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Abstract: As a result of the two-parameter Birnbaum–Saunders (BS) distribution being successful in
modelling fatigue failure times, several extensions of this model have been explored from different
aspects. In this article, we consider a progressive stress accelerated life testing for the BS model to
introduce a generalized Birnbaum–Saunders (we call it Type-II GBS) distribution on the lifetime
of products in the test. We outline some interesting properties of this highly flexible distribution,
present the Fisher’s information in the maximum likelihood estimation method, and propose a new
Bayesian approach for inference. Simulation studies are carried out to assess the performance of the
methods under various settings of parameter values and sample sizes. Real data are analyzed for
illustrative purposes to demonstrate the efficiency and accuracy of the proposed Bayesian method
over the likelihood-based procedure.

Keywords: progressive accelerated life testing; generalized Birnbaum–Saunders distribution;
Bayesian inference; Fisher’s information; MCMC sampling

1. Introduction

The Birnbaum–Saunders (BS) model is based on a physical argument of cumulative damage
that produces fatigue in materials, which is exerted by cyclical stress. The failure follows from the
development and growth of a dominant crack in the material. Considering the basic characteristics of
the fatigue process, Ref. [1] derived the BS(α, β) distribution function of the failure time T expressed by:

F(t) = Φ

(
1
α

[(
t
β

)1/2
−
(

β

t

)1/2
])

, t > 0, (1)

where α > 0, β > 0 are shape and scale parameters and Φ(·) is the distribution function of the standard
normal variate. The BS distribution can be widely applied to describe fatigue life and lifetimes in
general. Its field of application has been extended beyond the original context of material fatigue,
and the model becomes the most versatile within the popular distributions for failure times. Over the
years, various approaches of parameter inference, generalizations, and applications of the distribution
have been introduced and developed by many authors (see [2–8], just to name a few).

In recent years, more research work has lied in the study of accelerated life testing (ALT) with
the BS distribution. In industrial experiments, it is often very costly and time consuming to obtain
information about the lifetime of highly reliable products under normal experimental conditions.
To collect failure data rapidly and improve the efficiency of the experiment, people commonly apply
ALT where products or materials are subjected to elevated stress conditions compared to those normally
applied in practice. These stresses often include temperature, voltage, vibration, cycling rate, pressure,
etc., which can be applied in mainly three ways: constant stress, step stress, and progressive stress.
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Many authors have contributed extensively to the development and parameter inference on ALT for
various lifetime distributions; see, for example, [9–13]. An ALT on the BS distribution was considered
in [14], who developed the model under the inverse power law accelerated form and explored the
inference procedure based on the lifetime data collected under several elevated stress levels. The work
in [15] presented an inference approach for the BS distribution in step-stress accelerated life testing
(SSALT) with the Type-II censoring scheme. In practice, to make a more efficient test plan for collecting
the lifetime of highly reliable products, people usually resort to an ALT by a progressive stress, and we
will consider such a model for the BS distribution.

2. Progressive Stress Accelerated Life Testing

We briefly introduce the SSALT first and then extend it to the progressive stress model for the
BS distribution.

2.1. Step-Stress Test

Suppose that, for a particular pattern of SSALT with I steps in total, step i runs at stress
level Vi, starts at time ti−1, and runs to time ti(t0 = 0), i = 1, 2, ..., I. The life distribution for
specimens at the stress level Vi is assumed as BS(α, βi), whose distribution function Fi(t) in (1), that is,
Fi(t) = Φ([(ui(t))1/2 − (ui(t))−1/2]/α) with ui(t) = t/βi, where α is the common shape parameter,
and the stress Vi only influences the scale parameter βi through the inverse power law, i.e.,
βi = (V0/Vi)

p with a standard level of stress V0 > 0 and the power p > 0 being only associated with
the characteristics of products. Accordingly, based on the principle of cumulative exposure (CE) [16],
the population cumulative fraction of specimens failing in step i is:

F(t) = Fi(t− ti−1 + si−1), ti−1 ≤ t ≤ ti, i = 1, 2, ..., I (2)

where the equivalent start time si−1 at step i satisfies:

Fi(si−1) = Fi−1(ti−1 − ti−2 + si−2). (3)

It brings about [ui(si−1)]
1/2 − [ui(si−1)]

−1/2 = [ui−1(ti−1 − ti−2 + si−2)]
1/2 − [ui−1(ti−1 − ti−2 +

si−2)]
−1/2, leading to the following recursive expression from ui(si−1) = ui−1(ti−1 − ti−2 + si−2) by

the fact that g(u) = u1/2 − u−1/2 is an increasing function in u > 0:

si−1

βi
=

ti−1 − ti−2

βi−1
+

si−2

βi−1
. (4)

