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Abstract: In this review, the authors conducted benchmarks for three thermodynamic models to
analyze PSA-based medical oxygen concentrator (MOC) systems to allow for optimization and
operational flexibility. PSA oxygen generator plants are good medical-grade oxygen sources, a crucial
tool in healthcare from the primary to the tertiary level. However, they must be designed accordingly
and properly operated, considering key design goals such as improving adsorbent productivity,
improving oxygen recovery, and innovating to reduce unit size and weight. The importance of
mapping the performance of various design and operating requirements or designs themselves on
outlet product specifications and production effectiveness is outlined. Emphasizing optimal PSA
design and operation, the authors suggest considering simulation-based optimization frameworks or
high-fidelity modeling for the optimal layout and operation conditions of adsorption-based MOC
systems. Notwithstanding, a simplified first-principles-based model with additional assumptions and
simplifications generates a large volume of scenarios faster. Therefore, it represents a good approach
for a feasibility study dealing with many options and designs or even the real-time monitoring of PSA
operating conditions. All this paved the way for efficient translation into machine learning models
and even deep learning networks that might be better suited to simulate the complex PSA process.
The conclusion outlines that PSA-based plants can be flexible and effective units using any of the
three models when properly optimized.

Keywords: oxygen generator; pressure swing adsorption; medical oxygen; COVID-19; PSA; thermodynamic;
NAPDE; exergy

1. Introduction

Medical-grade oxygen is essential at all levels of the healthcare system, as only high-
quality oxygen should be given to patients. At the peak of the COVID-19 pandemic, the
medical oxygen demand (notably for ventilators) increased dramatically, and supplying
medical O2 exacerbated the healthcare system struggle in many countries. However, even
well before the pandemic, it was inconvenient to carry O2 in remote areas. Consequently,
developing efficient air separation devices to produce medical oxygen onsite is greatly
needed [1]. Moreover, oxygen is included on the World Health Organization (WHO)
list of essential medicines [2]. Therefore, it must be made readily available in sufficient
amounts and quality in the many developing countries with the most significant mortality
of critically ill newborns, children, and adults [3,4].

While oxygen is one of the most common elements on Earth and is vital to sustaining
life, in the plight of the COVID-19 pandemic, oxygen has become a critical consumable
resource. (According to the Indian government, hospital and healthcare facility demand
for oxygen has soared almost ten times compared to the need before the pandemic.)

As an illustration of the importance of medical oxygen, we can look at the formula
integrated by the WHO in its WHO COVID-19 Essential Supply Forecast Tool [3,5]. This
WHO-ESFT tool facilitates decision-maker efforts to estimate how much oxygen supply
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in liters per minute (L/min) is needed in a healthcare facility and can be written in an
equation form. Table 1 illustrates two examples of calculating the oxygen requirement
using the WHO formula for 50- or 200-bed hospitals.

Table 1. Examples where we can calculate the oxygen requirement by using the WHO formula.

WHO ESFT Total Oxygen Requirements Formula

O2 TOT = [0.75 (BedsTOT − (BedsICU + BedsOT)) + 7(BedsOT) + 30(BedsICU)] L
min

Example/scenario

50-bed hospital 200-bed hospital

With 20% ICU beds,
five operation theatres,

With 25% ICU beds,
ten operation theatres,

Oxygen requirement
calculations

=[{50 − (10 + 5)} × 0.75] +
(5 × 7) + (10 × 30)

=[{200 − (50 + 10)} × 0.75] +
(10 × 7) + (50 × 30)

Total oxygen demand; O2 TOT =361.25 L/min =1710 L/min

Although this type of calculation is summary, this estimate remains sufficiently valid
for a large number of oxygen administration systems. In addition, for patients with
COVID-19, oxygen needs under severe conditions (required oxygen requirement, intensive
care support) is 10 L/min of flow, and under critical conditions (requiring intensive care
support) this value is 30 L/min. Consequently, a hospital’s total oxygen flow changes either
between the unit floor and a COVID ward.

