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Abstract: The paper completes the multi-parametrical fitting methods, which are based on metrics
induced by the non-Euclidean Lq-norms, by deriving the errors of the optimal parameter values.
This was achieved using the geometric representation of the residuals sum expanded near its minimum,
and the geometric interpretation of the errors. Typical fitting methods are mostly developed based
on Euclidean norms, leading to the traditional least–square method. On the other hand, the theory
of general fitting methods based on non-Euclidean norms is still under development; the normal
equations provide implicitly the optimal values of the fitting parameters, while this paper completes
the puzzle by improving understanding the derivations and geometric meaning of the optimal errors.
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1. Introduction

The keys to evaluating an experimental result—e.g., compare it with the result anticipated by
theories—require first the right selection of potential statistical tools and techniques for correctly
processing and analyzing this result. This “processing and analyzing” involves two general types
of approximation problems: One problem concerns a function fitting to given set of data. The other
problem arises when a function is given analytically by an explicit mathematical type but we would
like to find an alternative function with simpler form.

Let V(x; p1, p2 , . . . , pn), with x ∈ D ⊆ < and (p1, p2 , . . . , pn) ∈
{
Dp1 ⊗Dp2 ⊗ . . .⊗Dpn

}
⊆ <

n,
denote a multi-parametrical approximating function [1–6], symbolized as V(x;

{
pk

}
), for short.

The widely used, traditional fitting method of least squares involves minimizing the sum of
the squares of the residuals, i.e., the squares of the differences between the function f (x) and the
approximating function that represents the statistical model, V(x). However, the least-square method is
not unique. For instance, the absolute deviations minimization can also be applied. Generally, as soon
as the desired norm of the metric space is given, the respective method of deviations minimization
is defined. The least-square method is based on the Euclidean norm, while the alternative absolute
deviations method is based on the uniform or Taxicab norm. In general, an infinite number of fitting
methods can be defined, based on the metric space induced by the Lq-norm; this case is studied here
in detail.

Given the metric induced by the Lq-norm, the functional of the total Lq-normed residuals [7–12],
noted also as total deviations (TD), between the fixed f (x) and the approximating V(x;

{
pk

}
) functions

in the domain D, is given by:

TDq(
{
pk

}
)q =

∫
x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣q dx . (1)
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The functional of total deviations, TDq(
{
pk

}
)q, is expanded (Taylor series) near its local minimum:

TDq(
{
pk

}
)q = A0(q) +

n∑
k1,k2=1

A2,k1k2(q) · (pk1 − pk1
∗) · (pk2 − pk2

∗) + O
( ∣∣∣pk − pk

∗
∣∣∣3) , (2a)

where
A0(q) = TDq(

{
pk
∗
}
)q , (2b)

is the total deviation function at its global minimum, while

A2,k1k2(q) =
1
2
·

∂2

∂pk1∂pk2

TDq(
{
pk

}
)q

∣∣∣∣∣∣
{pk}={p∗k}

, (2c)

is the Hessian matrix at this minimum, where all the components are positive, i.e., A0, A2,k1k2 ≥ 0,
∀ k1, k2 = 1, 2, . . . , n.

By expanding the approximating function V(x;
{
pk

}
) near the TD’s minimum, [7] showed the

following equations:

A0(q) =
∫

x∈D

|u|q dx , (3a)

and
A2,k1k2(q) = δ1 q · γk1k2+
q
2 ·

∫
x∈D

[
|u|q−1

· sgn(u) · ∂
2V(x; {pk

∗})
∂pk1

∂pk2
+ (q− 1) · |u|q−2

·
∂V(x; {pk

∗})
∂pk1

·
∂V(x; {pk

∗})
∂pk2

]
dx , (3b)

where

γk1k2 ≡

∑
∀i :

u(xi) = 0

1∣∣∣u′(xi)
∣∣∣ · ∂V(xi;

{
pk
∗
}
)

∂pk1

·
∂V(xi;

{
pk
∗
}
)

∂pk2

. (3c)

The normal equations are given by∫
x∈D

|u|q−1
· sgn(u) ·

∂V(x;
{
pk
∗
}
)

∂pl
dx = 0, ∀ l = 1, 2, . . . , n . (4)

where we set u = u(x) ≡ V(x;
{
pk
∗
}
) − f (x) for short.

