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Abstract: In this article, we propose approaches for constructing confidence intervals for the single
signal-to-noise ratio (SNR) of a log-normal distribution and the difference in the SNRs of two
log-normal distributions. The performances of all of the approaches were compared, in terms of
the coverage probability and average length, using Monte Carlo simulations for varying values of
the SNRs and sample sizes. The simulation studies demonstrate that the generalized confidence
interval (GCI) approach performed well, in terms of coverage probability and average length. As a
result, the GCI approach is recommended for the confidence interval estimation for the SNR and the
difference in SNRs of two log-normal distributions.
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1. Introduction

In statistics, it is well-known that the standard deviation and the variance are used to measure
dispersion. Although the standard deviation has an important advantage and is easier to interpret
than the variance, the former is not an appropriate indicator when we compare the dispersion in
distributions of several variables. Therefore, the coefficient of variation (CV), which is defined as the
ratio of the standard deviation to the mean, is used to measure the relative dispersion. CV is free from
the unit of measurement and is useful in comparing the variability between groups of observations.
Many authors have proposed confidence intervals for CV. For instance, Niwitpong [1] constructed the
confidence intervals for the CV of a log-normal distribution with restricted parameter space, while
Ng [2] studied the confidence interval for the common CV of log-normal distributions. Furthermore,
Thangjai [3] proposed the simultaneous fiducial generalized confidence intervals (SFGCIs) for the
differences in the CVs of log-normal distributions.

The signal-to-noise ratio (SNR) is the inverse of the CV. It is the ratio of the mean to the
standard deviation. SNR has been used in many fields, such as finance, quality control, medicine,
imaging, economics, marketing, and biology. For the application of this ratio in the theory of finance,
SNR measures the relationship between excess return and the risk of financial assets. In analog and
digital communications, SNR is a measure of the signal strength relative to the background noise.
In quality control, SNR represents the magnitude of the mean of a process compared to its variation.
In medicine, SNR can be used to analyze the blood pressure of patients in a longitudinal study. In
image processing, the ratio of the mean pixel values over a given neighborhood is calculated by the
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SNR of an image. Furthermore, the SNR is used for the analysis of portfolio selection models and
market risk (see [4,5]).

A log-normal distribution is right-skewed and is used in models for various applications, such as
medicine, economics, biology, agriculture, entomology, and finance. Applications of the log-normal
distribution can be found in [6–8].

Suppose that a random variable X = (X1, X2, . . . , Xn) follows all possible distributions. The lower
and the upper limits of the confidence interval for the CV are denoted by L (X) and U (X), respectively.
By definition, if X = (X1, X2, . . . , Xn) is a random sample from a probability distribution with statistical
parameters, then the confidence interval for the CV (γ) with nominal confidence level 1− α is an
interval with L (X) and U (X): These are determined with the property P (L (X) ≤ γ ≤ U (X)) = 1− α.
Then, 1/U (X) ≤ 1/γ ≤ 1/L (X) can be achieved by taking the inverse values of L (X), U (X), and
γ. That is to say, the confidence interval for the inverse of CV (1/γ) with nominal confidence level
1 − α is the interval with 1/U (X) and 1/L (X). Confidence interval estimation in terms of SNR
has received attention in the literature; see [9–15]. In this article, we propose two approaches for
constructing the confidence intervals for the SNR of a log-normal distribution, using the GCI and the
large sample approaches. Furthermore, three confidence intervals for the difference between the SNRs
of log-normal distributions are constructed based on the GCI, large sample, and method of variance
estimates recovery (MOVER) approaches.

The rest of this article is organized as follows. In Section 2, the confidence intervals for the SNR of
a log-normal distribution are presented, and the confidence intervals for the difference between the
SNRs of log-normal distributions are given in Section 3. In Section 4, the results of simulation studies
to assess the coverage probabilities and the average lengths of all of the proposed confidence intervals
are presented. Next, two examples are given to illustrate the proposed approaches in Section 5, and the
concluding remarks are presented in Section 6.