Knowing the severity of oxygen consumption in seriously infected COVID patients
requiring oxygen, it is clear that a regular oxygen gas cylinder (679 L) would be consumed
in less than 1.5 h if a flow of 10 L/min was maintained.

Oxygen production and its sudden strong demand are important factors responsible
for the exhaustion of resources, and it is increasingly important to develop the ability to
generate it locally.

Notably, as identified by Vinson et al. (2006), PSA oxygen-generating plants (based
on pressure swing adsorption) are a source of medical-quality O2 [6]. Therefore, they can
serve one of the three levels identified by WHO / UNICEF (see Figure 1). Therefore, this
article aims to discuss optimizing oxygen production using PSA oxygen, recognizing the
sustained increase in health infrastructure, which generates an increase in oxygen demand
in many countries [7,8].
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So, we shall compare three different ways to model and optimize the PSA system
according to the specifics of a situation. However, to put things in perspective and better
evaluate the considerations that we will need to consider in optimizing the process, let
us first return to the fundamentals. How do we mainly produce oxygen in the world at
the moment?

2. Oxygen Production

While reinforcing that ambient air comprises approximately 78% nitrogen, 21% oxygen,
and less than 1% of other gases, oxygen is currently primarily produced in large volumes
through the air separation process in industrial air separation units (ASUs). This practice
did not change until recently, when oxygen demand in medical use increased substantially,
exacerbated notably by the rise of COVID-19. It is now more important than ever to
understand the process of extracting oxygen from the air [6].

2.1. Cryogenic Air Separation Unit (ASU)

Oxygen produced through the cryogenic process in an ASU can have a very high
purity level, up to 99% [9]. The medical use of ASU oxygen is undoubtedly a first when
volume justifies the use of this process. This is because, in an ASU, the air goes through a
series of processes (see Figure 2). The main items are listed hereafter:

(1) The air is initially treated in a pre-operation to remove all gross impurities such as
hydrocarbons, carbon dioxide, and others.

(2) The treated air passes through a compressor to be placed under cooling conditions
that condense and remove water vapors through a multi-stage process.

(3) The air is then passed through a molecular sieve absorber that traps the remaining
CO2, H2O, and hydrocarbons.

(4) Finally, the (remaining) air enters the distillation columns that fraction (separate) it
into its major components, notably nitrogen, oxygen, and argon.
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Figure 2. Dr. Carl von Linde pioneered a cryogenic oxygen plant process in 1902. Its oxygen product
purity ranges from 97.5 to 99.5% (Source: SPI).

There is a significant difference in the boiling points of each gas; the distillation process
works on the basic principle of evaporation of a liquid to separate its components. So,
before distillation to convert the gaseous components to liquid form, a cryogenic section is
required, hence the name, cryogenic air separation unit [10].
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This process is illustrated in Figure 2, which shows a schematic representation of an
ASU using the Linde double column approach. As the air rises, the separation process
commences. At the bottom of the column, oxygen starts to liquefy. Nitrogen and argon
rise as vapors to the column’s top and are collected from the bottom and cooled. The
fluid is then fed to the low-pressure column. The objective here is to further distill oxygen,
eliminating the remaining argon and nitrogen as much as possible. We now reach 99.5% O2
purity. Argon is then vaporized, leaving behind liquid oxygen of 99.8% purity. The product
can be stored as-is (or heated to ambient room temperature and stored in the gaseous
form) [10,11].

2.2. Oxygen Concentrators

For many applications, especially in developing countries with remote areas in poor
regions, access to industrial-made medical oxygen is not only more complicated (or ex-
pensive), but it is also intermittent and depends on supply chain considerations. So, other
means or devices such as an oxygen concentrator that can be used locally are needed. The
function of such a device is simply to concentrate oxygen from the ambient air by removing
nitrogen through a molecular sieve. Various molecular sieves can be used, but we mostly
see ion transport membranes or zeolite. While the process simply uses room air, compresses
it, removes nitrogen through the sieve, and finally delivers oxygen, an 85% to 95% purity
of oxygen can be generated [6,8].

