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Abstract: The mixed-effects model for repeated measures (MMRM) approach has been widely applied
for longitudinal clinical trials. Many of the standard inference methods of MMRM could possibly
lead to the inflation of type I error rates for the tests of treatment effect, when the longitudinal
dataset is small and involves missing measurements. We propose two improved inference methods
for the MMRM analyses, (1) the Bartlett correction with the adjustment term approximated by
bootstrap, and (2) the Monte Carlo test using an estimated null distribution by bootstrap. These
methods can be implemented regardless of model complexity and missing patterns via a unified
computational framework. Through simulation studies, the proposed methods maintain the type I
error rate properly, even for small and incomplete longitudinal clinical trial settings. Applications to
a postnatal depression clinical trial are also presented.
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1. Introduction

Clinical trials for new drug development are often longitudinal trials in which outcome variables
are repeatedly measured. In these trials, the primary analyses usually compare the treatment efficacy
with a comparator at the end of a follow-up period. However, during the follow-up period, dropouts
or missing outcome variables usually occur, and may seriously influence the validity and precision of
the statistical inference. In addition, regulatory guidelines for preventing and treating the missing data
in clinical trials have been issued [1–3], and adequate practices have been strongly pursued in recent
years. Following these discussions, the mixed-effects model for repeated measures (MMRM) [4–6] has
been widely applied for primary analyses of clinical trials in drug development. This type of model
allows for valid statistical inference under incomplete longitudinal repeated measurements based on
the direct likelihood approach.

MMRM is a type of linear mixed model (LMM) [7–9] that directly models the variance-covariance
matrix of the longitudinal multivariate outcome variables [5], in which random effects are included
as part of the marginal covariance matrix. One of the advantages of MMRM is that it enables flexible
modelling of the correlation structure between time points to ensure the validity of inference in
treatment efficacy. Further, the ordinary inference methods for the LMM (e.g., restricted maximum
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likelihood (REML) method) [10] are based on large sample approximations. Their validities are violated
under small or moderate sample settings [11,12]. For the MMRM, Gosho et al. [13] also showed the
invalidity of the ordinary inference methods under small or moderate sample settings.

In order to resolve these problems, several related works have been conducted regarding the
conventional LMM. One solution is to adopt a higher-order asymptotic theory. Zucker et al. [14]
studied the Bartlett correction [15] and the Cox-Reid adjusted likelihood [16] as well as their
combination of the likelihood ratio (LR) test. Lyons and Peters [17] and Guolo et al. [18] proposed
a higher-order asymptotic approach by adapting Skovgaard’s improved modified signed log-likelihood
ratio [19] introduced by Barndorff-Nielsen [20]. Stein et al. [21] investigated the modified profile
likelihood approach of Barndorff-Nielsen [20] based on the approximation method of Severini [22].
Although the improved methods by Stein et al. [21] performed well in their simulation studies,
they compared their methods only with the naïve LR test. In addition, their improved methods
require complicated analytical calculations involved in higher-order differentiations of log-likelihood
in case-by-case analyses. In particular, when applying the MMRM in longitudinal clinical trials,
the marginal covariance structure is usually assumed to be a complicated form to circumvent
model misspecifications, and calculations by Stein et al. [21] would not be realistic in practical use.
Stein et al. [21] also investigated bootstrap-based approximation inferences, but their discussions
and numerical evaluations were also limited within the conventional LMM framework, and the
applications to MMRM for incomplete longitudinal studies were not discussed.

In this study, we proposed and investigated two improved inference methods involved in MMRM
under small sample size and with incomplete data for longitudinal clinical trials. To circumvent the
practical difficulties in implementing the analytical calculations, we adopted numerical approximations
using bootstrap inferences [23–25]. The first method was the Bartlett correction [15] with the adjustment
term approximated by bootstraps [23]. This approach can effectively circumvent case-by-case
complicated analytical calculations and can be generally applied regardless of model complexity
and missing patterns via a unified computational framework. In addition, the second involved the
Monte Carlo test using empirical distribution constructed by the bootstrap; this was a straightforward
approach, and is widely known to be an effective method under these situations. The resampling
schemes of both methods allowed outcome variables to be incomplete, and we evaluated their
validities and performances under practical situations of longitudinal clinical trials with missing
data. In addition, we compared these methods with those of standard methods such as REML using
Kenward-Roger’s (KR) [11] method and unstructured covariance structure. We also assessed their
practical effectiveness, illustrating their application to a postnatal depression clinical trial [26].