By using the recursive equation above with the time duration being ∆i = ti − ti−1 at the ith step,
the population fraction having failed in (2) over the exposure time tI = ∆1 + ∆2 + · · ·+ ∆I after I steps is:

F(tI) = Fi(tI − tI−1 + sI−1) = Φ
(

1
α

[
(u(tI))

1/2 − (u(tI))
−1/2

])
, (5)

where the “cumulative exposure” u(tI) is the sum of the “scaled” time experienced at each step
given by:

u(tI) = (∆1/β1) + (∆2/β2) + · · ·+ (∆I/β I). (6)

As all time lengths ∆i → 0, the step-stress levels Vi become a progressive or varying stress V(t)
continuously over time in ALT, and as a result, the scale parameter β(V) = (V0/V)p is a function
of time, namely β(t), and the corresponding cumulative exposure u(t) (or damage), which appears
as a sum in (6) for a step-stress testing, becomes the integral u(t) =

∫ t
0 1/β(x)dx. Specifically, here,

we consider a ramp stress V(t) = Rt with R > 0 being the rate of rise of stress, and then, the scale
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parameter becomes β(t) = [V0/V(t)]p = Vp
0 /(Rptp). The corresponding cumulative exposure time of

products at time t is:

u(t) =
∫ t

0

dx
β(x)

=
∫ t

0

Rpxp

Vp
0

dx =
Rptp+1

(p + 1)Vp
0

, (7)

and the lifetime distribution of products at the progressive stress V(t) becomes:

F(t) = Φ
(

1
α

[
(u(t))1/2 − (u(t))−1/2

])
= Φ

(
1
α

[(
t
β

)m
−
(

β

t

)m])
, (8)

where:

m = (p + 1)/2, β = [(p + 1)Vp
0 /Rp]1/(p+1). (9)

The distribution in (8) is a generalization of the Birnbaum–Saunders distribution (GBS) first
proposed in [17] by allowing the exponent (1/2 on the BS) to take on other values. Recently, considering
the original BS distribution derived from a homogeneous Poisson process, [18] obtained the same
GBS depending on a non-homogeneous Poisson process. To distinguish from the GBS developed
in [19], we refer to the distribution as Type-II GBS, denoted as GBS-II(m, α, β), whose density function
is given by:

f (t) =
m
αt

[(
t
β

)m
+
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β

t

)m]
φ

(
1
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[(
t
β

)m
−
(

β

t

)m])
, t > 0, (10)

where m > 0 is another shape-type parameter and φ(·) is the density function of the standard normal
distribution. As the BS distribution, the transformation Z = ((T/β)m − (β/T)m)/α is a standard
normal variate, and thus, it is easy to generate the GBS-II random variates from the standard normal
variables. In the following, we briefly summarize the main properties of the distribution.

2.2. Properties of GBS-II

The three-parameter GBS-II distribution in (10) is a flexible family of distributions, and the shape
of the density widely varies with different values of the parameters. Specifically (the detailed proof is
long, and so omitted here): (i) when 0 < m ≤ 1, the density is unimodal or an upside-down bathtub;
(ii) when m > 1 and α2 ≤ m/(m− 1), the density is also unimodal (upside-down); (iii) if m > 1 and
α2 > m/(m− 1), then the density is either unimodal or bimodal. Figure 1 shows various graphs of the
density function for different values of m and α with the scale parameter β fixed at unity. Additionally,
Figure 2 presents the failure rate function given by λ(t) = f (t)/(1− F(t)) with various values of m
and α, showing that it could have an increasing, decreasing, bathtub, and upside-down bathtub shape.
Hence, it seems that the distribution is flexible enough to model various situations of product life.

The GBS-II has some interesting properties as the BS distribution. For example, β remains the
median for the distribution. The reciprocal property is also preserved by that if T ∼ GBS-II(m, α, β),
then T−1 ∼ GBS-II(m, α, β−1). In fact, the GBS-II generally describes the distribution family of
power transformations for a BS random variable from the following: if T ∼ BS(α, β), then for any
nonzero real-valued constant r, Tr ∼ GBS-II(0.5|r|−1, α, βr), where | · | represents the absolute value
function. Conversely, given T ∼ GBS-II(m, α, β), then T2m ∼ BS(α, β2m). In addition, similar to the
BS distribution, which can be written as an equal mixture of an inverse normal distribution and a
distribution of the reciprocal of an inverse normal random variable [20], the GBS-II distribution can be
also expressed as a mixture of power inverse normal-type distributions [21].
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In the aspect of numeric characteristics for GBS-II, generally, there is no analytic form of moments
except for some special cases. For example, from the fact that Tm = βm