The purpose of this paper is to present the geometric interpretation of the errors of the optimal
parameter values, derived from a multi-parametrical fitting, based on a metric induced by the
non-Euclidean Lq-norm. In Section 2, we derive the smallest possible value of the variation of the total
deviations from its minimum, δTD, also called, the error of the total deviations value. In Section 3,
we describe the geometric interpretation of the errors of the optimal parameter values, while in
Section 4, we use this geometry to derive the exact equations that provide these errors. In Section 5,
we apply the developed formulation for the 1-dim and 2-dim cases. Finally, Section 6 summarizes
the conclusions.

2. The Error of the Total Deviation Values

The total deviations functional, TDa(
{
pk

}
)q, has a minimum value A0(q). The difference between

these functionals cannot be arbitrarily small. Here we derive the smallest possible value of the variation
of the total deviations from its minimum, δTD, also called, the error of the total deviations value.
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First, we mention that the transition of the continuous to the discrete way for describing the values
of x, can be realized as follows:

b∫
a

(· · · ) dx = lim
N→∞

b− a
N
·

N∑
i=1

(· · · ) , (5)

while the expression of the total deviations is given by

TDq(
{
pk

}
)q =

∫
x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣qdx ≈ L
N ·

N∑
i=1

∣∣∣V(xi;
{
pk

}
) − f (xi)

∣∣∣q = xres ·
N∑

i=1

∣∣∣V(xi;
{
pk

}
) − f (xi)

∣∣∣q, (6)

for large values of N, where L is the total length of the domain D, and the resolution of x-values is
xres = L/N. In the discrete case, it is sufficient to express the total deviations simply by

TDq(
{
pk

}
)q =

N∑
i=1

|ui|
q , (7)

where we set ui ≡ u(xi;
{
pk

}
) ≡ V(xi;

{
pk

}
) − f (xi), Vi ≡ V(xi;

{
pk

}
) and yi ≡ f (xi).

Then, we calculate the error of the total deviations values, δTD, near the local minimum of
TDq(

{
pk

}
)q, that is, for

{
pk

}
=

{
pk
∗
}
, ∀ k = 1, 2, . . . , n. Thus,

δTD =
[
δTDq(

{
pk

}
)q

] ∣∣∣∣
{pk}={pk

∗}
=

δ N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

. (8)

In the case of a large number of sampling elements, we adopt the continuous description, i.e.,

N∑
i=1

|ui|
q
≈ N ·

〈
|u|q

〉
, with

〈
|u|q

〉
=

∫
u∈Du

|u|qS(u) du , (9)

and S(u) is the distribution of u-values in their domain Du, that is,

〈
|u|q

〉
=

1
L
·

∫
x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣q dx , (10)

since x-values are equidistributed in their domain D. Therefore,

δ
N∑

i=1

|ui|
q
≈ δN ·

〈
|u|q

〉
+ N · δ

〈
|u|q

〉
=

〈
|u|q

〉
+ N · δ

〈
|u|q

〉
≈

1
N

N∑
i=1

|ui|
q + N · δ

〈
|u|q

〉
, (11)

where the number of the sampling elements, N, can be varied by 1, thus δN = 1. Hence,δ N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

≈
1
N

 N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

+ N · [δ
〈
|u|q

〉
]
∣∣∣
{pk}={pk

∗}
, (12)

where  N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

= A0(q). (13)
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Moreover, we show that the far right part of Equation (12) is zero. Indeed:

δ
〈
|u|q

〉
=

1
L
· δ

∫
x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣q dx =
1
L
·

n∑
k=1

A1,k(q) δpk , (14)

where

A1,k(q) = q ·
∫

x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣q−1
sign[V(x;

{
pk

}
) − f (x)] ·

∂V(x;
{
pk

}
)

∂pk
dx , (15)

and thus, we obtain:

[δ
〈
|u|q

〉
]
∣∣∣
{pk}={pk

∗}
=

1
L
·

n∑
k=1

A1,k(q)
∣∣∣
{pk}={pk

∗}
δpk
∗ = 0 , (16)

leading to the set of the following n normal equations:

0 = A1,k(q)
∣∣∣
{pk}={pk

∗}
= q ·

∫
x∈D

∣∣∣V(x;
{
pk
∗
}
) − f (x)

∣∣∣q−1
sign[V(x;

{
pk
∗
}
) − f (x)] · ∂V(x;{pk})

∂pk

∣∣∣∣
{pk}={pk

∗}
dx. (17)

Finally, δ N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

=
1
N

A0(q) , (18)

hence:
δTD(q) =

1
N

A0(q) . (19)

Similarly, for the continuous way of x-values, we have:

TDq(
{
pk

}
)q =

∫
x∈D

|u|q dx ≈ xres ·

N∑
i=1

|ui|
q , (20a)

δTD ≈ xres ·

δ N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

≈
1
N

xres ·

 N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

=
1
N

A0(q) , (20b)

A0(q) =


∫

x∈D

|u|q dx


∣∣∣∣∣∣∣∣
{pk}={pk

∗}

≈ xres ·

 N∑
i=1

|ui|
q


∣∣∣∣∣∣∣
{pk}={pk

∗}

, (20c)

δTD(q) =
1
N

A0(q) ≈
xres

L
A0(q) . (20d)

The result of Equation (20d) will be used in Section 4 on the expression of the optimal errors.

3. The Uncertainty Manifold

We define the deviation of the total deviations functional from its minimum, ∆TD ≡ TDq(
{
pk

}
)q
−

TDq(
{
pk
∗
}
)q > 0, which is expressed with the quadratic form:

∆TD(
{
δpk

}
) =

n∑
k1,k2=1

A2,k1k2(q) · δpk1δpk2 , (21)

where we set δpk ≡ pk − pk
∗, ∀k = 1, . . . , n.

Given a particular value of ∆TD, each of these parameter deviations, e.g., the k-th component δpk,
has a maximum value δpk,max. This maximum value δpk,max of each parameter deviation δpk, depends
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on the value of ∆TD. The smallest possible value of δpk,max is deduced when ∆TD also reaches its
smallest value. The smallest possible value of δpk,max interprets the error δpk

∗ of the optimal parameter
values pk

∗, ∀k = 1, 2, . . . , n; this is achieved when the particular value ∆TD is given by the smallest
possible value of a deviation from the TD’s minimum, δTD. In Section 2, we showed that δTD equals:

δTD(q) =
1
N
·A0(q) . (22)

There are cases, where the total deviations value is subject to an experimental, reading, or any
other type of a non-statistical error; this is, in general, called the resolution value Tres. Then, the smallest
possible value δTD is meaningful only when it stays above the threshold of Tres; in other words,
δTD ≥ Tres or, if A0/N ≤ Tres, then δTD = Tres. Hence,

δTD(q) =

 1
N ·A0(q) , if A0

N > Tres ,
Tres , if A0

N ≤ Tres .
(23)

The quadratic form in Equation (21) is positive definite, and thus it defines an n-dimensional
paraboloid (hypersurface with a local minimum) immersed into an (n+1)-dimensional space.
The corresponding n + 1 axes are given by the n parameter deviations

{
δpk

}n
k=1 and the deviation ∆TD,

describing thus, the (n+1)-dimensional space as

(δp1, δp2 , . . . , δpn; ∆TD) ∈
{
Dp1 ⊗Dp2 ⊗ . . .⊗Dpn

}
⊗D∆TD ⊆ <

n+1, (24)

where D∆TD =
{
∆TD ≥ δTD > 0\∆TD ∈ <

}
is the domain of the deviation values, ∆TD.