This paper is organized as follows: we first review the MMRM for longitudinal data analyses in
Section 2. We then provide our approaches to improve the statistical inferences of MMRM in Section 3.
We provide simulation evaluations in Section 4, and we apply our methods to the postnatal depression
clinical trial data in Section 5. Lastly, we conclude with some discussion in Section 6.

2. Mixed-Effects Model for Repeated Measures (MMRM) for Longitudinal Data Analysis

Suppose subjects were randomized to two treatment groups (e.g., active drug vs. placebo).
A continuous outcome was measured repeatedly over n time points. Also, we considered that the
total number of subjects in the two groups was N and the number of time points that the outcomes
were observed for the ith individual is ni (ni ≤ n). The primary analysis of interest was to compare
the mean difference of the primary endpoint at the final nth time point. In this study, we supposed
only monotonic missing data for simplicity, but our discussions can be straightforwardly extended to
non-monotonic missingness.

Yi = Xiβ + Zibi + εi (1)

where εi was the ni × 1 random error vector distributed independently as MVN(0, Σi). Σi was the
ni × ni variance–covariance matrix. The random effect bi and the error εi were independent, and
all data between different subjects were also assumed to be independent. Yi marginally follows
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MVN(Xiβ, Vi), where Vi = ZiDZT
i + Σi. In the MMRM method, the variations explained by random

effects were included as part of the marginal covariance matrix Vi rather than being explicitly modelled
as the random effects [5]. An unstructured covariance matrix is often preferred as the structure of Vi
because no assumptions are made on the covariance structure [13]. For the statistical inferences of
regression parameters, the restricted maximum likelihood (REML) method [10] has been routinely
used in practice. In addition, although missing is a common problem in longitudinal clinical trials,
validity of the inferences is assured under the missing at random (MAR) mechanism because MMRM
adopts the likelihood-based methods [27].

3. Improved Inference Methods

3.1. Likelihood Ratio (LR) test

We considered the testing problem for individual regression coefficients of MMRM, which
corresponded to the primary analysis of longitudinal clinical trials. Without loss of generality, we
considered a testing problem of the 1st component of the regression coefficients β =

(
β1, β2, . . . , βp

)T ,

Null hypothesis H0: β1 = βnull
1

Alternative hypothesis H1 : β1 6= βnull
1

Let βc =
(

β2, β3, . . . , βp
)T and let υ a parameter vector composed of the components of marginal

variance–covariance matrix Vi (i = 1, 2, . . . , N).
To develop the improved inference methods, we first introduced the LR test for MMRM. The LR

test statistic for the hypothesis test above was

T
(

βnull
1

)
= −2

{
l
(

βnull
1 , β̃c, υ̃

)
− l
(

β̂1, β̂c, υ̂
)}

, (2)

where
(

β̂1, β̂c, υ̂
)

was the maximum likelihood (ML) estimates of (β1, βc, υ) and
(

β̃c, υ̃
)

was the
constrained ML estimates under the null hypothesis. Also, l(β1, βc, υ) was the log-likelihood function
for MMRM,

l(β1, βc, υ) = −1
2

N

∑
i=1

{
log|Vi|+ (yi −Xiβ)

TV−1
i (yi −Xiβ) + ni log 2π

}
(3)

The ML and the constrained ML estimates were computed by using this log-likelihood function.
Asymptotically, the LR test statistic T

(
βnull

1

)
followed the chi-squared distribution with 1 degree of

freedom under the null hypothesis [28].

3.2. Bartlett-Type Adjustment by Bootstrap Resampling

Conventionally, it is widely known that the large sample approximation of the LR test
statistic T

(
βnull

1

)
to the chi-squared distribution is not accurate under small sample settings [23].

