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Abstract: The Birnbaum-Saunders (BS) distribution, with its generalizations, has been successfully
applied in a wide variety of fields. One generalization, type-II generalized BS (denoted as GBS-II),
has been developed and attracted considerable attention in recent years. In this article, we propose a
new simple and convenient procedure of inference approach for GBS-II distribution. An extensive
simulation study is carried out to assess performance of the methods under various settings of
parameter values with different sample sizes. Real data are analyzed for illustrative purposes to
display the efficiency of the proposed method.

Keywords: generalized Birnbaum-Saunders distribution; likelihood function; transformation;
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1. Introduction

Over the past decades, numerous researches of flexible distributions have been developed and
studied to model fatigue failure (or life) time of products for reliability/survival analysis in engineering
and other fields, see [1–4], just to name a few. As a result of the Birnbaum-Saunders (BS) distribution [5]
being successful in modeling fatigue failure times, this model and its extensions have been attracted
considerable attention in recent years. The distribution was developed to model failures due to fatigue
under cyclical stress on materials. The failure follows from the development and growth of a dominant
crack in the product. The BS distribution can be widely applied for describing fatigue life in general,
and its application has been extended to other fields where an accumulation forces a quantity to exceed
a critical threshold. Thus, the model becomes the most versatile within the popular distributions for
failure times due to fatigue and cumulative damage phenomena. The distribution function of the
failure time T is expressed

F(t) = Φ

(
1
α

[(
t
β

)1/2
−
(

β

t

)1/2
])

, t > 0, (1)

where α > 0, β > 0 are shape and scale parameters, Φ(·) is the distribution function of standard
normal variate. The BS distribution can be widely applied to describe fatigue life and lifetimes in
general. Its field of application has been extended beyond the original context of material fatigue, and
the model becomes a fairly versatile within the popular distributions for failure times. Over the years,
various approaches of parameter inference, generalizations, and applications of the distribution have
been introduced and developed by many authors (see, for example, [6–8]). A comprehensive review of
the statistical theory, methodology, and applications of BS distribution can be revised in [9].

In the past decade, numerous researches have been dedicated to generalizations of the distribution
and their applications. Using elliptical distributions to replace the normal function Φ(·), Ref. [10]
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extended the BS to a very broad family of spherical distributions. This generalized BS (GBS) is a
highly flexible life distribution that admits different degrees of kurtosis and asymmetry, and possesses
unimodality and bimodality. As the BS distribution, the GBS distribution can be widely applied in
problems involving cumulative damage, which occurs commonly in engineering, environmental, and
medical studies. Various researches of the GBS have been studied on the theory and applications
in [10–13], and others. Based on a multivariate elliptically symmetric distribution, a generalized
multivariate BS distribution was introduced in [14], who discussed its general properties and presented
the statistical inference of parameters. Most recently, Ref. [15] presented moment-type estimation
methods for the parameters of the generalized bivariate BS distribution and showed the asymptotic
normality of the estimators. However, the use of symmetric distributions as a generalization of
the normal model is not based on empirical argument neither on physical laws. One reasonable
generalization was first proposed in [16] by allowing the exponent (presently set 1/2 on the BS) to
take on other values. Recently, considering the original BS distribution obtained from a homogeneous
Poisson process, Ref. [17] derived the same generalized BS depending on a non-homogeneous Poisson
process. To distinguish from the GBS developed in [18], this GBS is referred to as Type-II GBS, denoted
by GBS-II (m, α, β), whose distribution and density functions are given by

F(t) = Φ
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where m > 0 and α > 0 are both shape-type parameters, β > 0 is a scale parameter, φ(·) is
the density function of standard normal distribution. As the BS distribution, the transformation
Z = ((T/β)m − (β/T)m)/α leads to a standard normal variate, and it is useful for random value
generation, integer moments derivation as well as the development of the estimation procedure
presented in this article.

So far, little research has been seen on the analysis for the GBS-II distribution in Equation (2).
Ref. [19] discussed the likelihood-based estimation of parameters and provided interval estimation
based on “observed” Fisher’s information. In this article, to contribute to the relatively neoteric body of
research, we propose a new inference method for the parameter estimation and hypothesis testing for
the GBS-II model. Our method provides explicit expressions and easier computations for the estimates.
The rest of the article is arranged as follows. Section 2 presents some interesting properties of GBS-II
distribution. The methodology is presented for inference procedure in Section 3. Subsequently, we
carry out simulation studies to investigate the performance of proposed methods in Section 4. For
illustrative purposes, one real data set is analyzed in Section 5, followed by some concluding remarks
in Section 6.

2. Properties of GBS-II

The three-parameter GBS-II distribution in Equation (2) is a flexible family of distribution, and the
shape of the density widely varies with different values of the parameters. Specifically (a detailed proof
is provided in Appendix A), (i) when 0 < m ≤ 1, the density is unimodal or upside-down bathtub;
(ii) when m > 1 and α2 ≤ m/(m− 1), the density is also unimodal (upside-down); (iii) if m > 1 and
α2 > m/(m− 1), then the density is either unimodal or bimodal. Figure 1 shows various graphs of the
density function for different values of m and α with the scale parameter β fixed at unity. Additionally,
Figure 2 presents the failure rate function given by λ(t) = f (t)/(1− F(t)) with various values of m
and α, showing that it could have increasing, decreasing, bathtub, and upside-down bathtub-shapes.
Hence, it seems that the distribution is flexible enough to model various situations of product life.
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Figure 1. Type-II generalized Birnbaum-Saunders (GBS-II) (m, α, β) density curves for various
parameter values.
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Figure 2. GBS-II (m, α, β) failure rate curves for various parameter values.