(
αZ +

√
α2Z2 + 4

)
/2

with a standard normal variate Z, one may easily obtain the expressions of the moments E(Tkm)

with an even number k, such as E(T2m) = β2m(1 + α2/2), E(T4m) = β4m(1 + 2α2 + 11α4/4), etc.
The general moment expression was obtained in [22], who used the relationship between the GBS-II
and three-parameter sinh-normal distribution (see [23]):

E(Tr) =
βr exp(α−2)

α
√

2π

[
K(r/m+1)/2(α

−2) + K(r/m−1)/2(α
−2)
]

, (11)

where r is a real number and Kω(x) is an order ω modified Bessel function of the third kind, which
can be expressed in an integral form as Kω(x) =

∫ ∞
0 exp{−x cosh(s)} cosh(ωs)ds with the hyperbolic

cosine function cosh(x) = [exp(x) + exp(−x)]/2. Numerous software packages can be used to
evaluate Kω(x) for specific values of ω and x for calculating the moments such as the mean and
variance. The finite moments guarantee the rationality of the moment-based estimation methods.
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Figure 1. The generalized Birnbaum–Saunder-II(m, α, β) density curves for various parameter values.

So far, little research has been seen to study the parameter estimation and inference for the GBS-II
distribution. The work in [21] discussed the maximum likelihood (ML) estimation of parameters and
provided interval estimation based on an “observed” Fisher’s information. To contribute a novel
research of precise inference, in this article, we further investigate the ML method to obtain an analytic
expression of Fisher’s information and propose a new Bayesian approach for parameter inference.
The rest of the article is arranged as follows. Section 3 presents the methodology of the estimation
procedure. Subsequently, we carry out simulation studies to investigate the performance of proposed
methods in Section 4. For illustrative purpose, two real datasets are analyzed in Section 5, followed by
some concluding remarks in Section 6.
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Figure 2. GBS-II(m, α, β) failure rate curves for various parameter values.

3. Estimations

Let t = (t1, t2, ..., tn) be n observational data from the GBS-II distribution. We first consider the
likelihood-based approach in the following.

3.1. Likelihood-Based Method

To make the notation simple, let ε(t) = (t/β)m − (β/t)m, δ(t) = (t/β)m + (β/t)m. Then, the
likelihood and log-likelihood functions, up to a constant, are given by:

L(m, α, β|t) = mnα−n
n

∏
i=1

(δ(ti)) exp

{
− 1

2α2

n

∑
i=1

ε2(ti)

}
, (12)

` = `(m, α, β|t) = n log(m)− n log(α) +
n

∑
i=1

log(δ(ti))−
1

2α2

n

∑
i=1

ε2(ti), (13)

and we have the first partial derivatives w.r.t the parameters:

∂`

∂α
= −n

α
+

1
α3

n

∑
i=1

ε2(ti),
∂`

∂β
= −m

β

[
n

∑
i=1

ε(ti)

δ(ti)
− 1

α2

n

∑
i=1

ε(ti)δ(ti)

]
, (14)

∂`

∂m
=

n
m

+
n

∑
i=1

log(β−1ti)
ε(ti)

δ(ti)
− 1

α2

n

∑
i=1

log(β−1ti)ε(ti)δ(ti). (15)

Due to the complexity of the expression above, a numerical method has to be applied to obtain
maximum likelihood estimates (MLEs) m̂, α̂, β̂ by solving the equations ∂`/∂m = 0, ∂`/∂α = 0 and
∂`/∂β = 0 simultaneously. The work in [21] used the “observed” Fisher’s information matrix to
obtain a large sample-based interval estimation for the parameters. However, our study shows that
a “partially” analytic form of it can be obtained, so that more precise inference can be made. Let the
Fisher’s information matrix be the following form:
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I(m, α, β) =

 umm umα umβ

uαm uαα uαβ

uβm uβα uββ

 , (16)

whose elements are the negative expectation of the second partial derivatives of parameters for the
log-likelihood function in (13), such as uαα = −E(∂2`/∂α2), uαβ = −E(∂2`/∂α∂β), etc. These elements
are given by (the detailed derivations are provided in Appendix A):

uαα =
2n
α2 , uαβ = uβα = uβm = umβ = 0, (17)

uαm = umα = − 2n
α2m

E
[

Zg(Z)
√

α2Z2 + 4
]