To improve the approximations, several higher order approaches have been developed and the Bartlett
correction [15] is one of the effective solutions. The Bartlett correction is a correction method for
the LR test statistic that aims to improve the approximation to the reference chi-square distribution
dividing by a correction term. The adjustment term is an estimate of the first moment of the null
distribution of the LR test statistic ξ = E

[
T
(

βnull
1

)]
, and the corrected LR test statistic is given by

T∗
(

βnull
1

)
= T

(
βnull

1

)
/ξ̂. Intuitively, if the estimate ξ̂ is accurate, the null distribution of the corrected

statistic approaches the chi-squared distribution. Theoretically, Barndorff-Nielsen and Hall [29]
showed that the Bartlett correction reduces the error of the chi-squared approximation from O

(
N−1)

to O
(

N−2).



Stats 2019, 2 177

In this study, we proposed a practical procedure to apply the Bartlett correction to MMRM
effectively for incomplete longitudinal data under small sample size. Many previous studies attempted
to obtain analytical forms of the Bartlett correction term by analytical methods [14,30,31]. However,
analytical forms of the correction term were not necessarily obtainable when complicated models were
assumed and missing data was involved. As an alternative effective approach, Rocke [32] proposed to
use a resampling approach, which adopted the parametric bootstrap method to estimate the Bartlett
correction term ξ̂. Here, we proposed to apply this resampling approach to improve the inferences of
MMRM. The resampling approach possibly involved computational burdens, but it had an advantage
in that it could be implemented using generic algorithms regardless of the complexity of regression
model and covariance structure. The resampling based procedure was formulated as the following
Algorithm 1.

Algorithm 1 Bartlett correction using bootstrap resampling technique.

(1) For the MMRM model, compute the constrained ML estimates
{

β̃c, υ̃
}

under β1 = βnull
1 .

(2) Resample Y(b)
1 , Y(b)

2 , . . . , Y(b)
N from the estimated null distribution of the MMRM model with the

parameters substituted with
{

βnull
1 , β̃c, υ̃

}
via parametric bootstrap with reflecting missing patterns of

Y1, Y2, . . . , YN (i.e., let Y(b)
i have the length of ni vector), B times (b = 1, 2, . . . , B).

(3) Compute the ML estimates
{

β̂
(b)
1 , β̂

(b)
c , υ̂(b)

}
and the constrained ML estimates

{
β̃
(b)
c , υ̃(b)

}
under the

null hypothesis for the bth bootstrap sample Y(b)
1 , Y(b)

2 , . . . , Y(b)
N . Replicate it for all B bootstrap samples

(b = 1, 2, . . . , B).
(4) Compute the LR test statistics for all B bootstrap estimates,

T(b)
(

βnull
1

)
= −2

{
l
(

βnull
1 , β̃

(b)
c , υ̃(b)

)
− l
(

β̂
(b)
1 , β̂

(b)
c , υ̂(b)

)}
, (4)

and calculate a bootstrap estimate of ξ,

ξ̂ =
1
B

B

∑
b=1

T(b)
(

βnull
1

)
. (5)

(5) We can obtain the corrected LR test statistic,

T∗BS

(
βnull

1

)
= T

(
βnull

1

)
/ξ̂. (6)

A statistical test using the corrected LR test statistic T∗BS

(
βnull

1

)
could be performed by using a chi-square

distribution with 1 degree of freedom as the reference distribution.

Also, the corresponding confidence interval of β1 could be constructed by a set of βnull
1 that fulfill

the following inequality,
T∗BS

(
βnull

1

)
≤ χ2

1, α, (7)

where χ2
1, α is the upper αth quantile of the chi-square distribution with 1 degree of freedom. Note that

while it was technically possible to apply a nonparametric bootstrap method, the parametric bootstrap
method would be preferred to estimate the Bartlett correction term ξ under small sample settings,
because the bootstrap distributions might have been too discrete [33,34].