2. The Confidence Intervals for a Single SNR

Suppose that a random variable X = log(Y) follows a normal distribution with mean µ

and variance σ2. Then, the random variable Y follows a log-normal distribution with mean
µY = exp

(
µ + σ2/2

)
and variance σ2

Y =
(
exp

(
σ2)− 1

)
·
(
exp

(
2µ + σ2)). Thus, the SNR of Y is

given by

θ =
µY√

σ2
Y

=
1√

exp (σ2)− 1
. (1)

We are interested in constructing the confidence interval for the SNR θ. Let Y = (Y1, Y2, . . . , Yn)

be a random sample from Y: Let X̄ =
n
∑

i=1
Xi/n and S2 =

n
∑

i=1
(Xi − X̄)

2 / (n− 1) be the sample mean

and sample variance for log-transformed data Xi = log(Yi), where i = 1, 2, . . . , n; and let x̄ and s2 be
the observed sample mean and observed sample variance, respectively. The estimator of θ is

θ̂ =
1√

exp (S2)− 1
. (2)

The variance of
√

exp (S2)− 1, given in [3], is in the form Var
(√

exp (S2)− 1
)

=(
σ4 · exp

(
2σ2)) /

(
2 (n− 1) ·

(
exp

(
σ2)− 1

))
. Therefore, it is easy to derive the variance of θ̂,

as follows:
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Var
(
θ̂
)

= Var
(

1√
exp(S2)−1

)

=

(
E(1)

E
(√

exp(S2)−1
)
)2

·
(

Var(1)
(E(1))2 +

Var
(√

exp(S2)−1
)

(
E
(√

exp(S2)−1
))2

)

= 1
exp(σ2)−1 ·

 σ4 ·exp(2σ2)
2(n−1)·(exp(σ2)−1)

exp(σ2)−1


=

σ4·exp(2σ2)
2(n−1)·(exp(σ2)−1)3 .

(3)

2.1. The GCI Approach for a Single SNR

The concept of GCI was introduced by Weerahandi [16]. Let X = (X1, X2, . . . , Xn) be a random
sample having a density function f (X|θ, ν), where θ is the parameter of interest and ν is a nuisance
parameter. Let x be the observed sample of X. A generalized pivotal quantity R (X; x, θ, ν) is considered
and satisfies the following conditions:

(i) The distribution of R (X; x, θ, ν) is free of all unknown parameters.
(ii) The observed value of R (X; x, θ, ν) is the parameter of interest.

Condition (i) is imposed to guarantee that a subset of the sample space of the possible values
of R (X; x, θ, ν) can be found at a given value of the confidence coefficient, with no knowledge of
the parameters. Condition (ii) is imposed to ensure that such probability statements, based on a
generalized pivotal quantity, lead to confidence regions involving the observed data x only. The GCI
for θ is computed using the percentiles of the generalized pivotal quantity. Let [R (α/2) , R (1− α/2)]
be a 100 (1− α)% two-sided GCI for the parameter of interest, where R (α/2) and R (1− α/2) denote
the 100 (α/2)-th and the 100 (1− α/2)-th percentiles of R (X; x, θ, ν), respectively.

Suppose that X̄ and S2 are the mean and variance of the log-transformed sample from a log-normal
distribution. Furthermore, let x̄ and s2 be the observed values of X̄ and S2, respectively. Since s2

has a chi-squared distribution with n− 1 degrees of freedom, defined by s2 ∼ σ2χ2
n−1/ (n− 1), then

σ2 = (n− 1) s2/χ2
n−1. We define the generalized pivotal quantity for σ2 as

Rσ2 =
(n− 1) s2

χ2
n−1

, (4)

where χ2
n−1 denotes a chi-squared distribution with n− 1 degrees of freedom.