The GBS-II has some interesting properties as BS distribution. For example, β remains the
median for the distribution. The reciprocal property is also preserved by that if T ∼ GBS-II (m, α, β),
then T−1 ∼ GBS-II (m, α, β−1). In fact, the GBS-II generally describes the distribution family of
power transformations for BS random variable from the following: if T ∼ BS (α, β), then for any
nonzero real-valued constant r, Tr ∼ GBS-II (0.5|r|−1, α, βr), where | · | represents the absolute value
function. Conversely, given T ∼ GBS-II (m, α, β), then T2m ∼ BS (α, β2m). In addition, similar to
the BS distribution which can be written as an equal mixture of an inverse normal distribution and
distribution of the reciprocal of an inverse normal random variable [20], the GBS-II distribution can be
also expressed as a mixture of power inverse normal-type distributions [19].

In respect of numeric characteristics for the GBS-II, generally, there is no analytic form of moments
except for some special cases. For example, from the fact that Tm = βm

(
αZ +

√
α2Z2 + 4

)
/2 with

a standard normal variate Z, one may easily obtain the expressions of the moments E(Tkm) with
an even number k, such as E(T2m) = β2m(1 + α2/2), E(T4m) = β4m(1 + 2α2 + 11α4/4), etc. One
general moment expression was obtained in [21], who used the relationship between the GBS-II and
three-parameter sinh-normal distribution described in [22]

E(Tr) =
βr exp(α−2)

α
√

2π

[
K(r/m+1)/2(α

−2) + K(r/m−1)/2(α
−2)
]

, (4)
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where Kω(x) is the third kind modified Bessel function of order ω, which can be expressed in an integral
form as Kω(x) =

∫ ∞
0 exp{−x cosh(s)} cosh(ωs)ds with the hyperbolic cosine function cosh(x) =

[exp(x) + exp(−x)]/2. Numerous software packages can be used to evaluate Kω(x) for specific values
of ω and x for calculating the moments such as the mean and variance. The finite moments guarantee
the rationality of the moment-based type estimation methods provided in the following section.

3. Inference Approach

Throughout this section, we denote (t1, t2, . . . , tn) as the random observational data of size n
from the GBS-II distribution. To make notation simple, let ε(t) = (t/β)m − (β/t)m and δ(t) =

(t/β)m + (β/t)m. Then the log-likelihood function based on the density function in Equation (3) is
given by

` = −n
2

log(2π) + n log m− n log α−
n

∑
i=1

log ti +
n

∑
i=1

log δ(ti)−
1

2α2

n

∑
i=1

ε2(ti), (5)

and the score functions for each parameter are the followings

∂`

∂α
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α
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1
α3

n

∑
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∂`

∂β
= −m

β

[
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∑
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ε(ti)

δ(ti)
− 1

α2

n

∑
i=1

ε(ti)δ(ti)

]
, (6)

∂`

∂m
=

n
m

+
n

∑
i=1

log(β−1ti)
ε(ti)

δ(ti)
− 1

α2

n

∑
i=1

log(β−1ti)ε(ti)δ(ti). (7)

Due to the complexity of the expression above, there are no tractable forms of maximum likelihood
estimates (MLEs). Some powerful computational techniques, such as the general-purpose optimization
method, EM algorithm, or its extensions, can be applied to obtain MLEs m̂, α̂, β̂ by solving the
equations ∂`/∂m = 0, ∂`/∂α = 0, and ∂`/∂β = 0 simultaneously. Since there is no analytic form of
Fisher’s information matrix, Ref. [19] used the “observed” one to obtain a large-sample based interval
estimation for the parameters. We propose an alternative and comparatively simple procedure for
applicable inference in the following.

3.1. New Estimation Method

First, since the scale parameter β is also the median of the GBS-II, one simple estimate of β is the
sample median below

β̂M = median(t1, t2, . . . , tn). (8)

Secondly, for T ∼ GBS-II (m, α, β), the transformed random variable W = m(Y − µ) with Y =

log T and µ = log β has a sinh-normal distribution (see, for example, [22]), whose distribution and
density functions are given by

FW(w) = Φ
(

1
α
[exp(w)− exp(−w)]

)
, (9)

fw(w) =
1
α
[exp(w) + exp(−w)]φ

(
1
α
[exp(w)− exp(−w)]

)
,−∞ < w < ∞. (10)

The distribution has the expression of moments below

E(Wk) =


∫ ∞
−∞

(
log αz+

√
α2z2+4
2

)k
φ(z)dz, k even

0, k odd.
(11)
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By the fact that E(Y) = µ from E(W) = 0, we set up the equation by the first moment E(Y) to
the sample mean ȳ = ∑n

i=1 yi/n with the transformed samples yi = log ti, and obtain the method of
moment estimate of β, which is the geometric mean of the data, given by

β̂G =

(
n

∏
i=1

ti

)1/n

. (12)

Further, E(W2) = m2E(Y− µ)2 and E(W4) = m4E(Y− µ)4 result in the same kurtosis for W and
Y, that is, E(W4)/[E(W2)]2 = E(Y− µ)4/[E(Y− µ)2]2. By equating sample kurtosis to the theoretical
one, the moment estimate α̌ can be obtained numerically from the following equation

E(W4)

[E(W2)]2
= κ, (13)

where the sample kurtosis of Y is κ = m4/m2
2 with mk = ∑n

i=1(yi − y)k/n, k = 2, 4. Although there is
no analytic form, the uniqueness of α̌ is justified in Appendix A. Finally, the estimate of m is

m̌ =

(
Ê(W2)

m2

) 1
2

=


∫ ∞
−∞

(
log α̌z+

√
α̌2z2+4
2

)2
φ(z)dz

m2


1
2

. (14)

Additionally, by the following Taylor expansions

exp[m(y− µ)] = 1 + m(y− µ) +
m2(y− µ)2

2!
+

m2(y− µ)3

3!
+ · · · , (15)

exp[−m(y− µ)] = 1−m(y− µ) +
m2(y− µ)2

2!
− m3(y− µ)3

3!
+ · · · , (16)

the transformed random variable Y = log(T) has the approximate distribution function given by