3.3. Monte Carlo Test Using an Estimated Null Distribution by Bootstrap

Using the parametric bootstrap, we could also estimate the null distribution of the test statistic
directly via the Monte Carlo technique [35]. We could construct an estimate of the null distribution
of T

(
βnull

1

)
if we resampled a large number of LR test statistics under the null hypothesis using
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a parametric bootstrap technique. This method used the Monte Carlo estimate of the null distribution
as the reference distribution of LR test, instead of the chi-squared distribution. This approach would
be an alternative to the former proposed method that had the same advantages for the inferences of
small sample settings.

With processes 1–4 of Algorithm 1, we had the bootstrap LR test statistics
T(b)

(
βnull

1

)
(b = 1, 2, . . . , B). The Monte Carlo estimate of the null distribution was obtained as the

empirical distribution of T
(

βnull
1

)
. Also, the bootstrap-based critical value of the nominal α level

(0 < α < 1) corresponded to the upper αth quantile of the empirical distribution function. The Monte
Carlo test can be constructed by the following Algorithm 2.

Algorithm 2 Bootstrap-based adjustment of LR test.

(1) Conduct processes 1–4 of Algorithm 1.
(2) Calculate the p-value by the following formula [24].

p =
1

B + 1

{
1 +

B

∑
b=1

I
[

T(b)
(

βnull
1

)
> T

(
βnull

1

)]}
(8)

Here, I(x) is an indicator function, and it returns 1 if x is true and 0 otherwise.

Also, 100× (1− α)% confidence intervals can be constructed with a set of βnull
1 that fulfill [36],

T
(

βnull
1

)
≤ q̂bs, (1−α).

where q̂bs,(1−α) for the upper αth quantile of the estimated null distribution. According to Rocke [32],
more than 1000 resamplings were recommended when estimating the tail of a distribution, such as the
upper αth quantile of the null distribution.

4. Simulation Studies

4.1. Design and Setting

We conducted a series of simulation studies to assess the performances of the two methods,
the Bartlett-type correction for LR test statistic-based test (LRBart) and the bootstrap adjustment
test for LR test statistic based test (LRBoot) under practical situations of longitudinal small clinical
trials. We compared the effectiveness of these methods with the conventional ordinary LR test
and Kenward-Roger (KR) method [11], which is the current standard inference method in MMRM
analyses. We considered the same scenarios of the simulation studies of Gosho et al. [13], which
conducted extensive simulations to evaluate the performances of MMRM for longitudinal clinical
trials. We supposed two group comparative longitudinal clinical trials (e.g., active drug group vs.
placebo group) and the number of post baseline visits (n) to be 7. The total number of subjects was
determined as N = 20 (i.e., 10 subjects per group, respectively). The outcome variables Yit (t = 1., 2.,
. . . 7) were generated from the following model,

Yit = meanit + subjecti + errorit (10)

where meanit was a fixed effect, subjecti was a subject effect, and errorit was a random error (i = 1, 2,
. . . , N; t = 1, 2, . . . , 7). The mean values of Yit assumed the four scenarios illustrated in Figure 1. Here,
we were interested in evaluating the mean difference between the two groups at the final (7th) time
point. Scenarios 1 and 2 corresponded to the null hypothesis that the mean values of the outcome
variables were the same between the two groups at the final time point. By contrast, in scenarios 3 and
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4, the mean value of the treatment efficacy at the final time point differs between the two groups and
corresponded to the alternative hypothesis.Stats 2019, 3 FOR PEER REVIEW  6 
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4.2. Correlation Structures

For the variance–covariance structure of the error terms, a first order heterogeneous autoregressive
(ARH (1)) structure was adopted, of which (t, t′) element is defined as σtσt′ρ

|t′−t| where σt and σt′

are the standard deviances of tth and t′th time points and ρ is the correlation coefficient between the
two points. Following Gosho et al. [13], the diagonal elements σ2

t was set to 9{1 + 3(t− 1)/6} and the
correlation coefficient ρ was set to 0.7. Also, the subject effect was generated by N

(
0, 32).