From Equations (1) and (4), the generalized pivotal quantity for θ, based on the generalized
pivotal quantity for σ2, is given by

Rθ =
1√

exp (Rσ2)− 1
=

1√
exp

(
(n−1)s2

χ2
n−1

)
− 1

. (5)

The 100 (1− α)% two-sided confidence interval for the SNR of log-normal distribution θ, based
on the GCI approach, is given by

CIS.GCI = [LS.GCI , US.GCI ] = [Rθ (α/2) , Rθ (1− α/2)], (6)

where Rθ (α/2) and Rθ (1− α/2) denote the (α/2)-th and (1− α/2)-th quantiles of Rθ , respectively.
The following algorithm is used to construct the GCI for the SNR of a log-normal distribution

(Algorithm 1):
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Algorithm 1: The GCI for the SNR.

For a given x̄ and s2

For g = 1 to h:
Generate χ2

n−1 from chi-squared distribution with n− 1 degrees of freedom
Compute Rσ2 from Equation (4)
Compute Rθ from Equation (5)
End g loop
Compute the (α/2)-th quantiles of Rθ defined by Rθ (α/2)
Compute the (1− α/2)-th quantiles of Rθ defined by Rθ (1− α/2)

2.2. The Large Sample Approach for a Single SNR

From Equations (2) and (3), the 100 (1− α)% two-sided confidence interval for the SNR of
log-normal distribution θ, based on the large sample approach, is given by

CIS.LS = [LS.LS, US.LS] = [θ̂ − z1−α/2

√
Var

(
θ̂
)
, θ̂ + z1−α/2

√
Var

(
θ̂
)
], (7)

where z1−α/2 denotes the (1− α/2)-th quantile of a standard normal distribution and Var
(
θ̂
)

is
defined as in Equation (3), with σ replaced by s.

3. The Confidence Intervals for the Difference between SNRs

Suppose that X = log(Y) follows a normal distribution with mean µX and variance σ2
X . Similarly,

let T = log(W) be a normal distribution with mean µT and variance σ2
T . Moreover, X and T are

independent. The single SNRs of Y and W are, respectively, given by

θX =
1√

exp
(
σ2

X
)
− 1

and θT =
1√

exp
(
σ2

T
)
− 1

. (8)

The estimators of θX and θT are

θ̂X =
1√

exp
(
S2

X
)
− 1

and θ̂T =
1√

exp
(
S2

T
)
− 1

. (9)

The variances of θ̂X and θ̂T are, respectively,

Var
(
θ̂X
)
=

σ4
X · exp

(
2σ2

X
)

2 (n− 1) ·
(
exp

(
σ2

X
)
− 1
)3 and Var

(
θ̂T
)
=

σ4
T · exp

(
2σ2

T
)

2 (m− 1) ·
(
exp

(
σ2

T
)
− 1
)3 . (10)

Therefore, the difference between θ̂X and θ̂T is

δ̂ = θ̂X − θ̂T =
1√

exp
(
S2

X
)
− 1
− 1√

exp
(
S2

T
)
− 1

. (11)

Let n and m be the sample sizes of X and T, respectively. Using the Bienaymé formula, the variance
of the sum of uncorrelated random variables is the sum of their variances. Moreover, using the linearity
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of the expectation operator and the assumption that X and T are independent, the variance of θ̂X − θ̂T
is obtained as

Var
(
δ̂
)

= Var
(
θ̂X − θ̂T

)
= Var

(
θ̂X
)
+ Var

(
θ̂T
)

(12)

=
σ4

X · exp
(
2σ2

X
)

2 (n− 1) ·
(
exp

(
σ2

X
)
− 1
)3 +

σ4
T · exp

(
2σ2

T
)

2 (m− 1) ·
(
exp

(
σ2

T
)
− 1
)3 .