Given a fixed value of ∆TD, and that can be the value of the smallest deviation, i.e.,
δTD = ∆TD(

{
δpk

}
), the set of the parameter deviations

{
δpk

}n
k=1 defines a locus of an n-dimensional

ellipsoid, rotated with respect to the axes
{
δpk

}n
k=1. This n-dimensional ellipsoid is bounded by the

(n − 1)-dimensional locus of intersection between the n-dimensional paraboloid ∆TD = ∆TD(
{
δpk

}
)

and the n-dimensional hyperplane ∆TD = δTD.
The n-dimensional ellipsoid is called uncertainty manifold, denoted by Un, for short. This is

a manifold with an edge, meaning thus, its boundary, denoted by ∂Un. In general, the edge of
an n-dimensional manifold is an (n − 1)-dimensional manifold. Here, the edge ∂Un involves the
(n − 1)-dimensional locus of intersection between the n-dimensional paraboloid ∆TD = ∆TD(

{
δpk

}
)

and the n-dimensional hyperplane ∆TD = δTD. The n-dimensional cuboid, which encloses the
uncertainty manifold’s edge ∂Un, is also a manifold with an edge and is denoted by Ucn. Its edge is an
(n − 1)-dimensional manifold denoted by ∂Ucn.

For example, consider the case of two-parametrical approximating functions, V(x; p1, p2). Then,
the quadratic form of Equation (21) defines the two-dimensional paraboloid ∆TD = ∆TD(δp1, δp2),
immersed into the three-dimensional space with Cartesian axes given by (x ≡ δp1, y ≡ δp2, z ≡ ∆TD).
The two-dimensional ellipsoid is defined by the space bounded by the locus δTD = ∆TD(δp1, δp2),
which is the intersection of the two-dimensional paraboloid ∆TD = ∆TD(δp1, δp2) and the
two-dimensional hyperplane ∆TD = δTD. For visualizing this example, see Figure 1.
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Figure 1. (a) Scheme of the n-dimensional paraboloid, ∆TD(
{
δpk

}
) , which is constructed as the

deviation of the total residuals or deviations functional, total deviations (TD), from its minimum value,
A0, as shown in Equation (21); the illustrated example is for n = 2. (b) The intersection between the
paraboloid and a constant hyper-plane ∆TD = δTD is a rotated n-dimensional ellipsoid, or a rotated
ellipsis for the case of n = 2, that is the uncertainty manifold ∂U2 (enclosing U2). The rectangular
adjusted on the extrema of ∂U2 denotes the manifold ∂Uc2 (enclosing Uc2).

Next, we will use the concept of the hyper-dimensional uncertainty manifold to derive the
expressions of the errors of the optimal parameter values.

4. Derivation of the Errors of the Optimal Parameter Values

The expressions of the errors of the optimal parameter values—or simply, optimal errors—are
well-known in the case of the least-square and other Euclidean based fitting methods. In [7], we have
used the error expression, which is caused by the curvature, in order to have an estimate of the optimal
errors (for applications, see [11–18]). Here, we will see the formal geometric derivation of the optimal
error expressions.

First, we note that the edge of the uncertainty manifold, ∂Un, has a number of n extrema, denoted
by

{
C(k)

}n

k=1
, and they are related to the errors of the parameters optimal values,

{
δpk
∗
}n
k=1, as follows:

The position vector
→

∆
(µ)

of the corresponding point C(µ),∀µ = 1, 2, . . . , n, consists of n components

each, i.e.,
→

∆
(µ)

= (∆(µ)
1, ∆(µ)

2, . . . , ∆(µ)
n). Thus,

C(1) :
(
∆(1)

1, ∆(1)
2, . . . , ∆(1)

n
)
=
→

∆
(1)

C(2) :
(
∆(2)

1, ∆(2)
2, . . . , ∆(2)

n
)
=
→

∆
(2)

· · ·

C(n) :
(
∆(n)

1, ∆(n)
2, . . . , ∆(n)

n
)
=
→

∆
(n)

.

(25)

These components are given by the condition:

{
∂∆TD(

{
δpk

}
)

∂δpν

} ∣∣∣∣∣∣
{δpk}={∆(µ)

k}

=

 ∂
∂δpν

n∑
k1,k2=1

A2,k1k2(q) · δpk1 · δpk2


∣∣∣∣∣∣∣∣
{δpk}={∆(µ)

k}

= 0, (26)

∀ν = 1, 2, . . . , n, with ν , µ.
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The above (n − 1) equations, given in Equation (26), together with

δTD = ∆TD({δpk} = {∆
(µ)

k}) =
n∑

k1,k2=1

A2,k1k2(q) · ∆
(µ)

k1 ∆(µ)
k2 , (27)

are sufficient for the calculation of the n unknown components of
→

∆
(µ)

= (∆(µ)
1, ∆(µ)

2, . . . , ∆(µ)
n).

