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Supplement 1.  Simulation-based Assessment of the Distribution of .  1 

Recall from Section 2 that to define a ratio that has finite variance, a truncated normal can be used as the data 2 

model in Eq. (2) for  in which is equal in distribution to , 3 

which involves a ratio of independent normal random variables and (for the case of 4 

one measurement per group; multiple measurements per group is treated similarly).  Section 2 claimed that 5 

provided 𝛿𝛿𝑇𝑇𝑇𝑇 ≤ 0.02 and 𝛿𝛿𝑇𝑇𝑇𝑇 ≤ 0.05, the distribution of the truncated version of the ratio is 6 

extremely close to a normal distribution.   7 
 8 
Supplement 1 provides 4 example numerical simulation results involving the distribution  (O-I)/O, with O 9 
assumed to be a truncated normal, with truncation occurring only if O is at least 25 standard deviations from 10 
its mean value.  Example 1 is the approximate variance result. Example 2 is a tolerance interval example with 11 
random normal error (no systematic error) for which there is an exact expression for the tolerance interval 12 
coverage factor, so simulation using a normal and a normal divided by a truncated normal can be compared.  13 
Example 3 is example density plots and normal probability plots with error bars showing that O-I)/O with a 14 
truncated O is approximately normal provided 𝛿𝛿𝑇𝑇𝑇𝑇 ≤  0.02. Example 4 investigates the variances of the 15 