FY(y) = Φ
[

1
α (exp[m(y− µ)]− exp[−m(y− µ)])

]
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[
1
α
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α

)
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α

)
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(17)

where

Ψ(y) = φ

(
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α

) [
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3!α
+ O

(
(y− µ)5
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{
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} [
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3!α
+ O

(
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. (18)

It is easily seen that (i) the value of Ψ(y) is close to zero if y is close to µ; (ii) if y is away from
µ, Ψ(y) is also close to zero since the decay rate of exponentiation with power −(y− µ)2 is much

faster than the growth rate of the polynomials of (y− µ)k, k = 1, 2, . . .. Hence, Y
approx∼ N(µ, σ2) with

σ = α/(2m). By this distribution approximation, a moment estimate of m is given by

m̆ =
α̌

2SY
, (19)

with the sample variance S2
Y = ∑n

i=1(yi − y)2/(n− 1). The estimate, indeed, is an approximation of
the estimate in Equation (14) where the function (log(α̌z +

√
α̌2z2 + 4)/2)2 is approximated by the

first term of its Taylor series and m2 replaced by S2
Y.
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Finally, from the well-known fact that (Ȳ− µ)/(SY/
√

n)
approx∼ tn−1 and (n− 1)S2

Y/σ2 approx∼ χ2
n−1,

the approximate 100(1− γ)% confidence intervals (CI) of β and σ2 are respectively given by[
exp

(
ȳ− tγ/2,n−1

SY√
n

)
, exp

(
ȳ + tγ/2,n−1

SY√
n

)]
,

[
(n− 1)S2

Y
χ2

γ/2,n−1
,
(n− 1)S2

Y
χ2

1−γ/2,n−1

]
, (20)

where χ2
γ/2,n−1, tγ/2,n−1 are the upper 100 × γ/2-th percentile of the χ2 and t distributions with

degrees of freedom n− 1. Accordingly, the approximate 100(1− γ)% CIs of m and α, from the relation
σ = α/(2m), are in the following α̌

2

√√√√χ2
1−γ/2,n−1

(n− 1)S2
Y

,
α̌

2

√√√√ χ2
γ/2,n−1

(n− 1)S2
Y

 ,

2m̌

√√√√ (n− 1)S2
Y

χ2
γ/2,n−1

, 2m̌

√√√√ (n− 1)S2
Y

χ2
1−γ/2,n−1

 . (21)

It is worthwhile to point out that the presented method can be extended to the censored
observations which is a usual scenario for real life data in engineering. As an illustrative example, we
briefly describe the estimation procedure for right-censored data. Suppose that the failure time T is a
right-censored variable at c, with c being a pre-specified censored value. Then the transformed time
Y = log(T) may be regarded as a mixture of a binary and approximated right-truncated N(µ, σ2) at
c∗ = log(c). The moment-type estimates of the parameters can be obtained numerically in the moment
equations, where the theoretical moments provided in [23] are given below,

E(Y) = [1−Φ(d)]c∗ + Φ(d)[µ− λσ], Var(Y) = Φ(d)[1− dλ− λ2 + (d + λ)2(1−Φ(d))]σ2 (22)

where d = (c∗ − µ)/σ, λ = φ(d)/Φ(d). Additionally, the interval estimation can be constructed by the
method in [24] who provide formulas for confidence intervals around the truncated moments. Thus,
for the censoring case, the computational complexity will increase due to no explicit forms.

3.2. Hypothesis Tests

Here we specifically consider the gradient test [25], and for comparison purposes, the likelihood
ratio test is also presented. Generally, let `(θ) and U(θ) = ∂`(θ)/∂θT be the log-likelihood and score
functions with the p-vector parameter θ. Consider a partition θ = (θT

1 , θT
2 )

T , where θ1, θ2 are the
q and p − q parameter vector, respectively. Suppose the interest lies in testing the composite null
hypothesis H0 : θ1 = θ10 versus H1 : θ1 6= θ10, where θ10 is a specified q-dimensional vector, and
θ2 is a (p− q)-vector nuisance parameter. The partition for θ induces the corresponding partition of
score function U(θ) = (U1(θ)

T , U2(θ)
T)T with Ui(θ) = ∂`(θ)/∂θT

i , i = 1, 2. The likelihood ratio and
gradient statistics for H0 versus H1 are given by

SLR = −2(`(θ̃)− `(θ̂)), SG = U1(θ̃)
T
(θ̂1 − θ̃10), (23)

where θ̂ = (θ̂T
1 , θ̂T

2 )
T and θ̃ = (θT

10, θ̃T
2 )

T denote the MLEs of θ = (θT
1 , θT

2 )
T under H1 and H0,

respectively. Both limiting distributions of SLR and SG are χ2
q, i.e., chi-square with q degrees of

freedom. In practice, the simplicity for the gradient statistic is always an attraction since the score
function is quite bit simpler than the log-likelihood itself in many cases. Also, it does not require one
to obtain, estimate, or invert an information matrix as the Wald and score statistics [26]. Hence, the
gradient statistic makes the testing quiet convenient, especially for the GBS-II distribution, which
possesses a complicated likelihood function and an intractable information matrix.