The (n − 1) equations, given in Equation (26), arise from the fact that each of the errors of
parameters optimal values, i.e., the k-th, δpk

∗ is derived from the maximum value of the corresponding
component δpk, that is, δpk,max. Hence, the existence of maximum values

{
δpk
∗
}n
k=1, i.e., ∀k = 1, 2, . . . , n,

∃δpk
∗
∈ Un: ∀δpk ∈ Un, δpk

∗
≥ δpk, leads to the errors estimation,

{
δpk
∗
}n
k=1 =

{
δpk,max

}n

k=1
. These

maximum values, are located on the edge of the uncertainty manifold ∂Un, that is the hypersurface
δTD =

∑n
k1,k2=1 A2,k1k2(q) · δpk1δpk2 , i.e., ∃δpk

∗
∈ ∂Un.

The maximization of the µ-th parameter deviation δpµ within uncertainty manifold is derived
as follows: Since δTD = ∆TD(

{
δpk

}
), we can express δpµ in terms of δpν, ∀ν = 1, 2, . . . , n with

ν , µ, i.e., δpµ = δpµ(
{
δpk

}n
k=1, k,µ). Then, the procedure of finding the maximum value of δpµ,

that is, δpµ∗ = δpµ
∣∣∣
max, involves finding all the derivatives ∂/∂δpν, ∀ν = 1, 2, . . . , n with ν , µ of

δpµ = δpµ(
{
δpk

}n
k=1, k,µ), or equivalently, of δTD = ∆TD(

{
δpk

}
) (implicit derivatives). The (n − 1)

equations ∂δpµ(
{
δpk

}n
k=1, k,µ)/∂δpν = 0 lead to the (n− 1) relationships δpν = δpν(δpµ), ∀ν = 1, 2, . . . , n

with ν , µ, which together with δpµ = δpµ(
{
δpk

}n
k=1, k,µ), leads to the specific values of

{
∆(µ)

k = δpk
}n

k=1
.

Yet, only the µ-th component ∆(µ)
µ = δpµ gives the error δpµ∗ = δpµ

∣∣∣
max, i.e.,

δpµ∗ = ∆(µ)
µ . (28)

In Appendix A, we solve Equations (26) and (27), where, we concluded that

∆(m1)m2 =
σ2

m1m2√
σ2m1m1

=
√

δTD ·

(
A2(q)

−1
)
m1m2√(

A2(q)
−1

)
m1m1

, (29a)

or

∆(m1)m2 =


√

1
N ·A0(q) ·

(A2(q)
−1)m1m2√

(A2(q)
−1)m1m1

, if A0
N > Tres,

√
Tres ·

(A2(q)
−1)m1m2√

(A2(q)
−1)m1m1

, if A0
N ≤ Tres,

(29b)

and thus, from Equation (28), we finally derive the errors:

δpk
∗ = ∆(k)

k =
√
δTD(q) ·

(
A2(q)

−1
)
k k

=


√

1
N ·A0(q) ·

(
A2(q)

−1
)
k k

, A0
N > Tres,√

Tres ·
(
A2(q)

−1
)
k k

, A0
N ≤ Tres,

(30a)

∀k = 1, 2, . . . , n.
Finally, taking into account the resolution of each parameter value,

{
pres,k

}n
k=1, we have:

δp∗k = Max
(
pres,k,

√
δTD(q) ·

(
A2(q)

−1
)
k k

)
, (30b)

where √
δTD(q) ·

(
A2(q)

−1
)
k k

=


√

1
N ·A0(q) ·

(
A2(q)

−1
)
k k

, if A0
N > Tres ,√

Tres ·
(
A2(q)

−1
)
k k

, if A0
N ≤ Tres ,

(30c)
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∀ k = 1, 2, . . . , n.