The process’s main challenges and related drawbacks rely principally on the potential
malfunctioning of the sieve or an excess of water vapors compromising nitrogen absorption.
On the other side, an advantage of the process is that it keeps O2 delivery independent from
the commercial gas producer’s supply [4,7]. Additionally, smaller oxygen concentrator
units can be made and even used as portable devices (see Figure 3). Indeed, smaller
devices are not the first choice of oxygen delivery system for severe patients, but would
instead be a pertinent choice for oxygen therapy at home or in times of crisis, especially for
long-term use.
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Notably, because of their ease of use (to work, it only needs a continuous electricity
supply and room air) and their greater acceptance in the healthcare field, it is even more
important for these devices to be optimized from the bigger to the smaller models [3].
Remarkably, some devices produce as low as 0.5–15 L of oxygen per minute, producing
medical oxygen from ambient air at small scales.

Medical oxygen concentrators (MOCs) can be used in small- or mid-size-scale oxygen
production by using various technologies, but the two most important are pressure swing
adsorption (PSA) and membrane technology. This article will focus on the PSA approach,
which is more widely recognized and applicable in healthcare settings.

2.3. Pressure Swing Adsorption (PSA) Plant

The PSA process operates by pushing the air through a high-pressure container
containing an adsorbent bed of zeolite (aluminum-silicates of alkaline metals), which
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attracts nitrogen more strongly than oxygen. The adsorbent bed absorbs a part of or all the
nitrogen. As a result, the gas out of the vessels is richer in oxygen, as shown in Figure 4.
Although PSA processes do not produce volumes of oxygen as high as cryogenic plants
do, knowledge about their operation is essential because this type of process would likely
work around a hospital to meet highly urgent requirements for oxygen in this hospital.
PSA plants need an uninterrupted power supply for constant oxygen production [12]. They
are dimensioned according to output capacity in cubic meters per hour (m3/h) of oxygen,
where 1 m3 = 1000 L of medical oxygen [13].
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According to the World Health Organization (WHO) [3], medical-quality oxygen
has an O2 concentration between 90% and 96% (with only N2 and Ar and remaining).
Most adsorption MOCs rely on a PSA process with a selective nitrogen adsorbent to meet
this requirement. In addition, small adsorbing particles are used to reduce mass transfer
resistance and improve adsorption kinetics. As a result, according to Chai et al. (2011),
typical oxygen products obtained from MOC devices consist of 90 to 93% oxygen at a
production rate of less than 10 L/min [8].

Due to the limited adsorption capacity of adsorption-based MOCs, the adsorbent
is periodically rejuvenated (through regeneration) for effective use [13]. To facilitate a
continuous O2 supply, the product (oxygen) can be collected in an overvoltage column and
provided at a certain time, or multiple operations can be used. The configuration of the
Skarstrom-type PSA cycle is generally used in MOCs, which consist of stages of production,
depressurization, purge, and pressure (see annex A for more details) [14,15]. The quick
cycle of the adsorption column maximizes the use of adsorbents and miniaturizes the size
of the operation.

Flexibility is also a key feature of PSA since a single MOC unit can be used for many
patients with different statuses in a hospital environment. Consequently, optimizing the
flexibility and modularity of the PSA process that can quickly shift between different
operating regimes to produce oxygen on demand while filling out additional product
requirements might be essential. In addition, to meet the need for oxygen varying over
time, some are considering a cyber-physical system (CPS) in which the concentration of
blood oxygen from a patient with a pulmonary condition is constantly monitored, and
actions necessary are taken to modify the functioning of the MOC [15].

There is evidence of the effectiveness of oxygen concentrators in increasing access to
life-saving oxygen and improving the overall quality of health care in low-resource settings
(LRS). Many studies, including Siew et al. (2012) and Zhu et al. (2017), demonstrated using
oxygen concentrators to expand oxygen availability in hospitals in LRS settings [12,14].
These studies have also shown that oxygen concentrators have been successfully used more
generally in several developing or emerging countries to provide oxygen in pediatric and
surgical departments.