3.1. The GCI Approach for the Difference between SNRs

Suppose that S2
X and S2

T denote the variances of the log-transformed sample, and let s2
X and s2

T be
the observed values of S2

X and S2
T , respectively. The generalized pivotal quantities for σ2

X and σ2
T are

obtained from

Rσ2
X
=

(n− 1) s2
X

χ2
n−1

and Rσ2
T
=

(m− 1) s2
T

χ2
m−1

, (13)

where χ2
n−1 and χ2

m−1 denote chi-squared distributions with n − 1 and m − 1 degrees of
freedom, respectively.

Therefore, the difference between the generalized pivotal quantities RθX − RθT , based on the
generalized pivotal quantities for σ2

X and σ2
T , can be written as

Rδ = RθX − RθT =
1√

exp
(

Rσ2
X

)
− 1
− 1√

exp
(

Rσ2
T

)
− 1

. (14)

The 100 (1− α)% two-sided confidence interval for the difference between the SNRs of log-normal
distributions δ, based on the GCI approach, is given by

CID.GCI = [LD.GCI , UD.GCI ] = [Rδ (α/2) , Rδ (1− α/2)], (15)

where Rδ (α/2) and Rδ (1− α/2) denote the (α/2)-th and (1− α/2)-th quantiles of Rδ, respectively.

3.2. The Large Sample Approach for the Difference between SNRs

Using the central limit theorem, the 100 (1− α)% two-sided confidence interval for the difference
between SNRs of log-normal distributions δ, based on the large sample approach, is given by

CID.LS = [LD.LS, UD.LS] = [δ̂− z1−α/2

√
Var

(
δ̂
)
, δ̂ + z1−α/2

√
Var

(
δ̂
)
], (16)

where z1−α/2 is the (1− α/2)-th quantile of the standard normal distribution, and δ̂ and Var
(
δ̂
)

are
defined as in Equations (11) and (12), respectively, with σX and σT replaced by sX and sT .

3.3. The MOVER Approach for the Difference between SNRs

Let lX and uX be the lower and upper limits of the confidence interval for the SNR of X,
respectively, then they can be defined by

[lX , uX ] = [θ̂X − t1−α/2

√
Var

(
θ̂X
)
, θ̂X + t1−α/2

√
Var

(
θ̂X
)
], (17)

where t1−α/2 is the (1− α/2)-th quantile of a Student’s t distribution, and θ̂X and Var
(
θ̂X
)

are defined
as in Equations (9) and (10), respectively, with σX replaced by sX .
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Similarly, let lT and uT be the lower and upper limits of the confidence interval for the SNR of T,
respectively, then they can be written as

[lT , uT ] = [θ̂T − t1−α/2

√
Var

(
θ̂T
)
, θ̂T + t1−α/2

√
Var

(
θ̂T
)
], (18)

where t1−α/2 is the (1− α/2)-th quantile of a Student’s t distribution, and θ̂T and Var
(
θ̂T
)

are defined
as in Equations (9) and (10), respectively, with σT replaced by sT .

Following Zou and Donner [17] and Zou et al. [18], the 100 (1− α)% two-sided confidence
interval for the difference between the SNRs of log-normal distributions δ, based on the MOVER
approach, is given by

CID.MOVER = [LD.MOVER, UD.MOVER]

= [θ̂X − θ̂T −
√(

θ̂X − lX
)2

+
(
uT − θ̂T

)2
, θ̂X − θ̂T +

√(
uX − θ̂X

)2
+
(
θ̂T − lT

)2
],

(19)

where lX and uX are defined as in Equation (17), and lT and uT are defined as in Equation (18).

4. Simulation Studies

Two simulation studies were conducted to evaluate the coverage probabilities and average lengths
of the proposed confidence intervals. The aim of the first simulation was to assess the performance of
the GCI approach, in comparison with the large sample approach, for the confidence interval estimation
for the single SNR of a log-normal distribution. The aim of the second simulation was to examine the
performance of the GCI approach, in comparison with the large sample and MOVER approaches.

