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Abstract: Classification has applications in a wide range of fields including medicine, engineering,
computer science and social sciences among others. Liu et al. (2019) proposed a confidence-set-based
classifier that classifies a future object into a single class only when there is enough evidence to
warrant this, and into several classes otherwise. By allowing classification of an object into possibly
more than one class, this classifier guarantees a pre-specified proportion of correct classification
among all future objects. However, the classifier uses a conservative critical constant. In this paper,
we show how to determine the exact critical constant in applications where prior knowledge about
the proportions of the future objects from each class is available. As the exact critical constant is
smaller than the conservative critical constant given by Liu et al. (2019), the classifier using the exact
critical constant is better than the classifier by Liu et al. (2019) as expected. An example is provided
to illustrate the method.
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1. Introduction

Classification has applications in a wide range of fields including medicine, engineering, computer
science and social sciences among others. For overviews, the reader is referred to the books by [1–5].
In the recent paper, Liu et al. (2019) [6] proposed a new classifier based on confidence sets. It constructs
a confidence set for the the unknown parameter c, the true class of each future object, and classifies the
object as belonging to the set of classes given by the confidence set. Hence, this approach classifies
a future object into a single class only when there is enough evidence to warrant this, and into
several classes otherwise. By allowing classification of an object into potentially more than one class,
this classifier guarantees a pre-specified proportion of correct classification among all future objects
with a pre-specified confidence γ about the randomness in the training data based on which the
classifier is constructed.

However, the classifier of Liu et al. (2019) uses a conservative critical constant λ and so the
resultant confidence sets may be larger than necessary. The purpose of this paper is to determine
the exact critical constant λ and therefore to improve the classifier of Liu et al. (2019) in situations
where one has prior knowledge about the proportions of the (infinite) future objects belonging to the k
possible classes.

The layout of the paper is as follows. Section 2 gives a very brief review of the classifier of
Liu et al. (2019), and then considers the determination of the exact critical constant λ under the
additional knowledge/assumption given above. An illustrative example is given in Section 3 to
demonstrate the advantage of the improved classifier proposed in this paper when the additional
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assumption holds. Section 4 contains conclusions and discussions. Finally, some mathematical details
are provided in the Appendix A. As the same setting and notation as in the work by Liu et al. (2019)
are used, it is recommended to read this paper in conjunction with the one by Liu et al. (2019).

2. Methodology

2.1. Methodology

Let the p-dimensional data vector xl = (xl1, . . . , xlp)
T denote the feature measurement on an

object from the lth class, which has multivariate normal distribution N(µl , Σl), l = 1, . . . , k; here, k
denotes the total number of classes, which is a known number. The available training dataset is given
by T = {xl1, . . . , xlnl

; l = 1, . . . , k}, where xl1, . . . , xlnl
are i.i.d. observations from the lth class with

distribution N(µl , Σl), l = 1, . . . , k. The classification problem is to make inference about c, the true
class of a future object, based on the feature measurement y = (y1, . . . , yp)T observed on the object,
which is only known to belong to one of the k classes and so follows one of the k multivariate normal
distributions. In statistical terminology, c is the unknown parameter of interest that takes a possible
value in the simple parameter space C = {1, . . . , k}. We emphasize that c is treated as non-random in
both the work of Liu et al. (2019) and here.

A classifier that classifies an object with measurement y into one single class in C = {1, . . . , k} can
be regarded as a point estimator of c. The classifier of Liu et al. (2019) provides a set CT (y) ⊆ C as
plausible values of c. Depending on y and the training dataset T , CT (y) may contain only a single
value, in which case y is classified into one single class given by CT (y). When CT (y) contains more
than one value in C, y is classified as possibly belonging to the several classes given by CT (y). Hence,
in statistical terms, the classifier uses the confidence set approach. The inherent advantage of the
confidence set approach over the point estimation approach is the guaranteed 1− α proportion of
confidence sets that contain the true classes.