, (18)

uββ =
2nm2

α2β2

[
α2 − 2αh(α) + 2

]
, (19)

umm =
n

m2 −
4n
m2 E

(
g2(Z)

α2Z2 + 4

)
+

2n
m2α2 E

[
g2(Z)(α2Z2 + 2)

]
, (20)

where Z is the standard normal variate, g(z) = log[(αz+
√

α2z2 + 4)/2] and h(α) =
√

π/2× e2/α2
[1−

Φ(2/α)]. Therefore, the asymptotic normal distribution of MLEs has the following covariance matrix:

I−1(m, α, β) =

 uαα/c −umα/c 0
−uαm/c umm/c 0

0 0 1/uββ

 , (21)

with c = ummuαα − u2
mα. Notice from (21) that the MLEs m̂ and β̂, α̂, and β̂ are asymptotically

independent. It is also clear that when m = 1/2, the GBS-II reduces to the BS distribution whose
Fisher’s information is the lower 2× 2 matrix in (16) with uββ = n

[
α2/2− αh(α) + 1

]
/(αβ)2, the same

as the one provided in [4].
By the fact of positive parameters and the asymptotic normality of MLEs, we may use log

transformation to obtain approximate confidence intervals (CIs) for the parameters [24]. In particular,
for parameter m and its MLE m̂, we have the approximate normal distribution log(m̂) ∼ N(log(m),

Var(log(m̂))), where the variance can be approximated by the delta method as ̂Var(log(m̂)) =

V̂ar(m̂)/m̂2 = ûαα/(ĉm̂2) with ûαα, ĉ being the values of uαα and c, respectively, evaluated at MLEs
m̂, α̂, β̂. Then, a (1− γ)100% CI for m is then given by:[

m̂× exp

{
−

zγ/2
√

Var(m̂)

m̂

}
, m̂× exp

{
zγ/2

√
Var(m̂)

m̂

}]
(22)

where zγ/2 is the upper 100 × γ/2th percentile of the standard normal distribution.
The normal-approximated CIs for α and β can be constructed in the same way to have the form

in (22) with m̂ being replaced by α̂ and β̂, respectively, and V̂ar(α̂) = ûmm/ĉ, V̂ar(β̂) = 1/ûββ. It should
be noted that these intervals can exhibit less accurate coverage for small samples.

3.2. Bayesian Inference

Since there are no tractable forms of MLEs and CIs, this is not very applicable and efficient by
the use of the ML estimation method. We propose a Bayesian inference approach as an alternative.
From the model development of the GBS-II distribution in [18], we notice that the parameter m is
independent of the other two parameters α and β, which have a relation α2 ∝ β, and so, we propose
a joint prior π(m, α, β) = π(m)π(α|β)π(β) with the conditional prior mean E(α2|β) ∝ β. From the
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likelihood function in (12), it is easily discernible that for α2, an inverse gamma is a conjugate prior for
the conditional likelihood L(α|m, β, t). Therefore, we specify that α2|β ∼ IG(a0/2, a1β/2), and thus,
the prior density of α|β is:

π(α|β) ∝ α−(a0+1) exp
{
− a1β

2α2

}
(23)

with the hyperparameters a0 > 4 and a1 > 0 to ensure the existence of the variance. It is also clear
that there is no conjugate prior for m and β. However, we may consider a prior distribution that has a
similar functional form as their conditional likelihood functions. In this case, we pick both priors of m
and β to be a gamma distribution,

m ∼ Gamma
(

d0

2
,

d1

2

)
, β ∼ Gamma

(
b0

2
,

b1

2

)
, (24)

with b0, b1, d0, d1 > 0. The hyperparameter values can be specified based on the following factors:
(i) Since β is the median of the GBS-II distribution, we can refer to the sample median as the
estimate β̃ = median(t1, t2, ..., tn) in our attempt to specify b0 and b1. Further, by the fact that
E(Z) = 0, E(Z2) = 1 from Z = [(T/β)m − (β/T)m]/α ∼ N(0, 1) and by the principle of method
of moments, we establish two equations by equating the first two sample and theoretical moments
(β is estimated by β̃), ∑n

i=1[(ti/β̃)m − (β̃/ti)
m] = 0 and ∑n

i=1[(ti/β̃)m − (β̃/ti)
m]2 = nα2, to obtain the

roots m̃ and α̃ for specifying a0, a1, d0 and d1. (ii) The MLEs m̂, α̂, β̂ can also be used to determine the
hyperparameters. The non-informative distribution with ai = 0, bi = 0, di = 0, i = 0, 1 can be chosen if
no prior knowledge is available. The joint posterior distribution of the parameters (m, α, β) with the
sample data t is given by:

π(m, α, β|t) ∝ L(m, α, β|t)× π(m)π(α|β)π(β). (25)

It follows that the full conditional posteriors are:

π(m|α, β, t) ∝ mn+ d0
2 −1 ∏n

i=1(δ(ti)) exp
{
− 1

2

(
d1m + ∑n

i=1 ε2(ti)

α2

)}
, (26)

α2|(m, β, t) ∼ IG
( ν0

2 , ν1
2
)

, ν0 = n + a0, ν1 = a1β + ∑n
i=1 ε2(ti), (27)

π(β|m, α, t) ∝ β
b0
2 −1 ∏n

i=1(δ(ti)) exp
{
− 1

2

(
b1β + ν1

α2

)}
. (28)

We implement a Markov chain Monte Carlo (MCMC) algorithm, specifically here a Gibbs sampling
procedure (see, for example, Casella and George [25]), to draw posterior samples from their full
conditional posterior distributions. First, we take MLEs of m, α and β as the initial values to make
the algorithm converge more quickly and then repeat the following steps M times, among which,
given the values at the kth iteration, the (k + 1)th iteration is as follows:

i. Draw mk+1 from π(m|αk, βk, t) in (26) using a Metropolis–Hastings (MH) procedure (see,
for example, Chib and Greenberg [26]). We first propose mp ∼ Gamma(cmmk, cm), where the
mean of the proposal is mk and cm is a tuning parameter to make the algorithm efficient, and then
take mk+1 = mp with probability:

λm = min
{

1,
π(mp|αk, βk, t)× qm(mk|mp)

π(mk|αk, βk, t)× qm(mp|mk)

}
, (29)

with the Gamma proposal density function qm(·), and so:

qm(mk|mp)

qm(mp|mk)
=

Γ(cmmk)c
cmmk
m

Γ(cmmp)c
cmmp
m

×
m

cmmp−1
k exp{−cmmk}

mcmmk−1
p exp{−cmmp}

. (30)
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ii. Draw α2
k+1 ∼ IG (ν0/2, ν1/2) with updated ν0 and ν1 in (27).

iii. Draw βk+1 from π(β|mk+1, αk+1, t) in (28) using an MH procedure. We propose βp from a

lognormal distribution centered at the previous value, i.e., log βp ∼ N
(

log βk, c2
βσ2

k

)
, where cβ >

0 is a tuning parameter. For the purpose of sampling efficiency, we intend to specify a
proposal distribution, which closely resembles the conditional posterior of β. This consideration
prompts us to specify the variance term σ2

k , evaluated at updated values (mk+1, αk+1, βk), as the
reciprocal of Fisher information of the conditional posterior of log β, whose log-likelihood is
log π(β|mk+1, αk+1, t) + log |J|. The Jacobian term J = β is needed here as we make a log
transformation on β.

σ2
k =

[
−E

{
∂2(log π(β|mk+1,αk+1,t)+log |J|)

∂(log β)2

}]−1
∣∣∣∣
m=mk+1,α=αk+1,β=βk

=

[
−β2

kE
(

∂2`
∂β2

)
+

a1βk

2α2
k+1

+
b1

2βk

]−1

=

[
β2

kuβk βk +
a1βk

2α2
k+1

+ b1
2βk

]−1
, (31)

where uβk βk = 2nm2
k+1/(α2

k+1β2
k)[α

2
k+1 − 2αk+1h(αk+1) + 2] from Equation (19). Finally,

take βk+1 = βp with probability:

λβ = min

{
1,

π(βp|mk+1, αk+1, t)× qβ(βk|βp)

π(βk|mk+1, αk+1, t)× qβ(βp|βk)

}
, (32)

with the proposal density qβ(·), and so qβ(βk|βp)/qβ(βp|βk) = βp/βk.

The posterior inference of the parameters m, α and β is made by their posterior samples
(mk, αk, βk), k = 1, 2, ..., M, such as posterior mean, credible interval (CI), etc.