For the GBS-II distribution, the log-likelihood function `(θ) and the score function U(θ) =

(Um(θ), Uα(θ), Uβ(θ))
T are given in Equations (5)–(7), respectively, with the parameter vector θ =

(m, α, β)T and the MLEs θ̂ = (m̂, α̂, β̂)T . The interest lies in testing the three null hypotheses:
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Hm0 : m = m0, Hα0 : α = α0, Hβ0 : β = β0. (24)

against Hm1 : m 6= m0, Hα1 : α 6= α0, Hβ1 : β 6= β0, respectively, where m0, α0, β0 are the specified
positive scalars. Let m̃, α̃, and β̃ be the restricted MLEs under each null hypothesis, then the likelihood
ratio and gradient statistics, respectively, are given by

SLR(m) = −2[`(m0, α̃, β̃)− `(m̂, α̂, β̂)], SG(m) = Um(m0, α̃, β̃)(m̂−m0), (25)

SLR(α) = −2[`(m̃, α0, β̃)− `(m̂, α̂, β̂)], SG(α) = Uα(m̃, α0, β̃)(α̂− α0), (26)

SLR(β) = −2[`(m̃, α̃, β0)− `(m̂, α̂, β̂)], SG(β) = Uβ(m̃, α̃, β0)(β̂− β0). (27)

The asymptotic distribution of these statistics is χ2
1 under the respective null hypotheses and

the test is significant if the test statistic exceeds the upper 100× γ% percentile χ2
γ,1. In the following

section, we conduct an extensive simulation study to evaluate and compare the performance of the
proposed estimation and the test statistics.

4. Simulation Study

First, we carry out a simulation study to investigate the performance of two estimates of β in
Equation (8) and Equation (12). We fix the scale parameter β = 1 and set m = 0.25, 0.75, α = 0.25, 1.00.
Under each combination of the parameter values, we generate 10,000 data sets of GBS-II random
observations for each sample size n = 10, 15, 20, 25, 30 to calculate the two estimates, as well as
their mean square error (MSE). The comparison plot of two estimates is shown in Figure 3, where,
from top to bottom, two plots correspond to the estimation results under the parameter settings
(m, α) = (0.25, 0.25), (0.25, 1.00), (0.75, 0.25), (0.75, 1.00), and the left and right panels demonstrate the
averaged estimates and their MSEs, respectively. From these plots, one may see that the geometric
mean β̂G is the better estimate since it has both smaller bias and MSE than these by the sample median
β̂M, especially when sample size is small.

Next, we conduct another simulation study to assess performance of parameter estimation by
the new method, where β is estimated by β̂G, m̌ in Equation (14) and α̌ in Equation (13). With
fixing the scale parameter β = 1, we take five settings of other two parameters as (m, α) =

(0.25, 0.50), (0.50, 0.50), (1.00, 1.00), (1.50, 2.00), (2.00, 2.50). For each of these parameter settings with
three sample sizes n = 20, 30, 50, we generate 10,000 data sets to compute the averaged biases and
MSEs of the estimates, as well as average lengths (AL) of the 95% confidence intervals (CI), and
coverage probability (CP) for the parameters. The results are summarized in Table 1, along with
these estimates from the ML method for comparison purposes. The main features are summarized as
follows: (i) As expected, the bias, MSE, and length of 95% CI decrease, and CP is closer to the nominal
level as the sample size n increases for all cases; (ii) the estimation of all parameters from the new
method is much better than from the ML approach in terms of smaller biases and MSEs, narrow CIs,
and higher CPs; (iii) comparatively, for both methods, much more accurate estimation of β are obtained
(especially for the new method), whereas a less precise for the estimation of m and least accurate for
the estimation of α. Particularly, the MLE α̂ does not perform well for the small to moderate sample
sizes (n = 20, 30). With the larger sample size (n = 50), the performances of the β estimates are similar
for both methods; (iv) it seems that the estimate of α has a smaller MSE when the true value of α is
small, whereas the estimate of m has a smaller MSE when the true value of m is large. Overall, the
numerical results favor the new inference method for the estimation on the parameters, especially
when the sample size is small.

Finally, we evaluate and compare the performance of the likelihood ratio and gradient tests for
the hypotheses on the parameters. With 10,000 Monte Carlo replications, Table 2 presents the null
rejection rates of the two statistics SLR and SG under various parameter settings, sample sizes, and the
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nominal levels γ = 10% and 5%. Table 3 contains the powers obtained under the significance level
γ = 5% and the alternative hypotheses: Hm1 : m = m1, Hα1 : α = α1, and Hβ1 : β = β1 for various
values of m1, α1 and β1. Our main findings are as follows. First, the test SG is less size distorted than
the SLR test. In fact, the gradient test produces null rejection rates close to the nominal levels in all
cases. For example, for n = 30, m0 = 1.0 with α = 0.5, β = 1.0, and γ = 5%, the null rejection rates
are 6.28 (SLR(m)) and 5.39 (SG(m)). In the test of α for the values of α > 1, the likelihood ratio test is
oversize whereas the gradient test becomes undersized. All the tests become less size distortion as the
sample size increases, as expected. Additionally, the SG is more powerful than SLR for all the cases.
For example, when n = 50, m = 1.5, α = 1.0, β = 2.0 in the hypothesis Hα0 : α = 1.0 vs. Hα1 : α = 1.15,
the powers are 61.76% (SLR(α)) and 64.16% (SG(α)). It is also clear that the powers of the two tests
increase with the sample size and alternative values m1, α1, and β1. In summary, the simulation studies
imply that the new estimation method and the gradient test perform better than ML approach and the
likelihood ratio test, respectively, for all parameter settings, particularly in the small and moderate
sample sizes.
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Figure 3. Comparisons of β estimates for various sample sizes: geometric mean β̂G (solid line), sample
median β̂M (dashed line).
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Table 1. Type-II generalized Birnbaum-Saunders (GBS-II) Estimation Results for Simulated Data.

n ML Method New Method

Bias MSE AL CP (%) Bias MSE AL CP (%)

m = 0.25, α = 0.5, β = 1.0

20 m 0.1237 0.2901 1.2266 92.39 0.1190 0.1882 0.7592 92.88
α 0.1405 0.1582 0.4803 92.15 0.1354 0.1445 0.4618 92.75
β 0.0318 0.0729 0.2894 93.79 0.0227 0.0638 0.2336 94.26