Specifically, the set CT (y) ⊆ C was constructed by Liu et al. (2019) as

CT (y) =
{

l ∈ C : (y− µ̂l)
TΣ̂−1

l (y− µ̂l) ≤ λ
}

, (1)

where µ̂l =
1
nl

∑nl
m=1 xlm and Σ̂l =

1
nl−1 ∑nl

m=1(xlm − µ̂l)(xlm − µ̂l)
T , l = 1, . . . , k, are, respectively, the

usual estimators of the unknown µl and Σl based on the training dataset T = {xl1, . . . , xlnl
; l =

1, . . . , k}, and λ is a suitably chosen critical constant whose determination is considered next.
The intuition behind the definition of CT (y) in Equation (1) is that a future object y is likely to
be from class l if and only if (y− µ̂l)

TΣ̂−1
l (y− µ̂l) ≤ λ.

Note that the proportion of the future confidence sets CT (yj) (j = 1, 2, . . .) that include the true
classes cj of yj (j = 1, 2, . . .) is given by lim infN→∞

1
N ∑N

j=1 I{cj∈CT (yj)}. Thus, it is desirable that

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α (2)

where 1− α is a pre-specified large (close to 1) proportion, e.g., 0.95. While the constraint in
Equation (2) is difficult to deal with, Liu et al. (2019) showed that a sufficient condition for guaranteeing
Equation (2) is

inf
cj∈C

Eyj |T I{cj∈CT (yj)} ≥ 1− α (3)

where Eyj |T denotes the conditional expectation with respect to the random variable yj conditioning

on the training dataset T (or, equivalently, {(µ̂1, Σ̂1), . . . , (µ̂k, Σ̂k)}).
Since the value of the expression on the left hand side of the inequality in Equation (3) (and

in Equation (2) as well) depends on T and T is random, the inequality in Equation (3) cannot
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be guaranteed for each observed T . We therefore guarantee Equation (3) with a large (close to 1)
probability γ with respect to the randomness in T :

PT

{
inf

cj∈C
Eyj |T I{cj∈CT (yj)} ≥ 1− α

}
= γ, (4)

which in turn guarantees that

PT

{
lim inf

N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α

}
≥ γ. (5)

Computer code in R was provided by Liu et al. (2019) to compute the λ that solves Equation (4),
which allows the confidence sets CT (yj) in Equation (1) to be constructed for each future object.

The interpretation of Equations (5) and (6) below is that, based on one observed training dataset T ,
one constructs confidence sets CT (yj) for the cjs of all future yj (j = 1, 2, · · · ) and claims that at least
1− α proportion of these confidence sets do contain the true cjs. Then, we are γ confident with respect
to the randomness in the training dataset T that the claim is correct.

A natural question is how to find the exact critical constant λ that solves the equation

PT

{
lim inf

N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α

}
= γ (6)

which is an improvement to the conservative λ that solves Equation (4) as given by Liu et al. (2019).
Next, we show how to find the exact critical constant λ under an additional assumption which is
satisfied in some applications.

Assume that, among the N future objects that need to be classified, Nl objects are actually from
the lth class with the distribution N(µl , Σl), l = 1, . . . , k. The additional assumption we make is that

lim
N→∞

Nl
N

= rl , l = 1, . . . , k (7)

where the rls are assumed to be known constants in the interval [0, 1]. Intuitively, this assumption
means that we know the proportions of the future objects that belong to each of the k classes,
even though we do not know the true class of each individual future object.

The assumption in Equation (7) is reasonable in some applications. For example, when screening
for a particular disease among a specific population for preventive purpose, there are k = 2 classes:
having the disease (l = 1) or not having the disease (l = 2). If we know the prevalence of the disease,
d, in the overall population, then r1 = d and r2 = 1− d, even though we do not know whether an
individual subject has the disease or not.