5. Formulation of the Cases of n = 1 and n = 2 Dimensional Uncertainty Manifold

5.1. The Case of n = 1

Let us begin with the case of a one-dimensional paraboloid, given simply by the parabola

∆TD(δp) = A2(q) · δp2 , (31)

corresponding to uni-parametrical approximating functions. The locus of intersection between this
parabola and the line ∆TD = δTD (that is, the one-dimensional hyperplane) are the two points
δp± = ±

√
δTD/A2(q). The uncertainty manifold U1 is the one-dimensional ellipsoid, defined by

the line segment δp− ≤ δp ≤ δp+, which is enclosed by the points δp±. In this case, the edge of the
uncertainty manifold ∂U1 is restricted to the zero-dimensional space composed only by the two points
δp±. The manifolds U1 and Uc1 coincide (similarly with their edges, ∂U1 and ∂Uc1, respectively). Hence,

δp∗ =

√
δTD(q)
A2(q)

=


√

1
N ·A0(q)/A2(q),

A0
N > Tres,√

Tres/A2(q),
A0
N ≤ Tres.

(32)

5.2. The Case of n = 2

The case of bi-parametrical approximating functions is characterized by the two-dimensional
paraboloid,

∆TD(δp1, δp2) = A11(q) · δp1
2 + 2A12(q) · δp1δp2 + A22(q) · δp2

2, (33)

which is illustrated in Figure 1. The locus of intersection between this paraboloid and the plane
∆TD(δp1, δp2) = δTD is given by the rotated ellipse:

δTD = A11(q) · δp1
2 + 2A12(q) · δp1δp2 + A22(q) · δp2

2, (34)

written suitably as (
δp′1
b1

)2

+

(
δp′2
b2

)2

= 1, (35)

after the rotation transformation(
δp1

δp2

)
=

(
cosθ sinθ
− sinθ cosθ

)(
δp′1
δp′2

)
, or (36)

→

δp = R
→

δp′, (37)

where

R = R(θ) =
(

cosθ sinθ
− sinθ cosθ

)
,
→

δp ≡
(
δp1

δp2

)
,
→

δp′ ≡
(
δp′1
δp′2

)
. (38)

Then,

δTD =
→

δp
t
A2
→

δp =
→

δp′ t(RtA2 R)
→

δp′ =
→

δp′ tB
→

δp′, (39)

where the diagonal matrix

B = B(q) =
(

B11(q) 0
0 B22(q)

)
, (40)
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has the following elements

B± =
1
2

[
A11 + A22 ±

√
(A11 −A22)

2 + 4A12
2

]
, B11 = B+, B22 = B−, (41)

which are the eigenvalues of the matrix A2(q). The ellipsis’ major/minor axes in Equation (35) are:

b1 =

√
δTD
B11

, b2 =

√
δTD
B22

. (42)

while the rotation angle θ in Equation (36) is given by

tan 2θ =
2A12

A22 −A11
. (43)

The uncertainty manifold U2 is the rotated 2-dim ellipsoid in the (δp1, δp2) axes, defined by:

A11(q) · δp1
2 + 2A12(q) · δp1δp2 + A22(q) · δp2

2
≤ δTD , (44)

or, in the rotated axes (δp′1, δp′2), is simply given by:(
δp′1
b1

)2

+

(
δp′2
b2

)2

≤ 1 , (45)

which is enclosed by the ellipse corresponding to the equal sign of Equation (45), that is the edge of the
uncertainty manifold, ∂U2.

Finally, the errors are

δp∗1 =
√
δTD(q) ·

(
A2(q)

−1
)
1 1

=

√
δTD(q) · (A2)2 2(q)

DA2 (q)

=


√

1
N ·A0(q) ·

(A2)2 2(q)
DA2 (q)

, A0
N > Tres ,√

Tres ·
(A2)2 2(q)

DA2 (q)
, A0

N ≤ Tres ,

(46)

and

δp∗2 =
√
δTD(q) ·

(
A2(q)

−1
)
2 2

=

√
δTD(q) · (A2)1 1(q)

DA2 (q)

=


√

1
N ·A0(q) ·

(A2)1 1(q)
DA2 (q)

, A0
N > Tres ,√

Tres ·
(A2)1 1(q)

DA2 (q)
, A0

N ≤ Tres .