30 0.1103 0.2370 1.1059 93.14 0.1112 0.1684 0.5340 94.01
0.1302 0.1366 0.4579 93.25 0.1161 0.1101 0.4089 94.57
0.0251 0.0680 0.2169 94.24 0.0216 0.0512 0.1213 94.85

50 0.1050 0.1335 0.9773 94.43 0.0933 0.1120 0.2252 94.90
0.1128 0.1160 0.4039 94.70 0.1116 0.0974 0.3330 95.10
0.0120 0.0246 0.1358 95.12 0.0036 0.0116 0.1054 95.19

m = 0.5, α = 0.5, β = 1.0

20 m 0.1103 0.1310 1.0148 93.29 0.1081 0.1187 0.7357 93.71
α 0.1232 0.1077 0.3602 93.33 0.1128 0.1029 0.3552 93.44
β 0.0320 0.0948 0.3190 93.79 0.0228 0.0727 0.2311 94.55

30 0.1058 0.1240 0.9389 94.55 0.1023 0.1130 0.5694 94.80
0.1190 0.1068 0.3466 94.43 0.1053 0.0910 0.3191 94.75
0.0160 0.0679 0.2432 94.82 0.0103 0.0620 0.1650 95.10

50 0.0812 0.1161 0.5510 94.44 0.0211 0.0832 0.3794 95.20
0.0505 0.0743 0.2130 94.50 0.0334 0.0586 0.1842 95.19
0.0083 0.0350 0.1961 95.16 0.0035 0.0212 0.0823 95.23

m = 1.0, α = 1.0, β = 1.0

20 m 0.1801 0.1352 0.9770 91.90 0.1631 0.1227 0.7119 92.97
α 0.2250 0.2437 0.6224 92.17 0.2041 0.1498 0.4870 92.80
β 0.0374 0.1072 0.4733 93.48 0.0280 0.0840 0.2202 93.96

30 0.1625 0.1232 0.9025 93.54 0.1480 0.1112 0.6117 94.25
0.1858 0.2043 0.5804 93.79 0.1503 0.1255 0.4040 94.31
0.0229 0.0733 0.3484 94.25 0.0117 0.0629 0.1130 94.81

50 0.1151 0.1110 0.5139 93.42 0.0980 0.1051 0.4287 94.53
0.1353 0.1670 0.4080 94.29 0.1143 0.1058 0.3090 94.74
0.0137 0.0420 0.2602 95.02 0.0102 0.0319 0.0852 95.18

m = 1.5, α = 2.0, β = 1.0

20 m 0.2778 0.1342 0.9744 92.32 0.2180 0.1171 0.7069 93.35
α 0.3490 0.2783 0.8688 93.17 0.2896 0.2225 0.7213 93.07
β 0.0533 0.1440 0.5220 93.87 0.0432 0.0941 0.2860 94.10

30 0.2591 0.1301 0.8974 93.28 0.1744 0.1104 0.6785 94.03
0.3016 0.2353 0.7740 93.77 0.1948 0.2056 0.6442 94.60
0.0430 0.1075 0.4249 94.29 0.0337 0.0735 0.1670 94.77

50 0.1607 0.1095 0.7050 94.25 0.1157 0.0933 0.5690 95.01
0.2060 0.1845 0.5217 94.66 0.1312 0.1560 0.4117 95.08
0.0207 0.0681 0.2683 94.90 0.0111 0.0420 0.0790 95.24

m = 2.0, α = 2.5, β = 1.0

20 m 0.3756 0.2143 1.1208 90.67 0.2962 0.1745 1.1081 92.41
α 0.4231 0.3277 1.1310 91.83 0.3480 0.2749 1.1109 92.20
β 0.0811 0.1730 0.6542 92.71 0.0503 0.1121 0.3259 93.35

30 0.3184 0.1806 1.0915 91.88 0.2361 0.1487 1.0672 93.36
0.3523 0.2751 1.1064 92.13 0.2782 0.2260 1.0798 93.22
0.0729 0.1493 0.4849 93.18 0.0425 0.0986 0.2264 94.27

50 0.2597 0.1564 0.9188 93.84 0.1986 0.1204 0.8974 94.58
0.2873 0.2109 0.9167 93.47 0.2319 0.1708 0.8887 94.13
0.0519 0.0933 0.3225 94.29 0.0296 0.0507 0.1137 94.73
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Table 2. Null rejection rates (%) for various parameter settings.

n

Hm0 : m = m0 with α = 0.5, β = 1.0

m0 = 0.5 m0 = 1.0 m0 = 1.5

SLR(m) SG(m) SLR(m) SG(m) SLR(m) SG(m)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 12.78 6.74 9.38 5.75 12.69 6.70 11.09 5.68 12.73 6.80 11.50 5.89
20 12.40 6.52 9.41 5.49 12.36 6.54 10.73 5.45 12.61 6.70 11.34 5.48
30 11.82 6.30 9.64 5.42 11.56 6.28 10.54 5.39 12.38 6.54 11.19 5.39
40 11.46 6.25 9.76 5.37 11.20 6.15 10.37 5.26 12.30 6.40 10.78 5.28
50 11.12 6.05 9.88 5.23 10.98 5.90 10.23 5.14 11.86 6.22 10.55 5.19

Hα0 : α = α0 with m = 1.0, β = 1.0

α0 = 0.5 α0 = 1.0 α0 = 1.5

SLR(α) SG(α) SLR(α) SG(α) SLR(α) SG(α)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 11.38 6.10 10.50 5.81 11.41 6.11 11.40 4.15 12.60 6.11 9.02 4.09
20 11.15 6.04 10.32 5.62 11.27 6.03 11.22 4.38 12.36 6.03 9.10 4.24
30 10.88 5.60 10.17 5.37 11.15 5.57 11.04 4.60 12.13 5.44 9.40 4.40
40 10.74 5.49 10.52 5.29 10.84 5.40 10.80 4.80 11.82 5.32 9.55 4.62
50 10.39 5.26 10.25 5.19 10.53 5.33 10.43 4.86 11.62 5.23 9.74 4.80