In the single SNR simulation study, the sample sizes were n = 10, 20, 30, 50, 100, and 200;
the population mean of normal data was µ = 1; the population standard deviation was computed as
σ =

√
log((1/θ2) + 1) for the normally distributed data; and the SNR was θ = 1, 3, 5, and 10. A total of

5000 random samples were generated for each set of parameters. For the GCI approach, 2500 Rθ were
obtained for each of the random samples. Table 1 reports the coverage probabilities and average lengths
of the 95% two-sided confidence intervals for the SNR of the log-normal distribution. The results
show that the coverage probabilities of both approaches were close to the nominal confidence level of
0.95. Moreover, the average lengths of the GCI approach were shorter than those of the large sample
approach, when the sample size was small. For a large sample size (n ≥ 100), the GCI approach
performed as well as the large sample approach, in terms of the average length, when the SNR
was small; otherwise, the average lengths of the GCI approach were shorter than those of the large
sample approach.

In the simulation study of the difference of SNRs, the sample sizes were (n, m) = (10, 10), (10, 20),
(20, 20), (20, 30), (30, 30), (30, 50), (50, 50), (50, 100), (100, 100), (100, 200), and (200, 200); the population
means were µX = µT = 1; and the population SNRs were (θX , θT) = (10, 1), (10, 2), (10, 5), and (10,10)
for the normally distributed data. Therefore, the population standard deviations of the normally

distributed data σX =
√

log((1/θ2
X) + 1) and σT =

√
log((1/θ2

T) + 1) were computed. The coverage
probabilities and average lengths of the 95% two-sided confidence intervals for the difference between
the SNRs of the log-normal distributions were evaluated, based on 5000 replications, and 2500 Rδ were
obtained for the GCI approach. The results are given in Table 2, in which it can be seen that the GCI
approach and the large sample approach were preferable for all cases. However, the average lengths
of the GCI approach were shorter than those of the large sample approach. Furthermore, the coverage
probabilities of the MOVER approach provided more than 0.97 for (n, m) = (10, 10) and (10, 20); thus,
the MOVER confidence interval was conservative for those two sample sizes. For large sample sizes,
the coverage probabilities of the MOVER approach were close to the nominal confidence level of 0.95,
although the average lengths were wider than those of the GCI and large sample approaches.
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Table 1. Coverage probabilities (CP) and average lengths (AL) of the 95% two-sided confidence
intervals for the signal-to-noise ratio (SNR) of the log-normal distribution.

n θ
CIS.GCI CIS.LS

CP AL CP AL

10 1 0.9500 1.3508 0.9544 1.3650
2 0.9472 2.2220 0.9532 2.2435
5 0.9516 5.0444 0.9584 5.1305

10 0.9446 10.0207 0.9504 10.2081

20 1 0.9484 0.9093 0.9508 0.9114
2 0.9478 1.4735 0.9504 1.4787
5 0.9500 3.3674 0.9534 3.3920

10 0.9482 6.6255 0.9522 6.6779

30 1 0.9464 0.7271 0.9486 0.7273
2 0.9524 1.1735 0.9522 1.1762
5 0.9486 2.6824 0.9518 2.6952

10 0.9472 5.2706 0.9480 5.2988

50 1 0.9498 0.5562 0.9520 0.5562
2 0.9442 0.8966 0.9458 0.8982
5 0.9518 2.0413 0.9526 2.0463

10 0.9488 4.0273 0.9494 4.0396

100 1 0.9466 0.3888 0.9478 0.3887
2 0.9438 0.6261 0.9464 0.6269
5 0.9508 1.4310 0.9510 1.4321

10 0.9544 2.8149 0.9526 2.8185

200 1 0.9416 0.2734 0.9410 0.2733
2 0.9502 0.4398 0.9500 0.4397
5 0.9514 1.0044 0.9498 1.0052

10 0.9494 1.9778 0.9496 1.9786

Table 2. CP and AL of the 95% two-sided confidence intervals for the difference between the SNRs of
the log-normal distributions.