estimators 2ˆ
Rδ  and 2

Ŝδ  that arise from applying ANOVA to .  16 

Example S1.1:  Approximate variance result for a ratio of a normal to a truncated normal 17 
In R, the # sign denotes a comment. Comments are inserted below in red to explain. 18 
nsim = 10^6; kx = 5; ky = 5. # factors to increase deltaor, deltaor, deltair, deltais 19 
deltaor = .01*kx; deltaos = .01*kx; deltair = .01*ky; deltais = .01*ky 20 
deltaot = (deltaor^2+deltaos^2)^.5; deltait = (deltair^2+deltais^2)^.5 21 
temptrue =100; N = 100 22 
temp1 = numeric(nsim); temp2 = numeric(nsim) 23 
check = matrix(0,nrow=nsim,ncol=2) 24 
for(isim in 1:nsim) { 25 
  x = temptrue*(1+deltaor*rnorm(N) + deltaos*rnorm(N))  # note N for sys, so 1 obs per group 26 
  x1 = pmax(lboundx,x).  # truncation: assume operator measurement is truncated normal 27 
  y = temptrue*(1+deltair*rnorm(N) + deltais*rnorm(N)) 28 
  y1 = pmax(lboundy,y) # truncation not necessary for inspector, but does no harm 29 
  temp1[isim] = var((x-y)/x)^.5 # non-truncated version 30 
  temp2[isim] = var((x1-y1)/x1)^.5. # truncated version 31 
} 32 
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temptot = (deltaor^2+deltaos^2+deltair^2+deltais^2)^.5 33 
c(nsim,N,deltaor,deltaos,deltair,deltais,temptot) 34 
[1] 1e+06 1e+02 1e-02 1e-02 1e-02 1e-02 2e-02. # approximation is 0.02 35 
c(mean(temp1),mean(temp2)) 36 
[1] 0.01996 0.01996 # actual rounds to 0.02 for untruncated or truncated with 106 simulations 37 
c(nsim,N,deltaor,deltaos,deltair,deltais,temptot) 38 
[1] 1e+06 1e+02 2e-02 2e-02 2e-02 2e-02 4e-02. # approximation is 0.04 39 
c(mean(temp1),mean(temp2)) 40 
[1] 0.03999 0.03999   # actual via simulation rounds to 0.04 for untruncated or truncated 41 
temptot = (deltaor^2+deltaos^2+deltair^2+deltais^2)^.5 42 
c(nsim,N,deltaor,deltaos,deltair,deltais,temptot) 43 
[1] 1e+06 1e+02 5e-02 5e-02 5e-02 5e-02 1e-01 # exact is 0.10 44 
c(mean(temp1),mean(temp2)) 45 
1] 0.1011 0.1011  # actual via simulation rounds to 0.10, truncated or not 46 
c(nsim,N,deltaor,deltaos,deltair,deltais,temptot) 47 
[1] 1e+06 1e+02 1e-01 1e-01 1e-01 1e-01 2e-01. # approximation is 0.20 48 
c(mean(temp1),mean(temp2)) 49 
[1] 0.2118575 0.2118575  # actual rounds to 0.21, so the approximation begins to show error 50 
[1] 1.0e+06 1.0e+02 1.5e-01 1.5e-01 1.5e-01 1.5e-01 3.0e-01 # approximation is 0.30 > 0.20 51 
c(mean(temp1),mean(temp2),mean(temp3)) 52 
[1] 0.3587435 0.3587435 # actual rounds to 0.36, which is unacceptably different from 0.30 53 
 54 
 55 
Example S1.2: Approximate normality of the ratio of a normal to a truncated normal 56 
This example computes a tolerance interval coverage factor using either a normally distributed 57 
variate, or a ratio of normal variates in the one-sided normal case.  In this one-sided one-group 58 
normal case, the exact coverage factor is known analytically (this is the only such case where the 59 
exact tolerance interval coverage factor is known analytically). This example is a “bottom-line” 60 
normality check in the context of this paper: and essentially the same result is obtained using 61 
normal or using a ratio of a normal to a truncated normal. Compare the boldface numbers below (all 62 
three are equal to within the simulation error in using a finite but large (106)  number of 63 
simulations). The simulation results reported use (O-I)/O to compute the tolerance intervals in 64 
structured data (random and systematic errors). 65 
 66 
n1 = 30; p1 = .05; p2 = .01  # p1 is 0.05 coverage, p2 is 99% confidence 67 
del = qnorm(p=1-p1)*n1^.5; sd1 = .05;sd2 = .02; tsd = (sd1^2 + sd2^2)^.5 68 
nsim = 10^6; mu = 0; k.n = 10^3; kseq = seq(2.3,2.7,length=k.n) # after initial run to zoom kseq 69 
tempmat1 <- matrix(0,nrow=nsim,ncol=k.n); tempmat2 <- matrix(0,nrow=nsim,ncol=k.n) 70 
for(isim in 1:nsim) { 71 
  temp1 = mu + rnorm(n=n1,sd=tsd) 72 
  truncated.normal =pmax(0.5,1+rnorm(n=n1,sd=sd2)) # this truncation will almost never occur 73 
  temp1a = (1+ rnorm(n=n1,sd=sd1))/truncated.normal 74 
  temp1a = temp1a-1 75 
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  temp2 = mean(temp1) + kseq*var(temp1)^.5 76 
  temp2a = mean(temp1a) + kseq*var(temp1a)^.5 77 
  tempmat1[isim,] = as.numeric(temp2 >= qnorm(1-p1,sd=tsd)) 78 
  tempmat2[isim,] = as.numeric(temp2a >= qnorm(1-p1,sd=tsd)) 79 
} 80 
 81 
c(n1,p1,p2,del,sd1,sd2,tsd,nsim) 82 
min(kseq[apply(tempmat1,2,mean)>= 1-p2]) 83 
min(kseq[apply(tempmat2,2,mean)>= 1-p2]) 84 
#rep1 of 106 simulations 85 
c(n1,p1,p2,del,sd1,sd2,tsd,nsim) 86 
3.00e+01 5.00e-02 1.00e-02 9.01e+00 5.00e-02 2.00e-02 5.39e-02 1.00e+06 87 
min(kseq[apply(tempmat1,2,mean)>= 1-p2]) 88 
2.516617. # simulation-based, using a normal 89 
min(kseq[apply(tempmat2,2,mean)>= 1-p2]) 90 
2.515015 # simulation-based, using a ratio of a normal to a truncated normal 91 
#rep2.of 106 simulations to be sure that 106 is enough simulations to ignore simulation error 92 
min(kseq[apply(tempmat1,2,mean)>= 1-p2]) 93 
2.517417 # simulation-based, using a normal 94 
min(kseq[apply(tempmat2,2,mean)>= 1-p2]) 95 
2.517017# simulation-based, using a ratio of a normal to a truncated normal 96 
# exact for 1 sided. # the exact k value is only available for the 1-sided normal tolerance interval 97 
del <- qnorm(p=1-p1)*n1^.5 98 
# this is k: 99 
qt(p=1-p2,df=n1-1,ncp=del)/n1^.5 100 
2.515486. # exact, essentially the same as those above from simulation.  101 
 102 
 103 
Example S1.3: Example normality checks for the ratio 104 
A large number (104) observations were simulated from a normal and from a ratio of a normal to a 105 
truncated normal. Figures S1.1, S1.2, and S1.3 illustrate that the ratio is extremely close to normal 106 
in distribution provided 𝛿𝛿𝑇𝑇𝑇𝑇 ≤ 0.02 and 𝛿𝛿𝑇𝑇𝑇𝑇 ≤ 0.05. 107 
 108 



Stats 2018, 2, x FOR PEER REVIEW  4 of 6 

 

 109 
Figure S1.1. Normality checks using normal probability plots and “error bars” (based on 110 
simulation) for a normal random variable using 104 observations.  As expected, normal data 111 