4. Simulation Study

We conduct a simulation study to assess the performance of parameter estimation by ML and
the Bayesian methods, where we fix the scale parameter β = 1 and take four settings of the other
two as (m, α) = (0.25, 0.50), (0.50, 0.50), (1.00, 1.00), (1.50, 2.00). We generate 1000 datasets for each of
these parameter settings with three sample sizes n = 20, 30, 50. For the Bayesian analysis, we choose
the hyperparameter values a0 = a1 = b0 = b1 = d0 = d1 = 0, such that the prior distributions are
rather “flat” or “less informative” to reflect little prior knowledge about the parameters. With each
simulated data, we find that the rule of thumb cm = 15, cβ = 2.4 as the tuning parameter values are
adequate to ensure the acceptance rates to hover around 35–40%, and we run five MCMC chains
with fairly different initial values and each with a burn-in period of 2000 followed by 8000 iterations.

The scale reduction factor estimate
√

R̂F =
√

Var(θ)/W is used to monitor the convergence of MCMC
simulations [27], where θ is the estimand of the parameter of interest, Var(θ) = (N − 1)W/N + B/N,
with the iteration number N for each chain and the between- and within-sequence variances B and
W. The scale factors for the sequences of m, α, and β are within 1.00–1.02 for all five MCMC chains,
indicating their convergence. The remaining 8000 samples are used to compute the average biases,
mean squared error (MSE) of the estimates, average lengths (AL) of the 95% credible intervals (CI),
and coverage probability (CP) for the parameters. The results are shown in Table 1 along with these
estimates from the ML method for comparison purposes. The main features are summarized as follows:
(i) as expected, the bias of estimates, MSE, and AL of 95% CI decrease, and CP is closer to the nominal
level as sample size n increases for all cases; (ii) the estimation of all parameters from the Bayesian
method is much better than from the ML approach in terms of smaller biases and MSEs, narrower CIs
and higher CPs. The MLE α̂ dose not perform well for the small to moderate sample sizes (n = 20, 30).
(iii) comparatively, both methods produce much more accurate estimation of β, less precise for m,
and least for α. With the larger sample size (n = 50), the performances of the β estimates are similar
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for both methods; (iv) it seems that the estimate of α has a smaller MSE under a smaller true value of α,
whereas the estimate of m has a smaller MSE under a larger true m. Overall, the Bayesian inference
method outperforms the ML approach for all parameter settings, especially when the sample size
is small.

Table 1. GBS-II estimation results for simulated data. AL, average length; CP, coverage probability.

n ML Method Bayesian

Bias MSE AL CP (%) Bias MSE AL CP (%)

m = 0.25, α = 0.5, β = 1.0
20 m 0.1229 0.2861 1.2258 92.45 0.1166 0.1889 0.7493 93.11

α 0.1375 0.1578 0.4718 92.27 0.1302 0.1145 0.4523 93.19
β 0.0302 0.0736 0.2905 93.87 0.0216 0.0622 0.2322 94.69

30 0.1092 0.2363 1.1052 93.17 0.1007 0.1567 0.5329 94.82
0.1236 0.1353 0.4546 93.21 0.1149 0.1072 0.4076 94.65
0.0244 0.0668 0.2118 94.29 0.0210 0.0516 0.1209 95.08

50 0.1035 0.1339 0.9777 94.43 0.0916 0.1113 0.2244 94.94
0.1121 0.1151 0.4033 94.67 0.1108 0.0968 0.3323 95.15
−0.0112 0.0240 0.1352 95.15 0.0036 0.0116 0.1054 95.20

m = 0.5, α = 0.5, β = 1.0
20 m 0.1104 0.1304 1.0141 93.27 0.1072 0.1184 0.7345 93.87

α 0.1229 0.1073 0.3694 93.51 0.1115 0.1016 0.3541 93.50
β 0.0314 0.0940 0.3181 93.85 −0.0214 0.0720 0.2299 94.71

30 0.1051 0.1231 0.9386 94.52 0.1015 0.1125 0.5687 94.84
0.1181 0.1063 0.3457 94.40 0.1047 0.0905 0.3186 94.77
0.0158 0.0674 0.2422 94.88 0.0083 0.0613 0.1646 95.14

50 0.0809 0.1150 0.5503 94.48 0.0202 0.0822 0.3789 95.18
0.0492 0.0738 0.2128 94.53 0.0327 0.0578 0.1832 95.22
0.0080 0.0345 0.1957 95.12 0.0023 0.0207 0.0819 95.29

m = 1.0, α = 1.0, β = 1.0
20 m 0.1792 0.1357 0.9778 91.94 0.1620 0.1212 0.7107 93.02

α 0.2242 0.2433 0.6218 92.19 0.2032 0.1493 0.4865 92.89
β 0.0371 0.1067 0.4728 93.56 0.0272 0.0831 0.2191 94.05