Ultimately, the advantages of MOCs have been discussed in the technical literature;
they come with high reliability and low cost compared to oxygen cylinders and piped
oxygen systems (Moran et al., 2017) [15]. On the other hand, the disadvantages of PSA-type
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MOCs include the need for regular, albeit minimal, maintenance and a reliable power
supply, which can be addressed by efficient planning and training staff.

3. Observations Related to the Development and Optimization of PSA Units

Some studies have explored interesting innovations in the field of simulation. For
example, the mechanisms of heat and mass transfer have been studied and enhanced by
Farooq et al. (1989), Teague and Edgar (1999), and Ahari et al. (2006 and 2008) [16–19].

In particular, the mass transfer rate and the bed pressure drop model were validated
with experiments by Farooq and D.M. Ruthven [17] into a summary model of pressure
swing adsorption and models adopted to simulate equilibrium separation. The selected
adsorbent was zeolite. They also discussed the effects of axial dispersion and mass transfer
resistance on system performance. Ahari et al. [19] developed a dynamic model, then
set up a lab-scale device to verify accuracy. In their study, they considered the effect of
kinetic parameters. They found that more steps for pressure equalization could increase
the product recovery rate regarding separation efficiency.

In this work, we focus on PSA processes and analyze some mathematical models of
these systems. First, a systematic analysis was implemented including cycle temperature,
concentration, and pressure profiles. In addition, several operating parameters such as the
duration of each step, the bed H/D (height-to-diameter) ratio, and the flowrate of products
were determined to follow these factors’ effects on process performance.

Simulation Challenges

The previous sections illustrate that designing and optimally operating PSA processes
can be complex, if not difficult. This is mainly because of the intrinsic non-linear dynamics
but is also a consequence of a complex operation with varying operating regimes [20,21].
Consequently, many decision variables must be evaluated, including cycle configuration
and operation, pressure levels, purge conditions, and the efficiency of bed regeneration.
However, several other objectives must be met for optimal function, including modularity,
compactness, reliability, and efficiency.

For example, using the number of tons of oxygen per day (or TPD), the BSF is the
amount of adsorbent (in kg ads) required to produce each TPD. Therefore, BSF minimization
leads to lower adsorbent inventory levels and smaller MOC units. On the other hand,
the oxygen recovery is calculated by calculating the fraction of oxygen recovered at the
outlet of the product compared to the quantity of oxygen supplied during a PSA cycle in
a cyclic steady state. MOCs are generally small-scale devices with a limited amount of
adsorbent and fast cycling [22,23]. However, they may have high power consumption due
to frequent pressure changes compared to more significant PSA operations. Nevertheless,
the relative ease and dependability of the MOC play a more important role than its power
consumption regarding oxygen production (e.g., TPD). While this is especially true for
small-scale applications, overall, the main design goals are:

(1) Increased adsorbent productivity;
(2) Improved O2 recovery;
(3) The development of smaller-size, lower-weight units.

Most of the existing literature mainly focuses on designing PSA-based MOC technolo-
gies for fixed product specifications. So, it would be essential to emphasize developing
flexible PSA processes that can deal with various end-use oxygen specifications as desirable
or simply allowing for purpose changes with a flexible PSA operation to suit different
patients’ requirements.

4. Observations and Findings Related to Thermodynamic Analysis of PSA Processes

Even though we might find diverse sources in the literature of the optimization-
based process design domain [24–26], just a few studies perform flexibility analysis for
the operation of complex PSA systems [27,28]. Consequently, we conducted a thermody-
namic analysis that could allow for the optimization and what we shall call “operational
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flexibility” (OF) of PSA-based MOC systems. In this work, we compare three different
thermodynamic models:

(1) A simulation-based optimization framework;
(2) A first-principles-based model;
(3) A high-fidelity adsorption simulation model.

While they all rely on NAPDE (non-linear algebraic partial differential equations)
modeling, they come with different assumptions and conservation equations that make
some of them better suited for some challenges. To make it easier, they are summarized
hereafter, noting that some aspects might be simpler to simulate for one model, others
might be more difficult, and vice-versa.