(n, m) (θX , θT)
CID.GCI CID.LS CID.MOV ER

CP AL CP AL CP AL

(10, 10) (10, 1) 0.9488 10.0317 0.9538 10.2105 0.9798 11.7848
(10, 2) 0.9526 10.2872 0.9550 10.4755 0.9814 12.0907
(10, 5) 0.9470 11.2646 0.9526 11.4413 0.9786 13.2053

(10, 10) 0.9522 14.4306 0.9562 14.6390 0.9834 16.8961

(10, 20) (10, 1) 0.9500 10.0019 0.9534 10.1874 0.9796 11.7508
(10, 2) 0.9520 10.1478 0.9564 10.3345 0.9826 11.9089
(10, 5) 0.9436 10.5090 0.9478 10.6756 0.9772 12.2262

(10, 10) 0.9520 12.1011 0.9566 12.2590 0.9758 13.8301

(20, 20) (10, 1) 0.9544 6.6445 0.9570 6.6991 0.9686 7.1539
(10, 2) 0.9472 6.7690 0.9468 6.8209 0.9610 7.2840
(10, 5) 0.9538 7.4738 0.9560 7.5268 0.9680 8.0377

(10, 10) 0.9484 9.4132 0.9542 9.4808 0.9670 10.1245

(20, 30) (10, 1) 0.9462 6.6156 0.9482 6.6683 0.9612 7.1191
(10, 2) 0.9488 6.7309 0.9506 6.7879 0.9652 7.2436
(10, 5) 0.9476 7.1425 0.9500 7.1944 0.9642 7.6577

(10, 10) 0.9462 8.5451 0.9490 8.5939 0.9636 9.0967

(30, 30) (10, 1) 0.9472 5.3335 0.9476 5.3628 0.9560 5.5961
(10, 2) 0.9490 5.4207 0.9504 5.4488 0.9602 5.6858
(10, 5) 0.9510 5.9488 0.9514 5.9759 0.9596 6.2359

(10, 10) 0.9468 7.5196 0.9504 7.5510 0.9608 7.8795
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Table 2. Cont.

(n, m) (θX , θT)
CID.GCI CID.LS CID.MOV ER

CP AL CP AL CP AL

(30, 50) (10, 1) 0.9480 5.3190 0.9500 5.3487 0.9608 5.5803
(10, 2) 0.9528 5.3545 0.9544 5.3822 0.9632 5.6136
(10, 5) 0.9482 5.6710 0.9484 5.6972 0.9570 5.9314

(10, 10) 0.9480 6.6886 0.9490 6.7106 0.9560 6.9580

(50, 50) (10, 1) 0.9454 4.0718 0.9478 4.0828 0.9534 4.1862
(10, 2) 0.9498 4.1297 0.9522 4.1404 0.9576 4.2452
(10, 5) 0.9474 4.5239 0.9484 4.5352 0.9544 4.6500

(10, 10) 0.9484 5.7153 0.9486 5.7265 0.9540 5.8714

(50, 100) (10, 1) 0.9506 4.0473 0.9516 4.0578 0.9578 4.1601
(10, 2) 0.9528 4.0727 0.9534 4.0848 0.9590 4.1869
(10, 5) 0.9448 4.2837 0.9448 4.2948 0.9526 4.3974

(10, 10) 0.9444 4.9404 0.9458 4.9500 0.9510 5.0543

(100, 100) (10, 1) 0.9504 2.8427 0.9500 2.8476 0.9516 2.8829
(10, 2) 0.9526 2.8886 0.9522 2.8915 0.9556 2.9273
(10, 5) 0.9490 3.1646 0.9508 3.1688 0.9528 3.2080

