight 1/4 and so on. This method is the variation of inverse distance weighting.

• Exponential weighted moving average (EWMA): Weights decrease exponentially.
The observations directly next to the ith missing value have weight 1

21 , the observations one
further away have weight 1

22 , the next have weight 1
23 and so on. This method is also the

variation of inverse distance weighting.

In this study, we use the moving average with a window of size 8 (4 left and 4 right). For SSA-based
imputation methods, the R package Rssa was employed together with the R scripts generated by the
authors. For more information on Rssa see [12–14]. All calculations of other imputation methods
were done with the help of the R package of imputeTS [15]. More detailed information about the
theoretical background of the algorithms such as interpolation and Kalman smoothing can be found in
the imputeTS manual [16]. Kalman smoothing (or the Kalman filter) is a well-known method of time
series analysis and it is not the smoothing part of interpolation.

4. Data

East Africa soil-carbonate-stable isotope data, compiled by Levin [4], has been widely used as
a valuable source of information for various research communities [4,17–19]. When compiling the
data, the δ13C was measured against the Vienna Pee Dee Belemnite (VPDB) per millilitre (%) [4].
The compilation does not include data from non-pedogenic carbonates. Age is reported in Ma (millions
of years ago) (For more information regarding the age calculation method see [4]). It is evident, while
attempts have been made for this compilation to be as complete as possible, the published dataset
contains large proportions of missing data. Also, the length of the original series was reduced from
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1360 observations to 491 (including missing values) because multiple pedogenic carbonate nodules
reported from a single soil outcrop (~1 m2) were replaced by their average value.

Figure 2 illustrates a plot of averaged δ13C values against age (black points). δ13C values range
from −4.65 (%) to +6.23 (%) and ages are assigned as in [4]. To identify the location of missing values
in the time series, a time interval of 0.02 Ma is considered and ages without a reported δ13C value are
marked as missing values.
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Figure 2. East Africa soil-carbonate-stable isotope (δ13C) time series.

The length of this data set is 491 and the number of NAs is 206. Hence, 42% of measurements
are missing. Figure 3 shows the length of NA gaps (consecutive NAs) in the time series and presents
a ranking of which gaps occur most often. The frequency of each gap and the associated number of NAs
of that gap are also reported in that figure. For example, the gap of length two (2NAs) occurs 23 times,
making up for overall 46 NAs; the gap of length three (3NAs) occurs eight times, making 24 NAs
totally; and so on. The most frequent gap is of length one, occurring 40 times, and the longest gap has
size 18.

5 NAs 6 NAs 8 NAs 18 NAs 3 NAs 9 NAs 4 NAs 1 NAs 2 NAs
Ranking of the different gaps

N
um

be
r

0

10

20

30

40

● ●Frequency of gap Total NAs for gap

Figure 3. Frequency distribution of gaps of different lengths (red) and the number of not available
observations (NAs) related to each gap (blue).
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5. Imputing Results

Figures 4–8 depict the application of imputation methods adopted in this study where the imputed
values are shown in red.

Figure 4 shows the results achieved by basic SSA and L1-SSA respectively. Note how the imputed
values are not only consistent with the general pattern of the data, but also contain volatility with
an amount similar to what is present in data without NAs, thereby providing the reader with a trusty
outlook for the long-term prospects of the soil carbonate time series.

The window length (L) and the number of leading eigentriples (r) are two important parameters
in SSA. It is well know that the performance of the imputation depends crucially on these parameters.
In the case of no missing data, the general recommendation is to choose the window length close
to half of the series length [20]. By replacing missing data with the mean of the non missing data
and following the recommendations in [20], we chose L = 245. In order to choose r, the information
contained in singular values and singular vectors of the trajectory matrix of the time series must be be
used. In doing so, a scree plot of the singular values, one-dimensional and two-dimensional figures of
the singular vectors, and the matrix of the absolute values of the weighted correlations can provide
a visual method to select r [21,22]. The analysis of the eigenvectors showed that the eigenvectors with
indices from 1 to 16 correspond to the signal and all the rest may be classified as being produced by
noise. Therefore, we chose r = 16 in order to reconstruct the time series. More information on choosing
parameters L and r can be found in [23–26].
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Figure 4. (A,B) Imputation by basic SSA and L1-SSA methods.

In Figure 5, imputed values generate a smooth line. The interpolation methods appear to have
difficulties in accurately capturing the variation when they are faced with a significant number of
missing values, as is clearly visible within the last 30% of the data.
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(B) Spline Interpolation
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Figure 5. (A–C) Imputation by interpolation methods.