It is shown in the Appendix A that, under the assumption in Equation (7), Equation (6) is
equivalent to

Pul ,{vlm}

 k

∑
l=1

rl Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 ≥ 1− α

 = γ (8)

where
wl ∼ N(0, Ip), ul ∼ N(0, Ip/nl), vlm ∼ N(0, Ip), m = 1, · · · , nl − 1 (9)

and all the wls, uls and vlms are independent, Pwl | ul ,{vlm}{·} denotes the conditional probability about
wl conditioning on (ul , {vlm}), and Pul ,{vlm}{·} denotes the probability about (ul , {vlm}).
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2.2. Algorithm for Computing the Exact λ

We now consider how to compute the critical constant λ that solves Equation (8). Similar to
Liu et al. (2019), this is accomplished by simulation in the following way. From the distributions given
in Equation (9), in the sth repeat of simulation, s = 1, . . . , S, generate independent

us
l ∼ N(0, Ip/nl) , vs

l1, . . . , vs
l(nl−1) ∼ N(0, Ip) ; l = 1, . . . , k.

and find the λ = λs so that

k

∑
l=1

rl Pwl | us
l ,{vs

lm}

(wl − us
l )

T

(
1

nl − 1

nl−1

∑
m=1

vs
lmvs

lm
T

)−1

(wl − us
l ) ≤ λs

 = 1− α. (10)

Repeat this S times to get λ1, . . . , λS and order these as λ[1] ≤ . . . ≤ λ[S]. It is well known (cf. [7])
that λ[γS] converges to the required critical constant λ with probability one as S→ ∞. Hence, λ[γS] is
used as the required critical constant λ for a large S value, e.g., 10,000.

To find the λs in Equation (10) for each s, we use simulation in the following way. Generate
independent random vectors {wlq : q = 1, . . . , Q; l = 1, . . . , k} from N(0, Ip), where Q is the number
of simulations for finding λs. For each given value of λs > 0, the expression on the left-side of
Equation (10) can be computed by approximating each of the k probabilities involved using the
corresponding proportions out of the Q simulations. It is also clear that this expression is monotone
increasing in λs. Hence, the λs that solves Equation (10) can be found by using a searching algorithm;
for example, the bi-section method is used in our R code. To approximate reasonably accurately the
probabilities with the proportions, a large Q value, e.g., 10,000, should be used.

It is noteworthy from Equations (8) and (9) that λ depends only on γ, α, p, k, n1, . . . , nk, r1, . . . , rk
(and the numbers of simulations S and Q, which determine the numerical accuracy of λ due to
simulation randomness). It is also worth emphasizing that only one λ needs to be computed based on
the observed training dataset T , which is then used for constructing the confidence sets CT (yj) and
classifying accordingly all future objects.

It is expected that larger values of S and Q will produce more accurate λ value, one can use the
method discussed by Liu et al. (2019) to assess how the accuracy of λ depends on the values of S and
Q. Similar to the work by Liu et al. (2019), it is recommended to set S = 10,000 and Q = 10,000 for
reasonable computation time and accuracy of λ due to simulation randomness.

3. An Illustrative Example

As in the work of Liu et al. (2019), the famous iris dataset introduced by Fisher (1936) [8] is
used in this section to illustrate the method proposed in this paper. The dataset contains k = 3 classes
representing the three species/classes of Iris flowers (1 = setosa; 2 = versicolor; and 3 = virginica),
and has ni = 50 observations from each class in T . Each observation gives the measurements
(in centimeters) of the four variables: sepal length and width, and petal length and width.

We focus on the case that only the first two measurements, sepal length and width, are
used for classification in order to easily illustrate the method since the acceptance sets Al ={

y ∈ Rp : (y− µ̂l)
TΣ̂−1

l (y− µ̂l) ≤ λ
}

, l = 1, 2, 3 are two-dimensional and thus can be easily plotted
in this case. Based on the fifty observations on p = 2 measurements from each of the three classes, the
µ̂l and Σ̂l were given by Liu et al. (2019).