(10, 10) 0.9492 3.9953 0.9500 3.9996 0.9522 4.0490

(100, 200) (10, 1) 0.9498 2.8268 0.9508 2.8297 0.9540 2.8646
(10, 2) 0.9482 2.8482 0.9486 2.8523 0.9508 2.8872
(10, 5) 0.9500 2.9978 0.9512 3.0016 0.9534 3.0367

(10, 10) 0.9474 3.4493 0.9486 3.4509 0.9502 3.4865

(200, 200) (10, 1) 0.9458 2.0017 0.9474 2.0025 0.9490 2.0147
(10, 2) 0.9524 2.0294 0.9520 2.0302 0.9534 2.0427
(10, 5) 0.9480 2.2231 0.9484 2.2236 0.9502 2.2372

(10, 10) 0.9496 2.8045 0.9486 2.8053 0.9500 2.8225

5. Empirical Applications

Two examples are given to illustrate our proposed approach for confidence intervals for the
SNR of a log-normal distribution and the difference between the SNRs of log-normal distributions.
The GCIs are computed using Algorithm 1, with h = 2500.

Example 1. The data are from Fung and Tsang [19] and Ng [2]. The data-set contains hemoglobin values
from one normal and one abnormal blood sample of Hb1995. The summary statistics are n = 65, x̄ = 14.64,
and s2 = 0.0665. Therefore, the SNR of the log-normal distribution is 3.8135. The procedures in Section 2 are
applied to compute the 95% two-sided confidence intervals for the SNR of the log-normal distribution. The 95%
GCI and large sample confidence interval for the SNR are [3.1365, 4.4748] with a length of interval of 1.3383
and [3.1307, 4.4964] with a length of interval of 1.3657, respectively. Note that the GCI and the large sample
confidence intervals contain the true value of the SNR. However, the length of the GCI is shorter than the length
of the large sample confidence interval and, thus, the former is better when the sample size is small (Table 1).

Example 2. The data are from the Regenstrief Medical Record System, as reported in MCDonald et al. [20],
Zhou et al. [21], and Jafari and Abdollahnezhad [8]. The data represent the effects of race on medical charges
for patients with type I diabetes who received inpatient or outpatient care, on at least two occasions, during the
period from 1 January 1993 to 30 June 1994. The dataset consists of African American and white patients. For
African American patients, the summary statistics are n = 119, x̄ = 9.0670, and s2

X = 1.8240 and, for the white
patients, the summary statistics are m = 106, t̄ = 8.6930, and s2

T = 2.6920. The difference between the SNRs
is 0.1691. Zhou et al. [19] showed that both datasets come from log-normal distributions. The 95% two-sided
confidence intervals for the difference between the SNRs of the log-normal distributions were constructed, using
the three approaches given in Section 3. The 95% GCI, large sample, and MOVER confidence intervals for the
difference between SNRs are [0.0101, 0.3258] with a length of interval of 0.3157, [0.0082, 0.3300] with a length
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of interval of 0.3218, and [0.0064, 0.3318] with a length of interval of 0.3254, respectively. The results indicate
that all of the confidence intervals contain the true difference between the SNRs, but GCI provided the shortest
length, and so is much more satisfactory than the others.

6. Discussion and Conclusions

In this article, we considered the confidence intervals for the single SNR of a log-normal
distribution and for the difference of SNRs between the two log-normal distributions. First, we used
the GCI approach and the large sample approach to construct the confidence intervals for the SNR,
and then we used the GCI, large sample, and MOVER approaches to estimate the confidence interval
for the difference between the SNRs.

For the confidence interval for SNR, the coverage probabilities of both approaches were
satisfactory. However, the GCI approach was better than the large sample approach, in terms of
the average length. For the difference between the SNRs, the GCI approach and the large sample
approach were preferable to MOVER. However, the average lengths of the GCI approach were shorter
than those of the large sample approach. As a result, comparing the GCI approach and the large
sample approach, the former was therefore more preferable, in terms of the average length.
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