To simulate the adsorption processes for air separation operating under a pressure
swing, while special consideration according to the specific models will be touched upon in
the corresponding sections, we generally consider the process to be based on a Skarstrom-
type cycle consisting of a repetition of four different steps:

(1) The generation of high-pressure products;
(2) Depressurization;
(3) A low-pressure purge;
(4) Pressurization.

We will also touch on decision variables that might apply to the different models.
The evaluation and especially the optimization of the PSA process often require opti-
mizing these decision variables (such as cost or size) for minima while satisfying some
system requirements.

4.1. Simulation-Based Framework

The first approach that was analyzed is a simulation-based optimization framework.
This framework uses a non-linear algebraic partial differential set of coupled equations
(PDEs with non-linear terms and constraints that describe mass and energy conservations
and transport phenomena through porous media). This non-linear PDE model is complex
and difficult to solve, even for fixed conditions [29,30].

In this framework, the cycling series of steps in the PSA process comprise the ad-
sorption (AD), pressure equalization (ED and ER), co-current purge (blowdown) (COD),
counter-current purge or blowdown (BD), full purge (PUR), and final pressurization (FR).

Conservation equations:
Mass balance:

−εbDax,i
∂2Ci
∂z2 +

∂2(vgCi)

∂z2 +
(
εb + (1− εb)εp

) ∂Ci
∂t + ρs(1− εb)

∂Ci
∂t = 0

Dax,i = 0.73Dm,i +
vgrp

ε
b (1+9.49

εb Dm,i
2vgrp

)

(1)

Energy balance:
Gas phase:

−kg
∂2Tg

∂z2 + cpgvgρg
∂Tg

∂z
+ εbcvgρg

∂Tg

∂t
+ P

∂vg

∂z
+ h f

(
Tg − Ts

)
+

4hwg

Db

(
Tg − Tw

)
= 0 (2)

Solid phase:

−kg
∂2Ts

∂z2 + cpsρs
∂Ts

∂z
+ ρs

n

∑
i=1

(cpg,iqi)
∂Ts

∂t
+ ρs

n

∑
i=1

∆Hi
∂qi
∂t
− h f

(
Tg − Ts

)
= 0 (3)

Bed wall [31]:
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−kw
∂2Tw

∂z2 + cpwρw
∂Tw

∂z
− hw

4Db

(Db + Wt)
2 − Db

2

(
Tg − Tw

)
+ hamb

4(Db + Wt)

(Db + Wt)
2 − Db

2
(Tw − Tamb) = 0 (4)

Momentum balance:

−∂P
∂z

=
150µ(1− εb)

2

εb
2(2rpΨ)2 vg + 1.75

(1− εb_)ρg

2rpΨεb
3

∣∣vg
∣∣vg (5)

Adsorption balance:

q∗i =
IP1,ie

IP2,i
T Pi

1 + ∑n
i=1 IP3,ie

IP4,i
T Pi

(6)

Absorption rate:

∂qi
∂t = kLDF,i

(
q∗i − qi

)
=

15De,i
rp2

(
q∗i − qi

)
De,i =

εp
τ

Dk,i Dm,i
Dk,i+Dm,i

Dk,i = 97.0 rp

√
T

Mi

(7)

For these conservation equations, the following parameters are considered: Aw cross-
section area of column wall, C molar concentration of mixture, Ci molar concentrations of
component i, cpg specific heat capacity of gas phase, cpg specific heat capacity of gas phase,
cps specific heat capacity of adsorbent, cpw specific heat capacity of column wall, hin heat
transfer coefficient with inner wall of column, hout heat transfer coefficient with outer wall
of column, ∆hi heat of adsorption of component i, ∆Hi heat of adsorption of component i,
ki mass transfer coefficient of component i, M molar-averaged molecular weight of mixture,
Mj molecular weight of component i, ni dynamic adsorption of component i, n*

I equilibrium
adsorption of component i, ns

i saturation adsorption of component i, P pressure, qi dynamic
adsorption mass of component i, R universal gas constant, Rin inner radius of column, Rout
outer radius of column, t time, T temperature of adsorption bed, Tf ambient temperature, Tw
wall temperature, xi mass fraction of component i yi, εb bed porosity, ρg mass concentration
(density) of mixture gas, ρI mass concentrations of component i, ρb bed density of adsorbent,
ρp particle density of adsorbent, ρs skeletal density of adsorbent, ρw density of column wall,
and Ψ shape factor of the adsorbent particles.