Hβ0 : β = β0 with m = 1.5, α = 1.5

β0 = 0.5 β0 = 1.0 β0 = 2.0

SLR(β) SG(β) SLR(β) SG(β) SLR(β) SG(β)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 11.45 6.87 11.42 5.74 12.48 6.63 11.51 4.59 12.56 6.38 12.37 4.55
20 11.32 6.68 11.30 5.56 12.34 6.55 11.30 4.75 12.40 6.25 12.19 4.66
30 10.89 6.50 10.79 5.39 12.25 6.38 11.19 4.83 12.20 6.21 11.68 4.75
40 10.71 6.38 10.67 5.26 11.94 6.31 10.88 4.90 11.85 6.05 11.42 4.84
50 10.37 6.15 10.25 5.13 11.30 6.10 10.48 4.94 11.51 5.89 10.91 4.90

Table 3. Power (%) under two parameter settings at significance level γ = 5%.

n

m = 1.0, α = 0.5, β = 1.0

Hm0 : m = 1.0 Hα0 : α = 0.5 Hβ0 : β = 1.0
Hm1 : m = m1 Hα1 : α = α1 Hβ1 : β = β1

m1 SLR(m) SG(m) α1 SLR(α) SG(α) β1 SLR(β) SG(β)

20 1.00 5.43 5.28 0.50 5.41 5.30 1.00 5.34 5.22
1.05 20.88 22.42 0.55 24.13 26.48 1.05 25.33 26.26
1.10 31.30 32.58 0.60 34.37 38.72 1.10 40.54 41.64
1.15 46.91 48.41 0.65 50.05 53.27 1.15 56.36 58.26

50 1.00 5.21 5.18 0.50 5.25 5.23 1.00 5.28 5.15
1.05 28.87 29.78 0.55 28.81 30.13 1.05 33.07 36.10
1.10 45.45 48.57 0.60 49.30 50.78 1.10 54.44 55.85
1.15 60.82 63.45 0.65 64.01 65.39 1.15 67.13 69.07

100 1.00 5.08 5.05 0.50 5.11 5.04 1.00 5.06 5.03
1.05 32.12 38.36 0.55 40.04 42.77 1.05 43.07 46.08
1.10 71.28 77.23 0.60 76.24 79.62 1.10 79.77 83.45
1.15 86.78 89.14 0.65 89.00 91.31 1.15 90.51 93.05
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Table 3. Cont.

m = 1.5, α = 1.0, β = 2.0

Hm0 : m = 1.5 Hα0 : α = 1.0 Hβ0 : β = 2.0
Hm1 : m = m1 Hα1 : α = α1 Hβ1 : β = β1

m1 SLR(m) SG(κ) α1 SLR(α) SG(α) β1 SLR(β) SG(β)

20 1.50 5.48 5.31 1.00 5.50 5.33 2.00 5.49 5.30
1.55 22.80 25.67 1.05 25.36 27.08 2.05 25.05 27.37
1.60 34.62 35.10 1.10 37.11 39.12 2.10 38.25 40.18
1.65 47.31 49.00 1.15 48.50 50.85 2.15 50.08 51.72

50 1.50 5.37 5.24 1.00 5.35 5.29 2.00 5.34 5.22
1.55 29.20 30.50 1.05 28.15 30.74 2.05 30.18 32.85
1.60 46.20 48.09 1.10 46.38 48.25 2.10 49.28 52.10
1.65 60.72 63.74 1.15 61.76 64.16 2.15 65.50 68.07

100 1.50 5.12 5.07 1.00 5.14 5.09 2.00 5.11 5.04
1.55 33.03 36.15 1.05 38.05 38.20 2.05 40.17 42.20
1.60 69.85 72.10 1.10 74.18 78.09 2.10 78.15 82.12
1.65 85.86 88.85 1.15 87.15 91.24 2.15 88.27 91.11

5. Real Data Analysis

To further demonstrate the usefulness of our method in parameter inference for the GBS-II, we
consider a real data presented in [27] on active repair times (in hours) for an airborne communications
transceiver. To illustrate the estimation performance on a small sample size, we randomly select 20
repair times out of the total 46 observations to have following data: 0.2, 0.5, 0.5, 0.6, 0.7, 0.7, 0.8, 1.0,
1.0, 1.1, 1.5, 2.0, 2.2, 3.0, 4.0, 4.5, 5.4, 7.5, 8.8, 10.3. Modeling the data by the GBS-II distribution by ML
and the new methods, the estimation results are summarized in Table 4, where the produced standard
errors (SE) and 95% CIs by the new approach are much smaller and narrower for the parameters,
especially for the intervals of m and α. In addition, one interest of hypothesis test lies in testing
H0 : m0 = 0.5 since GBS-II reduces to BS under the null. The likelihood ratio and gradient tests yield
the statistics SLR(m) = 3.64 and SG(m) = 1.87, showing a highly insignificant from the gradient test,
which is consistent with the outcome of CIs for m. Finally, the chi-squared goodness of fit statistic and
BIC values of model fitting by the new method are smaller than these by ML method, indicating the
greater accuracy of the proposed new method. Figure 4 shows that the fitted GBS-II density curve
estimated by the new method is closer to the histogram than the one by the ML approach. These
outcomes demonstrate that the proposed new method produces more accurate inference under the
small sample size.

Figure 4. Repair Data: Histogram and fitted density curves by maximum likelihood estimate (MLE)
and new estimation method.
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Table 4. Repair Time: Estimation Results.