“passes” this normality test. In all plots (Figures a-d), 𝛿𝛿𝑇𝑇𝑇𝑇 = �𝛿𝛿𝑅𝑅𝑅𝑅2 + 𝛿𝛿𝑆𝑆𝑆𝑆2 = 0.05 as an example. 112 

 113 

 114 
 115 
 116 
Figure S1.2. Normality checks using normal probability plot sand “error bars” for a ratio of a 117 
normal to a truncated normal using 104 observations. This ratio data “passes” this normality test 118 

provided 𝛿𝛿𝑇𝑇𝑇𝑇 = �𝛿𝛿𝑅𝑅𝑅𝑅2 + 𝛿𝛿𝑆𝑆𝑆𝑆2 ≤ 0.02 (top two plots), and begins to show departure from normality 119 

if 𝛿𝛿𝑇𝑇𝑇𝑇 = �𝛿𝛿𝑅𝑅𝑅𝑅2 + 𝛿𝛿𝑆𝑆𝑆𝑆2 = 0.05 in these plots with 𝛿𝛿𝑇𝑇𝑇𝑇 = �𝛿𝛿𝑅𝑅𝑅𝑅2 + 𝛿𝛿𝑆𝑆𝑆𝑆2 = 0.05. 120 
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 121 
 122 
Figure S1.3.  The estimated probability density for the same 4 cases as in Figure 2. 123 
 124 

Example S1.4. The Variances of the ANOVA-based Estimators 2ˆ
Rδ  and 2

Ŝδ  125 

Example 4 investigates the variances of the estimators 2ˆ
Rδ  and 2

Ŝδ  that arise from applying 126 

ANOVA to . The point of this example is that it is defensible to assume that  127 

dij = (ojk − ijk)/ojk  is  approximately normal under Eq. (2), with a variance that is well 128 
approximately by linear propagation of error variance (Example S1.1) ,and that the variance of the 129 
variance estimates are also well approximated as follows: 130 
# columns 1 and 2 are 𝛿𝛿𝑅𝑅2and 𝛿𝛿𝑆𝑆,

2,   respectively,  for dij = (ojk − ijk)/ojk   131 
# columns 3 and 4 are 𝛿𝛿𝑅𝑅2and 𝛿𝛿𝑆𝑆,

2,   respectively,  for dij = (ojk − ijk)/jk   132 
# so, columns 3 and 4 are the same as an additive model, as in standard ANOVA with normal data 133 
nsim = 10^5; check.mat =matrix(0,nrow=nsim,ncol=4) 134 
for(isim in 1:nsim) { 135 
# simulate 3 groups of 10 measurements per group from Eq. (2): 136 
temp1 = 137 
generate.data(ngroups=3,nvec=rep(10,3),sigma.r.o=0.01,sigma.r.i=0.01,sigma.s.o=0.005,sigma.s.i=0.01) 138 
# compute d: 139 
  dtemp = (temp1[,3]-temp1[,2])/temp1[,2] 140 
# use the usual ANOVA estimates of random and systematic error variances: 141 
  temp2 = estvars0(groups=temp1[,1],d=dtemp). # gives same result as lmer() in R 142 
  check.mat[isim,1:2] = temp2[1:2] 143 
  temp1 = generate.data(ngroups=3,nvec=rep(10,3), 144 
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  sigma.r.o=0,sigma.r.i=rtotsd,sigma.s.o=0,sigma.s.i=stotsd) 145 
  dtemp = (temp1[,3]-temp1[,2])/temp1[,2] 146 
  temp2 = estvars0(groups=temp1[,1],d=dtemp) 147 
  check.mat[isim,3:4] = temp2[1:2] 148 
} 149 
# compare approximation to “exact’ (nearly exact with 105 simulations) 150 
apply(check.mat,2,mean) 151 
0.0002001705 0.0001255540 0.0002001561 0.0001255132.  152 
# column 1 (ratio) is approximately the same as column 3 (normal) and  153 
# column 2 (ratio) is approximately the same as column 4 (normal). 154 
stotvar = (.01^2+.005^2); rtotvar = (.01^2+.01^2) 155 
c(rtotvar,stotvar) 156 
0.000200 0.000125 # agrees with simulation 157 
 158 
apply(check.mat,2,var)^.5 159 
5.462549e-05 1.455530e-04 5.468783e-05 1.455614e-04 160 
# column 1 (ratio) is approximately the same as column 3 (normal) and  161 
# column 2 (ratio) is approximately the same as column 4 (normal). 162 
# rep2 of 10^5 simulations: 163 
apply(check.mat,2,mean) 164 
0.0001999014 0.0001239302 0.0002000479 0.0001243459 165 
apply(check.mat,2,var)^.5 166 
5.439924e-05 1.437925e-04 5.456276e-05 1.438669e-04 167 
 168 
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