4.3. Missing-data Mechanism

In this simulation, we considered two missing-data mechanisms, missing completely at random
(MCAR) and missing at random (MAR). Only the monotone missing was assumed, i.e., once
missingness occurred, all outcome values after the time point were missing for the corresponding
individual. We denoted the probability of missingness of Yit as λit. The missingness probability λit
was assumed to follow the logistic regression model,

logit(λit) = γ0 + γ1Yi, t−1, t = 2, 3, . . . , 7. (11)

The regression coefficients of the logistic regression model for the missingness probability were
defined as γ1 = 0 for MCAR and γ1 = −1 for MAR. Table 1 summarizes the missing-data mechanisms
and the coefficients of the logistic regression model that had a defined dropout rate for each treatment
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group at the final time point. The total dropout rates for the two groups were set to 0%, 20% or 40% for
the four scenarios.

4.4. Analysis Methods

The simulated data were analysed using four methods as mentioned above. We adopted the
standard MMRM that included a group variable and time variables as dummy variables and the
group-by-time interactions in the regression function. An unstructured covariance structure was
adopted for the covariance structure model for the outcome variables. Parametric bootstraps for the
proposed two methods were performed via 3000 resamplings. The results concerning convergence
of MMRM analyses are reported in the Appendix A. The numbers of simulations were 1000 for all
scenarios. All computations were performed by SAS ver. 9.4. Also, the significance levels were set to
be 0.05.

Table 1. Dropout rates at the final time point and parameter settings.

Scenario Missing
Mechanism

Overall
Dropout (%)

Dropout (%) γ0

Placebo Active Placebo Active

1 MCAR 20 20 20 3.2 3.2
40 40 40 2.4 2.4

MAR 20 20 20 7.1 7.1
40 40 40 4.2 4.2

2 MCAR 20 22 18 3.1 3.4
40 44 36 2.3 2.6

MAR 20 22 18 6.6 6.6
40 44 36 3.7 3.7

3 MCAR 20 24 16 3.0 3.5
40 46 34 2.2 2.6

MAR 20 24 16 7.8 7.8
40 46 34 4.8 4.8

4 MCAR 20 24 16 3.0 3.5
40 46 34 2.2 2.6

MAR 20 24 16 7.2 7.2
40 46 34 4.2 4.2

4.5. Results

Figure 2 shows the type I error rates for scenarios 1 and 2 under N = 20 (i.e., 10 subjects per
group). The blue dashed lines correspond to the 95% intervals of the Monte Carlo errors. At first, the
type I error rates of LR test increased greatly from 5% as the dropout rate increased. In scenario 1
with a 40% dropout rate, the type I error rates of LR was 11.3% under MCAR, and 9.8% under MAR,
respectively. Besides, the type I error rates of LRBart and LRBoot were maintained at 5% irrespective of
the missing-data mechanism and dropout rate. For example, the type I error rates under scenario 1
with a 40% dropout rate under MAR were 5.5%, 5.6% for LRBart and LRBoot, respectively. On the other
hand, the type I error rates of the KR method were not maintained at around 5% under MAR and
were too conservative. Under MAR with a 40% dropout rate, the type I error rates of the KR method
were 3.6% and 3.5% for scenarios 1 and 2, respectively. Besides, under MCAR scenarios, the type I
error rates of the KR method were maintained at around 5%. The convergence rates of these methods
were not significantly different (see Appendix A). Note that the type I errors for the LR, LRBart and
LRBoot were inflated under scenario 1 with dropout rate 40%, but they fell within the ranges of Monte
Carlo errors. The results of the convergence for scenarios 1 and 2 appears in the appendix section as
Figure A1.

Figure 3 shows the powers in scenarios 3 and 4 for N = 20 (i.e., 10 subjects per group). At first,
the powers of LR was higher than those of other methods, ranging from approximately 14% to 20%
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depending on the dropout rate. However, since the type I error rates of LR were not maintained at
5% under scenarios 1 and 2, it should be considered to have liberal properties in general. In all three
methods other than LR test, the powers decreased as the dropout rate increased, due to the reduction
of available statistical information. In scenario 3, with 10 subjects per group and a 40% dropout rate
under MAR, the powers of LRBart, LRBoot and KR were 7.1%, 7.4% and 6.5%, respectively. The overall
trends concerning powers of the four methods agreed with the rejection rates under scenario 1 and 2,
although they depended on the sample size and effect sizes.