A set of initial conditions and boundary conditions for modeling the adsorption bed
used for PSA process simulations is needed (see Table 2). More details concerning the
simulation-based optimization model can be found in Bajaj et al. (2018) [30]. One objective
for optimizing the MOC unit based on PSA is reduction in the BSF. At the same time,
metrics optimization allows for a PSA process with low compression costs, compactness,
modularity, and more effective use of adsorbent.

A high apparent density of adsorbent (to adsorb as much N2 as possible) is preferable.
This leads to a greater interstitial fluid velocity, reducing stay in the bed of the incoming
ambient air. Moreover, increasing apparent adsorbent density leads to an increase in
pressure drop, which could cause an unwanted fall in the product output power pressure.
Thus, a higher apparent adsorbent density can lead to the under-use of the packed adsorbent
and a reduction in the separation efficiency of the adsorbent. Consequently, it is necessary
to balance this “compromise” to define the optimal density of the adsorbent.

While many variables are tied to these boundary conditions, the decision variables
can be determined according to the specifics of a design. Additional constraints need to
be imposed in this NADPE model to ensure that pressurization, depressurization, and the
overall process result in a sufficiently flexible range for purging operations.
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Table 2. Initial and boundary conditions of the adsorption bed used for PSA process simulations.

List of Initial Conditions of the Adsorption Bed

yi(z) = 0, yinert(z) = 1, qi(z) = 0, qinert(z) = qeq,inert(z),

Ci(z) =
Pyi
RgT , P(z) = Pf eed, Tg(z) = Ts(z) = Tw(z) = Tf eed

Boundary Conditions for PSA bed simulation

PR (inlet, z = L)

∂Ci
∂z

∣∣∣
z=0

= 0

uo|z=0 = 0
∂Tg
∂z

∣∣∣
z=0

= 0

uo,inletCinlet,i
∣∣
z=L = uoCCpTg − kg

∂Tg
∂z

P|z=L = Poutlet

uo,inletCinletCpTinert
∣∣
z=L = uoCi − εbDax

∂yi
∂z

AD1, AD2 (inlet, z = 0)

uo,inletCinlet,i
∣∣
z=0 = uoCi − εbDax

∂yi
∂z

uo,inletCinlet
∣∣
z=0 = uoC− εbDax

∂yi
∂z

uo,inletCinletCpTinert
∣∣
z=0 = uoCCpTg − kg

∂Tg
∂z

∂Ci
∂z

∣∣∣
z=L

= 0

P|z=L = Poutlet

∂Tg
∂z

∣∣∣
z=L

= 0

ED1, ED2, ED3, CoD (outlet, z = L)

∂Ci
∂z

∣∣∣
z=0

= 0

uo|z=0 = 0

∂Ci
∂z

∣∣∣
z=L

= 0

P|z=L = Poutlet

∂Tg
∂z

∣∣∣
z=0

= 0

∂Tg
∂z

∣∣∣
z=L

= 0

BD (outlet, z = 0)

∂Ci
∂z

∣∣∣
z=0

= 0

uo|z=L = 0

∂Ci
∂z

∣∣∣
z=L

= 0

P|z=0 = Poutlet

∂Tg
∂z

∣∣∣
z=0

= 0

∂Tg
∂z

∣∣∣
z=L

= 0
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Table 2. Cont.