30 0.1628 0.1230 0.9018 93.52 0.1464 0.1108 0.6109 94.28
0.1854 0.2038 0.5896 93.88 0.1494 0.1247 0.4033 94.29
−0.0232 0.0728 0.3480 94.26 −0.0105 0.0624 0.1122 94.89

50 0.1155 0.1103 0.5135 93.49 0.0974 0.1042 0.4278 94.58
0.1355 0.1665 0.4071 94.31 0.1134 0.1046 0.3083 94.82
0.0138 0.0416 0.2598 95.03 0.0094 0.0310 0.0844 95.26

m = 1.5, α = 2.0, β = 1.0
20 m 0.2832 0.1303 0.9650 92.38 0.2176 0.1163 0.7058 93.41

α 0.3482 0.2777 0.8674 93.20 0.2887 0.2214 0.7195 93.14
β −0.0526 0.1432 0.5216 93.92 0.0411 0.0933 0.2852 94.17

30 0.2583 0.1298 0.8960 93.35 0.1734 0.1091 0.6779 94.11
0.3009 0.2356 0.7744 93.83 −0.1939 0.2042 0.6438 94.71
−0.0423 0.1061 0.4238 94.33 0.0320 0.0720 0.1661 94.86

50 0.1598 0.1091 0.7047 94.38 0.1145 0.0928 0.5682 95.03
−0.2064 0.1836 0.5209 94.73 0.1303 0.1555 0.4105 95.17
−0.0209 0.0674 0.2675 94.92 0.0106 0.0411 0.0784 95.30

5. Real Data Analysis

To further illustrate the usefulness of our method in parameter inference for the GBS-II,
we consider a real data example given by [28] about the breakdown time in an accelerated test
that employed a pair of parallel disk electrodes immersed in an insulating oil. Voltage V across the
pair was increased linearly with time t at a specified rate R, and breakdown time was recorded
at a one square inch electrode. The data are presented in Table 2, consisting of 60 measured
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breakdown times (seconds). Fitting the GBS-II distribution with the Bayesian method, we choose
the hyperparameters b0 and b1 such that the prior mean of β is close to the sample median 4.3 of the
data, a0 and a1 such that the conditional prior mean E(α2|β = 4.3) is close to the MLE α̂2 = 1.3656,
and the CV (coefficient of variation) of the gamma or inverse gamma priors is close to the CV of
standard uniform distribution (1/

√
3). Hence, we have the hyperparameter values as follows:

a0 = 10, a1 = 2.54, b0 = 0.67, b1 = 0.16, d0 = d1 = 1. We run a chain of 20,000 iterations with
a burn-in period of 5000. To reduce the correlation among the samples, every fifth sample of the
remaining 15,000 samples is used for posterior inference. The results are tabulated in Table 3, where,
due to the relatively large sample size (n = 60), the point estimates obtained by both ML and Bayesian
methods are close to each other. However, the 95% CIs of the Bayesian method are narrower than
the ones of the ML approach, especially for the intervals of m and α. Additionally, the Chi-squared
goodness of fit statistic and BIC values of model fitting by the Bayesian method are smaller than these
by the ML method, indicating the greater accuracy in the Bayesian analysis. Based on the estimates of
m and β and the given standard level of stress V0 = 42.30, together with the relation in (9), the power
p in the inverse power law and the rate of rise of voltage R are computed, respectively from ML and
Bayesian approaches, as p̂ = 8.9455, 8.4045 and R̂ = 11.0734, 10.1067. Our results (especially from the
Bayesian) are close to the estimates obtained by [28], who fitted a Weibull distribution for these data.
For graphical comparison, Figure 3 shows the histogram of the data and fitted GBS-II density curves
estimated by both methods.

Table 2. Oil breakdown time (seconds) in an accelerated test employed in an insulating oil.

3.4 3.4 3.4 3.5 3.5 3.5 3.6 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0
4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.3
4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.6 4.6
4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.9 4.9 4.9 5.0 5.1 5.2

Table 3. Breakdown time: estimation results

Method m (95% CI) α (95% CI) β (95% CI) χ2, BIC

ML method 4.9728 (2.0185, 12.2511) 1.1686 (0.3807, 3.5874) 4.2058 (3.7681, 4.7816) 16.19, 125.81
Bayesian 4.6523 (3.1521, 6.2339) 1.2391 (0.9279, 2.3936) 4.5614 (4.4250, 4.6945) 8.82, 121.62