(47)

6. Conclusions

The paper presented the geometric interpretation of the errors of the optimal parameter values,
derived from a multi-parametrical fitting, based on a metric induced by the non-Euclidean Lq-norm.
Typical fitting methods are mostly developed based on Euclidean norms, leading to the traditional
least–square method. On the other hand, the theory of general fitting methods based on non-Euclidean
norms, is still under development; the normal equations can provide the optimal values of the fitting
parameters, while this paper completed the puzzle by improving understanding the derivations and
geometric meaning of the errors.

In particular, we showed that the statistical errors of the optimal parameter values are given
by the axes of the ellipsoid called uncertainty manifold, that is, the intersection of the paraboloid
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of the residuals’ expansion ∆TD(
{
δpk

}
) ≡ TDq(

{
pk = p∗k + δpk

}
)

q
− TDq(

{
p∗k

}
)

q
along the deviations{

δpk
}n
k=1, with the hyperplane ∆TD(

{
δpk

}
) = δTD = const. The constant δTD represents the smallest

possible value of a deviation from the TD’s minimum, also mentioned as an error of the value of the
total deviations.

In summary, the Lq-normed fitting involves minimizing:

TDq(
{
pk

}
)q = A0(q) +

n∑
k1,k2=1

A2,k1k2(q) · (pk1 − pk1
∗) · (pk2 − pk2

∗) + O
( ∣∣∣pk − pk

∗
∣∣∣3), (48a)

where

A0(q) =
∫

x∈D

|u|q dx , (48b)

A2,k1k2(q) = δ1 q · γk1k2+
q
2 ·

∫
x∈D

[
|u|q−1

· sgn(u) · ∂
2V(x; {pk

∗})
∂pk1

∂pk2
+ (q− 1) · |u|q−2

·
∂V(x; {pk

∗})
∂pk1

·
∂V(x; {pk

∗})
∂pk2

]
dx , (48c)

γk1k2 ≡

∑
∀i :

u(xi) = 0

1∣∣∣u′(xi)
∣∣∣ · ∂V(xi;

{
pk
∗
}
)

∂pk1

·
∂V(xi;

{
pk
∗
}
)

∂pk2

. (48d)

The normal equations are given by:∫
x∈D

|u|q−1
· sgn(u) ·

∂V(x;
{
pk
∗
}
)

∂pl
dx = 0, ∀ l = 1, 2, . . . , n , (48e)

where we set u = u(x) ≡ V(x;
{
pk
∗
}
) − f (x).

Finally, we summarize the concluding relationships of the paper:

∆TD(
{
δpk

}
) ≡ TDq(

{
pk = pk

∗ + δpk
}
)q
− TDq(

{
pk
∗
}
)q =

n∑
k1,k2=1

A2,k1k2(q) · δpk1δpk2 , (49a)

∆TDmin ≡Max(δTD(q), Tres) , δTD(q) =
1
N
·A0(q) , A0(q) ≡ TDq(

{
pk
∗
}
)q , (49b)

δp∗k = Max
(
pres,k,

√
δTD(q) ·

(
A2(q)

−1
)
k k

)
, (49c)

with special cases:
- For n = 1:

δp∗ =

√
δTD(q)
A2(q)

=


√

1
N ·A0(q)/A2(q),

A0
N > Tres,√

Tres/A2(q),
A0
N ≤ Tres.

(50a)

- For n = 2:

δp∗1 =
√
δTD(q) ·

(
A2(q)

−1
)
1 1

=

√
δTD(q) · (A2)2 2(q)

DA2 (q)

=


√

1
N ·A0(q) ·

(A2)2 2(q)
DA2 (q)

, A0
N > Tres ,√

Tres ·
(A2)2 2(q)

DA2 (q)
, A0

N ≤ Tres ,

(50b)
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and

δp∗2 =
√
δTD(q) ·

(
A2(q)

−1
)
2 2

=

√
δTD(q) · (A2)1 1(q)

DA2 (q)

=


√

1
N ·A0(q) ·

(A2)1 1(q)
DA2 (q)

, A0
N > Tres ,√

Tres ·
(A2)1 1(q)

DA2 (q)
, A0

N ≤ Tres .