List of Initial Conditions of the Adsorption Bed

ER1, ER2, ER3, PUR (inlet, z = L)

uo,inletCinlet,i
∣∣
z=L = uoCi − εbDax

∂yi
∂z

uo,inletCinlet
∣∣
z=L = uoC

uo,inletCinletCpTinert
∣∣
z=0 = uoCCpTg − kg

∂Tg
∂z

∂Ci
∂z

∣∣∣
z=0

= 0

uo|z=0 = 0
∂Tg
∂z

∣∣∣
z=0

= 0

PUR (inlet, z = L)

uo,inletCinlet,i
∣∣
z=L = uoCi − εbDax

∂yi
∂z

uo,inletCinlet
∣∣
z=L = uoC

uo,inletCinletCpTinert
∣∣
z=0 = uoCCpTg − kg

∂Tg
∂z

∂Ci
∂z

∣∣∣
z=0

= 0

P|z=L = Poutlet

∂Tg
∂z

∣∣∣
z=0

= 0

4.2. First Principles-Based Modeling

The second version is an adsorption model focused on the first principles approach. In
a nutshell, a mathematical model based on first principles (e.g., Glad, 2014 or Bhatt, 2014)
defines the physics of adsorption relying on a one-dimensional, diabatic (i.e., non-adiabatic)
model but also a non-isothermal and non-isobaric model [32,33]. The model calculates the
concentration, temperature, and pressure gradients along the axial length of the column
and the time dimension and neglects any variation in the variables for each state along the
radial direction (see Figure 5). While this model is based on a different set of assumptions
and conservation equations (Arora and Hasan, 2021), it is still based on an NAPDE set of
equations; however, it is designed to reduce computational expense [13].

The linear driving force equation (LDF) coupled with Darcy’s law (for a steady-state
momentum balance) describes the adsorption kinetics in the model [26]. Experimental data
can be fitted (e.g., using Langmuir adsorption isotherms described hereafter) to obtain the
adsorption capacity at equilibrium for different conditions and adsorbate species on the
adsorbent:

q∗i = ∑
s

mi,sbi,sPi

1 + bi,sPi
(8)

where s ∈ {1, 2} are the two adsorption sites, i represents the constituents species, mi,s is the
adsorption capacity for the site (solid phase), and Pi is the partial pressure. In the above
equation, bi,s is computed as follows:

bi,s = bo,i,se(
−∆Ui,s

RT ) (9)

where bo,i,s, and Ui,s are the isotherm fitting parameters.
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Figure 5. The mathematical models of the column (including mass, energy, momentum, adsorption
equilibrium, and LDF equations) are set up to define the dynamic behaviors of air on the molecular
sieve. The physical parameters of the adsorption bed and the initial conditions and the boundary
conditions of the adsorption column need to be determined for each simulation.

This set of equations depicts the full thermodynamic approach, which is declined in
the mathematical model of the adsorption bed. For such problems, we can use a robust
OA, an optimization algorithm, to find the objective functions that result in a maximum
(or a minimum) function evaluation. OAs are often using the first and second derivatives
of the objective function. The objective and one or more constraints are evaluated using
simulations or proprietary codes, up to the point of a gray box problem. When the analytic
form of the objective function is unknown, but the analytical form of one or more constraints
is known, then such problems are called gray box problems. (Note that optimization
problems where the analytic form of the objective function and all the constraints are not
available are called black box problems).

The series of assumptions necessary to resolve the thermodynamics calculation ac-
cording to the process characteristic is listed hereafter:

(1) Intake (air supply) consists of 21% O2 and 79% N2 and is supposed to have an
insignificant amount of water and argon.

(2) The purge and pressurization supply consists of an imposed composition of oxygen
and nitrogen.

(3) A minimum number of cycles (e.g., 50) are simulated to reach a cyclic but steady state,
as the output properties are monitored to converge for these many cycles.

(4) The purge and pressurization supply consists of an imposed composition of O2
and N2.

(5) The lowest achievable pressure is 1 bar.
(6) PSA cycle steps are limited to a maximum number of four.
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(7) The bed is saturated with air at the first (initial) pressure and supply temperature
stage of a PSA cycle.

(8) The oxygen production stage of the cycle is defined as the first stage, in which air is
introduced into the column.