Method m (SE) α (SE) β (SE) χ2, BIC

MLE 0.8326 (0.5792) 1.6820 (1.2643) 2.6093 (0.1828) 97.27, 103.40
95% CI (0.2170, 1.8444) (0.3743, 8.5531) (1.3854, 3.2163)

New 0.4657 (0.2478) 1.0322 (0.5366) 1.7727 (0.1439) 19.82, 93.71
95% CI (0.3229, 0.6436) (0.7634, 1.6216) (1.0545, 2.9831)

6. Conclusions Remarks

We presented the parameter inference for a generalized three-parameter Birnbaum-Saunders
(GBS-II) distribution, which exhibits a very flexible characteristic in modeling various life behavior of
products. To circumvent the arduous expressions of likelihood function, a new method of analysis
was proposed to make inference more applicable and convenient. Simulation studies suggest that,
compared with the likelihood-based approach, the new method produces a reasonable estimation result
and provides a feasible inference procedure for the GBS-II distribution. We have also illustrated, with
one real dataset, that our method can be readily applied for convenient, practical, and reliable inference.
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Appendix A

1. A detail presentation of the shape for GBS-II density curve is provided here. Without loss of
generality and making notations simple, we fix β = 1 and let y = t2m. Then the derivative of density
function can be written as

f ′(y) =
m2

α3y1/m+3/2 φ

(
1
α
[y1/2 − y−1/2]

)
g(y), y > 0, (A1)

where g(y) = −y3 − [1 − α2(1 − 1/m)]y2 + [1 − α2(1 + 1/m)]y + 1. Since the sign of f ′(y) only
depends on the sign of g(y), we consider the behavior of g(y). First, we have limy→0 g(y) = 1 > 0
and limy→∞ g(y) = −∞. Let g1(y) = g′(y) = −3y2 − 2[1− α2(1− 1/m)]y + 1− α2(1 + 1/m), then
limy→0 g1(y) = 1− α2(1 + 1/m), limy→∞ g1(y) = −∞. Further, let g2(y) = g′1(y) = −6y − 2[1−
α2(1− 1/m)], and then limy→0 g2(y) = −2[1− α2(1− 1/m)], limy→∞ g2(y) = −∞. Now we consider
three cases below.

(1) 0 < m ≤ 1.
In this case, g′1(y) = g2(y) < 0 for y > 0. (i) if 1− α2(1 + 1/m) < 0, then limy→0 g1(y) < 0. With
g′1(y) < 0, we know that g′(y) = g1(y) < 0 in y > 0. Thus, there exists a root y0 of g(y) to have
f ′(y0) = g(y0) = 0, and when 0 < y < y0, f ′(y) = g(y) > 0; when y0 < y < ∞, f ′(y) = g(y) < 0.
Therefore f (y) is a unimodal. (ii) if 1− α2(1 + 1/m) > 0, then limy→0 g1(y) > 0. Thus there
is a unique root y10 of the quadratic function g1(y) with g′(y10) = g(y10) = 0, and when
0 < y < y10, g′(y) = g1(y) > 0; when y10 < y < ∞, g′(y) = g1(y) < 0. Therefore there is one
root y0 of g(y) such that f ′(y0) = g(y0) = 0, and when 0 < y < y0, f ′(y) = g(y) > 0; when
y0 < y < ∞, f ′(y) = g(y) < 0. It results in f (y) is unimodal.

(2) m > 1 and 1− α2(1− 1/m) ≥ 0.
(i) if 1− α2(1 + 1/m) < 0, then limy→0 g1(y) < 0. Also g′1(y) < 0, and so g′(y) = g1(y) < 0
in y > 0. Hence there is a root y0 of g(y) with f ′(y0) = g(y0) = 0, and when 0 < y <

y0, f ′(y) = g(y) > 0; when y0 < y < ∞, f ′(y) = g(y) < 0. It indicates that f (y) is unimodal.
(ii) if 1− α2(1 + 1/m) > 0, then limy→0 g1(y) > 0. Hence there is a unique root y10 of g1(y)
with g′(y10) = g1(y10) = 0, and when 0 < y < y10, g′(y) = g1(y) > 0; when y10 < y <
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∞, g′(y) = g1(y) < 0. Thus there exists a root y0 of g(y) with f ′(y0) = g(y0) = 0, and when
0 < y < y0, f ′(y0) = g(y) > 0; when y0 < y < ∞, f ′(y) = g(y) < 0. Therefore f (y) is unimodal.

(3) m > 1 and 1− α2(1− 1/m) < 0.
Thus limy→0 g2(y) > 0, and so there is a unique root y20 of g2(y) satisfying that: when 0 < y <

y20, g′1(y) = g2(y) > 0 and when y20 < y < ∞, g′1(y) = g2(y) < 0. In addition, limy→0 g1(y) =
1− α2(1+ 1/m) < 1− α2(1− 1/m) < 0, and so two cases need to be discussed. (i) if there is only
one root y10 for g1(y), then g′(y) = g1(y) < 0 for 0 < y < ∞. Hence there is a unique root y0 of
the cubic function g(y). Thus f ′(y0) = g(y0) = 0, and when 0 < y < y0, f ′(y) = g(y) > 0, when
y0 < y < ∞, f ′(y) = g(y) < 0. So f (y) is unimodal. (ii) if there are two distinct roots y10 < y11

for g1(y), then we know that: when 0 < y < y10, g′(y) = g1(y) < 0, when y10 < y < y11, g′(y) =
g1(y) > 0, and when y11 < y < ∞, g′(y) = g1(y) < 0. There could be two cases: (a) If the cubic
function g(y) has one or two distinct roots, then one root, say y0, leads to f ′(y0) = g(y0) = 0, and
f ′(y) = g(y) > 0 in 0 < y < y0; f ′(y) = g(y) < 0 in y0 < y < ∞. Hence f (y) is unimodal; (b) If
g(y) has three distinct real roots y0 < y1 < y2, then we have that f ′(yj) = g(yj) = 0, j = 0, 1, 2,
and that: when 0 < y < y0, f ′(y) = g(y) > 0, when y0 < y < y1, f ′(y) = g(y) < 0, when
y1 < y < y2, f ′(y) = g(y) > 0, when y2 < y < ∞, f ′(y) = g(y) < 0. It indicates f (y) is bimodal.