The results of the convergence for scenarios 3 and 4 appears in the appendix section as Figure A2.Stats 2019, 3 FOR PEER REVIEW  8 
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5. Application: Postnatal Depression Trial

Postnatal depression is commonly treated with antidepressants and counselling. Transdermal
administration of estrogen has also been shown to be effective, and Gregoire et al [26] conducted
a double-blind, placebo-controlled study in 61 women within 3 months of giving birth [26,37].
Although the study planned to enroll 100 subjects, eventually 61 women were randomly assigned
to the placebo group (27 subjects) or the estrogen group (34 subjects). The women were assessed
twice prior to treatment and then monthly for 6 months after treatment using the Edinburgh postnatal
depression scale (EPDS), with higher scores indicating more severe depression. Approximately 37.0%
(10/27) of subjects in the placebo group and 17.6% (6/34) of subjects in the estrogen group had missing
EPDS scores at the final time point. All data had monotone missing patterns.

The baseline EPDS score was defined as the average of the scores at the 1st and 2nd months in
this study. The outcome variables were measured on the visits between the 3rd and 8th months.
We considered analysing this longitudinal dataset using MMRM and the following regression
function model,

E[Yit|Gi, tit] = β0 + β1Gi + β2ttit + β3tGi × tit (12)

where Yit denotes the EPDS score for the participant i (i = 1, 2, . . . , 61) on the tth occasion
(t = 1, 2, . . . , 8). Gi was a dummy variable that equals 1 if the participant i belongs to the estrogen
group and equals 0, otherwise. For the covariance structure of the outcome variables, we assumed
the unstructured structure. Here, our primary subject of interest was the evaluation of the mean
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difference of outcome variables on the final time point. In addition, we considered a subgroup analysis
for a group of participants with clinically severe depressive symptoms that was defined as baseline
EPDS > 21 [38]. There were 30 participants in subgroup (15 participants in both placebo and estrogen
groups). At the final month, the proportions of dropout were 40.0% (6/15) and 20.0% (3/15) for
placebo and estrogen group, respectively.

At baseline, the mean EPDS scores of the placebo and estrogen groups were 21.26 (3.11) and
21.59 (3.06), respectively. Table 2 summarizes the mean difference estimates of EPDS scores at the
final month, as well as their 95% confidence intervals and p-values by the conventional and proposed
methods. We added the t-test on the single point analysis at the final month in these analyses as
a reference. The numbers of resampling for the proposed methods were set to be 3000.

Table 2. Results of the analyses of the postnatal depression trial: Inferences of the mean difference at
the final month.

Whole population (N = 61) Subgroup (N = 30)

Estimate [95% CI] p-Value Estimate [95% CI] p-Value

LRBart 4.34 [1.67, 7.66] 0.0031 3.93 [−0.19, 10.24] 0.0586
LRBoot 4.34 [1.70, 7.64] 0.0050 3.93 [−0.16, 10.21] 0.0583

LR 4.34 [1.81, 7.52] 0.0019 3.93 [0.29, 9.74] 0.0383
KR 4.34 [1.45, 7.23] 0.0040 3.93 [−1.23, 9.09] 0.1288

t-test 4.36 [1.43, 7.29] 0.0045 3.17 [−2.24, 8.57] 0.2349

In the whole population analysis, all of the five methods showed significant differences and
provided similar estimates. However, the p-value of LR test was a bit smaller than the proposed
methods, and that of KR was a bit larger. These trends might corresponds to the liberal and conservative
properties of these methods. These trends became clearer for the subgroup analysis for the participants
with severe symptoms. Only the LR test showed significant difference, and the other four methods
provided non-significant results. The p-values of LRBart and LRBoot were 0.0586 and 0.0583, but that
of KR was 0.1288. These results might reflect the conservative property of KR, and it was possibly
improved by the proposed two methods. In addition, the t-test for the subgroup analysis provided
a larger p-value (0.2349) with a considerably smaller estimate and larger standard error. Previous
numerical evidence (e.g., Ashbeck and Bell [39]) showed possible bias and information reduction of
the single time point analysis by t-test, and this result might correspond to this evidence. With LRBart