Figure 3. Failure data: histogram and fitted density curves by ML and Bayesian estimation methods.
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The second real data were presented in [29] on active repair times (in hours) for an airborne
communications transceiver. To illustrate the estimation performance on a small sample size,
we randomly select 20 repair times out of the total of 46 observations to have the following data:
0.3, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 1.0, 1.3, 1.5, 1.5, 2.0, 2.2, 2.5, 4.0, 4.7, 5.0, 7.5, 8.8, 22.0. Modeling the data
by the GBS-II distribution, we adopt the same procedure as discussed to specify the hyperparameter
values by using the sample median 1.5 of the data and MLE α̂2 = 2.83. In summary, we choose the
following hyperparameter values: a0 = 10, a1 = 15.07, b0 = 0.67, b1 = 1, d0 = d1 = 1. An MCMC
chain of 20,000 iterations with a burn-in period of 5000 produces the estimation results of the Bayesian
approach, together with the results by the ML method, tabulated in Table 4. For these data with a
relatively small sample size (n = 20), the produced 95% CIs are much narrower, as well as having
much smaller Chi-squared goodness of fit statistic and BIC values of model fitting by the Bayesian
method. Finally, for illustration, Figure 4 shows that the fitted GBS-II density curve estimated by the
Bayesian method is better fit to the histogram than the one by the ML estimation. These outcomes
demonstrate that the proposed Bayesian method produces much more accurate inference under the
small sample size.

Table 4. Repair time: estimation results.

Method m (95% CI) α (95% CI) β (95% CI) χ2, BIC

ML Method 0.8326 (0.2170, 1.8444) 1.6813 (0.3743, 7.5531) 2.6093 (1.3854, 3.2163) 97.30, 103.37
Bayesian 0.4717 (0.3229, 0.6202) 1.0291 (0.7826, 1.5031) 1.7718 (1.0633, 2.9523) 12.98, 92.36

Figure 4. Repair data: histogram and fitted density curves by ML and Bayesian estimation methods.

6. Conclusions Remarks

We presented a Bayesian inference approach of parameter estimation in progressive stress
accelerated life testing with the Birnbaum–Saunders (BS) model, which induced the Type-II
generalized Birnbaum–Saunders (GBS-II) distribution followed by the lifetime of products in the
testing. We summarized the properties of GBS-II and studied its Fisher’s information used in the
likelihood-based inference method. The simulation study demonstrated that the Bayesian method
outperformed the traditional likelihood-based approach, especially its efficient and impressive
performance under small sample sizes. We have also illustrated, with two real datasets, that our
Bayesian method can be readily applied for efficient, reliable, and precise inference.
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Appendix A

We present a detailed derivation of the Fisher information matrix for the GBS-II(m, α, β). From the
fact that:

∂ε(t)
∂β

= −mβ−1δ(t),
∂ε(t)
∂m

= log(β−1t)δ(t), (A1)

∂δ(t)
∂β

= −mβ−1ε(t),
∂δ(t)
∂m

= log(β−1t)ε(t), (A2)

∂(ε(t)δ(t))
∂β

= −m
β

(
ε2(t) + δ2(t)

)
,

∂(ε(t)δ(t))
∂m

= log(β−1t)
(

ε2(t) + δ2(t)
)

, (A3)

∂
(

ε(t)
δ(t)

)
∂β

= −m
β

(
1− ε2(t)

δ2(t)

)
= − 4m

βδ2(t)
, (A4)

∂
(

ε(t)
δ(t)

)
∂m

= log(β−1t)
(

1− ε2(t)
δ2(t)

)
=

4 log(β−1t)
δ2(t)

, (A5)

and then the second partial derivatives of parameters for the log-likelihood function in (13) are in
the following:

∂2`
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3
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Let z = ε(t)/α, and so, δ(t) =
√

α2z2 + 4 and log(t/β) = log
[
(αz +

√
α2z2 + 4)/2

]
/m =

g(z)/m. By the fact that Z = ε(T)/α ∼ N(0, 1) and g(z) = log
[
(αz +

√
α2z2 + 4)/2

]
is an odd

function of z, we have:

E(ε2(T)) = α2E(Z2) = α2, E(δ2(T)) = E(α2Z2 + 4) = α2 + 4, (A11)
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where E(1/(α2Z2 + 4)) = h(α)/α with h(α) =
√

π/2e2/α2
(1 − Φ(2/α)) being provided in [4].

Then, the elements of Fisher’s information in (16) are:
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Therefore, the Fisher’s information matrix and its inverse have the following forms:
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with c = ummuαα − u2
mα. When α is small, some approximations can be implemented for the

following terms:
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