The values imputed by Kalman Smoothing in Figure 6 are not significantly affected by extreme
δ13C values; hence, leaving a series which appears to have a number of peak values. This is important
as the complete-case analysis on the data may result in misleading conclusions by easily detecting
those points as outliers. Thus, those points should not be considered outliers.

It appears from Figure 7 that the LOCF and NOCB methods can be improved to provide better
estimates, as all imputed values are equal in a particular gap when LOCF (or NOCB) is employed.
We consider this aspect further in the discussion which follows.
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Figure 6. (A,B) Imputation by the Kalman smoothing method.
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Figure 7. (A,B) Imputation by LOCF and NOCB methods.
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Figure 8. (A–C) Imputation by weighted moving average methods.

As visual inspections fall short of providing sound evidence, to compare the different imputing
methods, statistical properties of the original and imputed time series are presented in Table 1.

To have a comprehensive view of different imputing methods employed here, the entire dataset
was treated as the main source. Then, 10% to 40% of the dataset was randomly deleted and removed
from the time series. Those missing data were then estimated with an imputing algorithm. The mean
squared error (MSE) was utilised as the main criterion to compare the performances of the imputing
algorithms. The mean values of MSEs are reported in Table 2, obtained from 1000 replications,
for various levels of missing values (10% to 40%). The results confirm that the SSA-based approach
works well. In addition, it can be concluded that the LOCF and NOCB methods have poor performance
compared to other imputing techniques.
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Table 1. Summary statistics of the original and imputed time series.

Time Series Mean Standard Deviation Median Skewness Kurtosis
Original −0.25 2.21 −0.33 0.30 −0.18

Basic SSA −0.43 2.10 −0.63 0.45 −0.15
L1-SSA −0.29 1.85 −0.39 0.40 0.57

Linear Interpolation −0.23 2.34 −0.37 0.32 −0.49
Spline Interpolation −0.04 2.85 −0.34 1.35 4.36

Stineman Interpolation −0.23 2.36 −0.38 0.33 −0.48
Kalman (ARIMA) −0.28 2.14 −0.35 0.31 −0.40
Kalman (StructTS) −0.35 2.09 −0.62 0.38 −0.34

LOCF −0.23 2.43 −0.36 0.21 −0.72
NOCB −0.24 2.51 −0.48 0.47 −0.32
SMA −0.29 2.19 −0.34 0.30 −0.42

LWMA −0.27 2.24 −0.36 0.28 −0.54
EWMA −0.26 2.32 −0.38 0.28 −0.64

Table 2. Mean squared errors (MSE) of different imputing methods.

Imputing Percent of Missing Values
Method 10% 20% 30% 40%

Basic SSA 1.12 1.15 1.20 1.24
L1-SSA 1.11 1.13 1.17 1.22

Linear Interpolation 1.37 1.38 1.43 1.48
Spline Interpolation 1.87 2.16 2.57 3.18

Stineman Interpolation 1.39 1.43 1.48 1.56
Kalman (ARIMA) 1.11 1.13 1.19 1.25
Kalman (StructTS) 1.22 1.25 1.27 1.29

LOCF 2.56 2.66 2.76 2.90
NOCB 2.53 2.68 2.77 2.92
SMA 1.21 1.24 1.27 1.33

LWMA 1.18 1.21 1.25 1.31
EWMA 1.23 1.26 1.31 1.38

6. Conclusions

Following the recent theoretical and empirical success of L1-SSA at providing more reliable
reconstructions and forecasts in comparison to basic SSA, in this study, the application of a number
of imputation methods, including L1-SSA, was evaluated. We initially explained the SSA technique
and produced an outline of the algorithms for imputing missing values based on L1-SSA. In brief,
to estimate a missing value in a time series, the algorithm is optimised based on minimising the
difference between consecutively replaced value and the attributed reconstructed one.

We compared the performances of SSA-based methods and interpolation, Kalman smoothing,
LOCF, NOCB and weighted moving average approaches. It is noteworthy that we analysed them with
1D imputation. In addition to the descriptive analyses reported in the previous section, the results
of cross-validation are also provided. The results yet again indicate the superiority of the SSA-based
models over other methods considered here for various levels of missing values.

As confirmed by the measures of central tendency, the introduced approach of missing values
processing is undoubtedly a practical benefit, in particular to those researchers working with time
series datasets with significant missing values. As was mentioned before, SSA is a non-parametric time
series analysis and signal processing technique which does not rely on any assumptions. Therefore,
it can practically lend itself as an imputation method to other types of datasets.
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Abbreviations

The following abbreviations are used in this manuscript:

SSA singular spectrum analysis
SVD singular value decomposition
NA not available
ARIMA autoregressive integrated moving average
LOCF last observation carried forward
NOCB next observation carried backward
SMA simple moving average
LWMA linear weighted moving average
EWMA exponential weighted moving average
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