(50c)
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Appendix A. Extrema of the Uncertainty Manifold

Here we calculate the position vectors
{
→

∆
(k)}n

k=1
and the maximum points

{
C(k)

}n

k=1
, used for the

derivations of errors of the optimal parameter values in Section 4.
The following (n − 1) equations:[

∂
∂δpν

∆TD(
{
δpk

}
)

] ∣∣∣∣∣∣
{δpk}={∆(µ)

k}

= 0, (A1)

∀ν = 1, 2, . . . , n, with ν , µ, together with the one of

δTD = ∆TD
({
δpk

}
=

{
∆(µ)

k
})
=

n∑
k1,k2=1

A2,k1k2(q) · ∆
(µ)

k1 ∆(µ)
k2 , (A2)

are sufficient for the calculation of the n unknown components of
→

∆
(µ)

=
(
∆(µ)

1, ∆(µ)
2, . . . , ∆(µ)

n
)
.

Then,

{
∂

∂δpν
[∆TD(

{
δpk

}
)]
}∣∣∣∣∣
{δpk}={∆(µ)

k}
=

 ∂
∂δpν

 n∑
k1,k2=1

A2,k1k2(q) · δpk1 · δpk2



∣∣∣∣∣∣∣
{δpk}={∆(µ)

k}

=

 n∑
k1,k2=1

A2,k1k2(q) · δpk1 · δk2 ν +
n∑

k1,k2=1
A2,k1k2(q) · δpk2 · δk1 ν


∣∣∣∣∣∣∣
{δpk}={∆(µ)

k}

= 2
{

n∑
k=1

A2,ν k(q) · δpk

}∣∣∣∣∣∣
{δpk}={∆(µ)

k}

= 2 ·
n∑

k=1
A2,ν k(q) · ∆(µ)

k,

(A3)

(where we used the Kronecker’s delta, δmn = 1 for m = n and 0 for m , n). Hence,

n∑
k=1

A2,ν k(q) · ∆(µ)
k = 0 , (A4)

∀ν = 1, 2, . . . , n, with ν , µ. Setting:

n∑
k=1

A2,µ k(q) · ∆(µ)
k ≡ ζµ, (A5)

we have

ζµ · êµ = (A2)
→

∆
(µ)

, (A6)
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where

êµ ≡



0
...
0
1
0
...
0


=

({
êµ,k = 0

}n

k=1 ,k,µ
; êµ,µ = 1

)
. (A7)

Inversing Equation (A6), we obtain

→

∆
(µ)

= ζµ ·
(
A2
−1

)
êµ . (A8)

or
∆(µ)

m =
(
A2
−1

)
mµ
· ζµ , (A9)

∀m = 1, 2, . . . , n. Then,

δTD =
n∑

k1,k2=1
A2,k1k2 · ∆

(µ)
k1 ∆(µ)

k2 =
n∑

k1,k2=1
A2,k1k2 ·

(
A2
−1

)
k1 µ
· ζµ ·

(
A2
−1

)
k2 µ
· ζµ

= ζµ2
n∑

k1,k2=1
A2,k1k2 ·

(
A2
−1

)
k1 µ

(
A2
−1

)
k2 µ

= ζµ2
n∑

k2=1
δk2 µ ·

(
A2
−1

)
k2 µ

= ζµ2
·

(
A2
−1

)
µµ

, (A10)

thus,

ζµ =

√
δTD

(A2−1)µµ
, (A11)

or

∆(µ)
m =

(
A2
−1

)
mµ
·

√
δTD

(A2−1)µµ
, (A12)

∀m = 1, 2, . . . , n, and by refreshing the indices, we end up with

∆(m1)m2 =
√

δTD ·

(
A2(q)

−1
)
m1m2√(

A2(q)
−1

)
m1m1

. (A13)
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