For α = 5% and γ = 95%, the critical constant λ that solves Equation (4) was computed by Liu
et al. (2019) to be λcon = 9.175 using S = 10,000 and Q = 10,000. The corresponding acceptance
sets, based on which the confidence set CT (y) in Equation (1) can be constructed directly (cf. [6]),
are given by

Acon
l =

{
y ∈ Rp : (y− µ̂l)

TΣ̂−1
l (y− µ̂l) ≤ λcon

}
, l = 1, 2, 3
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and plotted in Figure 1 by the dotted ellipsoidal region centered at µ̂l , marked by “+”.
Now, assume that we have the knowledge about the proportions of the three species among all

the Iris flowers (r1, r2, r3) and the Iris flowers that need to be classified reflect this composition. For the
same α = 5%, γ = 95%, S = 10, 000 and Q = 10, 000, and with, for example, (r1, r2, r3) = (0.3, 0.4, 0.3),
the exact critical constant λ that solves Equation (6) is computed by our R program to be λexa = 7.737.
As expected, λexa is smaller than λcon and, as a result, the corresponding confidence set CT (y) in
Equation (1) with λ = λexa and acceptance sets Aexa

l =
{

y ∈ Rp : (y− µ̂l)
TΣ̂−1

l (y− µ̂l) ≤ λexa

}
, l =

1, 2, 3, are also smaller than the Acon
l given by Liu et al. (2019).

Figure 1. The exact (solid) and conservative (dotted) acceptance sets for the three classes.

The acceptance sets Aexa
l , l = 1, 2, 3 are plotted in Figure 1 by the solid ellipsoidal regions.

For example, if a future object has y = (4.79, 2.35), marked by a solid dot in Figure 1, then the
conservative confidence set of Liu et al. (2019) classifies the object as from Classes 2 and 3 since this
y belongs to both Acon

2 and Acon
3 . However, the new exact confidence set of this paper classifies the

object as from Class 2 only since this y belongs to Aexa
2 but not Aexa

1 or Aexa
3 . This demonstrates the

advantage of the new confidence set using λexa in this paper over the conservative confidence set using
λcon by Liu et al. (2019). We have also computed the value of λexa for several other given (r1, r2, r3).
For example, λexa = 7.706 for (r1, r2, r3) = (1/3, 1/3, 1/3), λexa = 7.865 for (r1, r2, r3) = (0.1, 0.45, 0.45),
and λexa = 8.019 for (r1, r2, r3) = (0.1, 0.7, 0.2). The conservative λcon = 9.175 is considerably, ranging
from 14% to 19%, larger than these λexa values.

One can download from http://www.personal.soton.ac.uk/wl/Classification/ the R computer
program ExactConfidenceSetClassifier.R that implements this simulation method of computing
the critical constant λexa. The computation of one λexa using (S, Q) = (10,000, 10,000) takes about 13 h
on an ordinary Window’s PC (Core(TM2) Duo CPU P8400@2.26 GHz).

However, it must be emphasized the new confidence set is valid only if the assumption in
Equation (7) is true. If the assumption does not hold, then the conservative confidence set of Liu et al.
(2019) should be used in order for the statement in Equation (5) to hold.

4. Conclusions

The probability statement in Equation (5) allows that the confidence sets by Liu et al. (2019)
have the nice interpretation that, with confidence level γ about the randomness in the training dataset
T , at least 1 − α proportion of the confidence sets CT (yj), j = 1, 2, . . . contain the true classes cj,
j = 1, 2, . . . of the future objects yj, j = 1, 2, . . .. However, the confidence set given by Liu et al. (2019)
is conservative in that the λ in the confidence set in Equation (1) is computed to solve the equation in
Equation (4), which implies the constraint in Equation (5). This paper considers how to compute the λ

http://www.personal.soton.ac.uk/wl/Classification/
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in the confidence set in Equation (1) so that the probability in Equation (5) is equal to γ, i.e. from the
Equation (6). The confidence sets using the λ that solves the Equation (6) have the confidence level
equal to γ and so are exact. We show that this can be accomplished under the extra assumption given
in Equation (7), which may be sensible in some applications.