and LRBoot, the computational times were 55 and 38 minutes for whole population and subgroup,
respectively (we used a general laptop computer with an Intel (R) Core (TM) i7-6500U and SAS 9.4). The
computational times would be dramatically improved by applying parallel computation techniques.

Figure 4 shows the histogram of the empirical distribution of the LR test statistics resampled by
the parametric bootstrap method under the null effect hypothesis. The mean values of the empirical
distribution were designated by the vertical blue dashed line in each histogram and were 1.09 and
1.20 in the whole population and the subgroup, respectively. In addition, the 95th percentiles of the
empirical distribution were 4.14 and 4.55 for the whole population and the subgroup, respectively.
If the chi-squared approximations are accurate, the means and 95th percentiles of the null distribution
were expected to be 1.0 and 3.84. These results would show that the distribution of the LR test statistic
in incomplete longitudinal data with a small sample size shifted and adequate corrections were needed.
The proposed methods would improve the approximations and enable improvements of the inferences
as shown in the simulations.
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6. Discussion

MMRM with the KR method has been widely applied as a standard analysis method for
longitudinal clinical trials. If a sufficient number of samples are available, there are no problems
using statistical tests and confidence intervals based on large sample theory. However, the asymptotic
approximations cannot be appropriate in cases with small sample sizes. In addition, most
clinical trials involve missing data. As methods to improve validity of the statistical inferences,
we proposed resampling-based approaches. Throughout the simulations and real data applications,
we demonstrated the effectiveness of the proposed methods compared with existing standard methods.

In the simulation experiments, the KR method and our proposed methods maintained almost the
same type I error rate under MCAR, which was close to 5%. However, under MAR scenarios with large
dropout rates, the KR method had conservative type I error rate compared with our proposed methods.
Our proposed methods might have an advantage even if the missing-data mechanism is MAR compared
with KR. In addition, it should be noted that Algorithm 1 uses bootstrap samples to estimate the mean
of the null distribution, whereas Algorithm 2 uses them to estimate a quantile of the null distribution.
In general, the latter is a more unstable quantity for Monte Carlo inferences and thus requires a larger
number of resamplings in general [23]. In our simulation studies, 3000 resamplings were performed for
both the LRBart and LRBoot methods, and we obtained similar results. The number 3000 was determined
considering Monte Carlo errors, and they would be sufficient. Although these might require large
computation burdens, they would not be so problematic under a modern computational environment,
in which parallel computations are available for standard statistical software.

In addition, another possible effective approach to be considered in future research might be the
Bayesian approach. The Bayesian method might also accommodate small sample sizes, if the choices
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of the prior distributions are appropriate. The advantages and potential drawbacks are discussed in
Van De Schoot et al. [40]. Also, another concern is extensions to multi-parameter inferences. However,
the proposed methods are quite general methods and could be straightforwardly extended to the
multi-parameter inferences.

The effectiveness of our proposed two resampling approaches for MMRM were clearly shown
through simulation studies and real data applications. To assure scientific validity in developments
of new drug and health technology, accurate statistical inference methods are essential tools.
The proposed methods can be applied as effective options in statistical analyses for small and
incomplete longitudinal clinical trials.

Author Contributions: Y.U. and H.N. conceived and designed this study. Y.U., H.N., K.M. and M.G. conducted
developments of the methods. Y.U. conducted simulation and real data analyses. Y.U. and H.N. interpreted the
results, and drafted the manuscript. All authors approved its final version.
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Appendix A

The results of convergence proportion with N = 20 are presented as figures below. Figure A1
displays the results in scenario 1 and 2 and Figure A2 displays the results in scenario 3 and 4, respectively.
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