2. We provide the proof of uniqueness of the root α̌ in the Equation (13). Let g(z, α) = log((αz +√
α2z2 + 4)/2), and so it is an odd function for z, that is, g(−z, α) = −g(z, α). We denote

G(α) =
E(W4)

[E(W2)]2
=

∫ ∞
−∞[g(z, α)]4φ(z)dz

[
∫ ∞
−∞[g(z, α)]2φ(z)dz]2

=

∫ ∞
0 [g(z, α)]4φ(z)dz

2[
∫ ∞

0 [g(z, α)]2φ(z)dz]2
. (A2)

In the following, we show that the function G(α) is a monotone decreasing for α > 0. Since
∂g(z, α)/∂α = z/

√
α2z2 + 4,

G′(α) =
2
∫ ∞

0 [g(z, α)]3 z√
α2z2+4

φ(z)dz

[
∫ ∞

0 [g(z, α)]2φ(z)dz]2
−

2
∫ ∞

0 [g(z, α)]4φ(z)dz
∫ ∞

0 g(z, α) z√
α2z2+4

φ(z)dz

[
∫ ∞

0 [g(z, α)]2φ(z)dz]3

=

∫ ∞
0

∫ ∞
0 2

{
[g(y, α)]2[g(z, α)]3 z√

α2z2+4
− g(y, α)[g(z, α)]4 y√

α2y2+4

}
φ(y)φ(z)dydz

[
∫ ∞

0 [g(z, α)]2φ(z)dz]3

=

∫ ∞
0

∫ ∞
0 H(y, z, α)φ(y)φ(z)dydz
[
∫ ∞

0 [g(z, α)]2φ(z)dz]3
.

(A3)

where, by switching the role of y and z, the function H(y, z, α) above can be written as

H(y, z, α) = [g(y, α)]2[g(z, α)]3
z√

α2z2 + 4
+ [g(y, α)]3[g(z, α)]2

y√
α2y2 + 4

− g(y, α)[g(z, α)]4
y√

α2y2 + 4
− [g(y, α)]4g(z, α)

z√
α2z2 + 4

= g(y, α)[g(z, α)]3
[

z√
α2z2 + 4

g(y, α)− y√
α2y2 + 4

g(z, α)

]

− [g(y, α)]3g(z, α)

[
z√

α2z2 + 4
g(y, α)− y√

α2y2 + 4
g(z, α)

]
= − yz√

(α2y2 + 4)(α2z2 + 4)
× g(y, α)g(z, α)

(
[g(y, α)]2 − [g(z, α)]2

)
×
(√

α2y2 + 4
y

g(y, α)−
√

α2z2 + 4
z

g(z, α)

)
.

(A4)
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Let g1(z, α) = g(z, α)
√

α2z2 + 4/z, and then ∂g1(z, α)/∂z = [αz
√

α2z2 + 4 −
4g(z, α)]/(z2

√
α2z2 + 4). Further, let g2(z, α) = αz

√
α2z2 + 4 − 4g(z, α), then ∂g2(z, α)/∂z =

2α3z2/
√

α2z2 + 4 > 0. Hence g2(z, α) is increasing in z > 0. Also g2(0, α) = −4g(0, α) = 0, thus
g2(z, α) > 0, and so ∂g1(z, α)/∂z = g2(z, α)/(z2

√
α2z2 + 4) > 0, that is, g1(z, α) is increasing

of z in z > 0. In addition, g(z, α) is also an increasing function of z and g(z, α) > 0 in z > 0
since ∂g(z, α)/∂z = α/

√
α2z2 + 4 > 0 and g(0, α) = 0. Thus both functions g(y, α) − g(z, α)

and g1(y, α) − g1(z, α) have the same sign for any values of y, z in y, z > 0, and it leads to
[g(y, α)− g(z, α)][g1(y, α)− g1(z, α)] > 0. Hence the function

H(y, z, α) = − yz√
(α2y2 + 4)(α2z2 + 4)

× g(y, α)g(z, α)[g(y, α) + g(z, α)]

× [g(y, α)− g(z, α)][g1(y, α)− g1(z, α)] < 0,
(A5)

resulting in

G′(α) =

∫ ∞
0

∫ ∞
0 H(y, z, α)φ(y)φ(z)dydz
[
∫ ∞

0 [g(z, α)]2φ(z)dz]3
< 0. (A6)

Additionally, by Taylor expansion, we have

lim
α→0

G(α) = lim
α→0

∫ ∞
−∞ z4( 1

2 −
α2z2

48 + ...)4φ(z)dz

[
∫ ∞
−∞ z2( 1

2 −
α2z2

48 + ...)2φ(z)dz]2
=

∫ ∞
−∞ z4φ(z)dz

[
∫ ∞
−∞ z2φ(z)dz]2

= 3, (A7)

along with

lim
α→∞

G(α) = lim
α→∞

(
log α

2
)4 ∫ ∞

−∞

(
1 + log(z+

√
z2+4/α2)

log(α/2)

)4
φ(z)dz[(

log α
2
)2 ∫ ∞

−∞

(
1 + log(z+

√
z2+4/α4)

log(α/2)

)2
φ(z)dz

]2

=

∫ ∞
−∞ φ(z)dz

[
∫ ∞
−∞ φ(z)dz]2

= 1.

(A8)

Figure A1 shows the plot of the function G(α).
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Figure A1. Kurtosis Function G(α).
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Finally, with mk = ∑n
i=1(yi − y)k/n, k = 2, 4, it is well known that for any samples y1, y2, . . . , yn,

the sample kurtosis κ = m4/m2
2 > 1. Hence the equation E(W4)/[E(W2)]2 = κ has a unique root for α.
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