As the λexa that solves Equation (6) is smaller than the λcon that solves Equation (4) used by
Liu et al. (2019), the new confidence sets are smaller and so better than the confidence sets given by
Liu et al. (2019).

One wonders whether there are other sensible assumptions that allow the λ to be solved from
Equation (6). This warrants further research.

If CT (y) for a future object y is empty then, since y must be from one of the k classes, CT (y) can
be augmented to include the class that has the largest posterior probability using the naive Bayesian
classifier as in the work by Liu et al. (2019). The probability statement in Equation (5) clearly holds
under this augmentation to CT (y) only when CT (y) is empty.

There are applications in which information about the proportions rl would be known with
uncertainty. For example, the training set may be a representative sample from the population and
as such the proportion of each class can be estimated, or the proportions might have been estimated
by a previous independent auxiliary dataset. If one replaces the rls in Equation (8) by these estimates
then the λ solved in Equation (8) will depend on these estimates and so be random. As a result, the
probability statement in Equation (5) is no longer valid. How to deal with these applications warrants
further research.

Finally, the classifier of Liu et al. (2019) is developed from the idea of Lieberman et al. [9,10].
The same idea was also used by, for example, Mee et al. (1991) [11], Han et al. (2016) [12], Liu et al.
(2016) [13] and Peng et al. (2019) [14], who all used conservative critical constants as did Liu et al.
(2019). The idea of this paper can be applied to all these works to compute exact critical constants
under suitable extra assumptions.
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Appendix A. Mathematical Details

In this appendix, we show the equivalence of Equations (6) and (8) under the assumption in
Equation (7). Note first the well known fact (cf. [15]) that µ̂l ∼ N(µl , Σl/nl), (nl − 1)Σ̂l = ∑nl−1

m=1 zlmzT
lm

with zl1, . . . , zl(nl−1) being i.i.d. N(0, Σl) random vectors independent of µ̂l .
Among the N future objects that need to be classified, let Nl be the number of objects actually

from the lth class with the feature measurements denoted as yl1, . . . , ylNl
, l = 1, . . . , k. Clearly, we have

N1 + · · ·+ Nk = N and

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)}

= lim inf
N→∞

1
N

k

∑
l=1

Nl

∑
i=1

I{cl∈CT (yli)}

= lim inf
N→∞

k

∑
l=1

Nl
N

(
1
Nl

Nl

∑
i=1

I{cl∈CT (yli)}

)
. (A1)
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We have from the classical strong law of large numbers (cf. [16]) that

lim
Nl→∞

1
Nl

Nl

∑
i=1

[
I{cl∈CT (yli)} − Eyli |T I{cl∈CT (yli)}

]
= 0, (A2)

in which the conditional expectation Eyli |T is used since all the confidence sets CT (yli) (i = 1, . . . , Nl)
use the same training dataset T . By noting that yli, i = 1, . . . , Nl are from the lth class and thus have
the same distribution N(µl , Σl), we have from the definition of CT (y) in Equation (1) that

Eyli |T I{cl∈CT (yli)}

= Pyl1|T {cl ∈ CT (yl1)}

= Pyl1|T

{
(yl1 − µ̂l)

TΣ̂−1
l (yl1 − µ̂l) ≤ λ

}
= Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 (A3)

where

wl = Σ−1/2
l (yl1 − µl) ∼ N(0, Ip)

ul = Σ−1/2
l (µ̂l − µl) ∼ N(0, Ip/nl)

vlm = Σ−1/2
l zlm ∼ N(0, Ip), m = 1, · · · , nl − 1

with all the wls, uls and vlms being independent. Note that wl depends on the future observation
yl1 but not the training dataset T , while ul and {vlm} depend on the training dataset T but not the
future observations.

Combining the assumption in Equation (7) with Equations (A1)–(A3) gives

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} =
k

∑
l=1

rl Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 ,

from which the equivalence of Equations (6) and (8) follows immediately.
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