4.2.1. Ideal Gas Constitutive Equation

The ideal gas law is used as the equation of state since it offers good approximation of
the behavior of the gas-phase under the considered operating conditions. It is declined it
its conventional form:

Pyi = RTCi (10)

where T is the system temperature, P is the total pressure, yi, and Ci are the bulk gas-phase
mole fraction and concentration of component i, and R is the universal gas constant.

4.2.2. Mass Balances

For the mass balance, we impose the mass flow through the adsorption column to
correspond to an ideal plug flow without axial mixing. The mass balance accounts for
convection and accumulation in both the gas and solid phase. So, for component i over a
differential volume element, it is defined by

∂(vgCi)

∂z
+ εT

∂Ci
∂t

+ ρB
∂qi
∂t

= 0 (11)

where t is the time coordinate, vg is the superficial velocity (of the gas phase), εT is the
total bed void fraction, ρB is the mass of the solid per unit volume of column (or the
adsorbent bulk density), and qi is the particle-average specific concentration of species i in
the adsorbed phase (i.e., per unit mass of solid).

4.2.3. Mass Transfer Rate (w/r to LDF)

In a similar way as indicated by Bhatt et al. (2014) [33], the mass transfer coefficient
is referred to as MTC, and the linear driving force (LDF) model is used to account for the
resistance to mass transfer between the fluid and the porous media, given by

∂qi
∂t

= kMTCi (q
∗
i − qi) (12)

where q∗i is the adsorbent loading of component i in equilibrium with the gas-phase
composition and kMTC is the lumped, effective MTC, computed by presuming that only
the resistances to mass transfer in the fluid film (external) and the macropores are significant:

1
kMTCi

=
rPKK,i

3k f ,i
=

rP
2KK,i

15εPDP,i
(13)

rP and εP are the radius and porosity of the adsorbent particle (P), respectively.
The macropore diffusion coefficient (DP) is derived from the following equation:

DP,i = τ
(

DK,i + DM,i

)
(14)

KK,i is the local Henry’s coefficient found using the equilibrium isotherm as:

KK,i = RT
ρB
εi

∂q∗i
∂pi

(15)

where p represents the partial pressure and εi is the interstitial (or external) porosity.
To determine the constant molecular diffusion coefficient, DM, from a properties

database or similar, τ is the adsorbent tortuosity factor is used. With rP,mac the macropore



J 2023, 6 330

radius and MW,i the molecular weight of the constituent, we can evaluate the Knudsen
diffusion coefficient (DK) using the following relationship:

DK,i = 97.0 rp,mac

√
τ

MW,i
(16)

Considering that µg is the dynamic gas viscosity and ρg is the molar gas phase density,
the film resistance coefficient kf;I is calculated from the Schmidt (Sci), Reynolds (Re), and
Sherwood (Shi) numbers using the following set of equations:

Sci =
µg

DM,iρg MW

Re = (3rPρg MW vg)
µg

Shi = 2 + 1.1 3
√

Sci
5/3
√

Rei

k f ,i =
(Shi DM,i)

2rP

(17)

4.2.4. Linear Momentum Balance

This second model further determines the pressure drop along the axial coordinate,
which can be calculated using Ergun’s equation (Ergun, 1952), which is suitable for both
laminar and turbulent flows. While the pressure drop estimates depend on the flow
direction of the bulk gas during different steps of the process cycle, the (∂P/∂z) depends on
many other parameters, including ψ, the shape factor of the adsorbent particles. Therefore,
this difference should be considered positive during the pressurization (PR) and purge
(PU) steps, while being considered negative during blowdown (BD) and feed (FE).

∂P
∂z

= ±
[

µvg
0.150(1− εi)

2

εi
3(2rpΨ)2 + 1.75× 10−3MWρgvg

2 (1− εi)

2rpΨεi
3

]
(18)

4.2.5. Equilibrium Isotherm

In an approach used by Thakur et al. (2011) [34] or Zou et al. (2017) [35], we can
determine the adsorption isotherm of the gaseous mixture from pure component isotherms
using the well-known extended Langmuir model (EL). This EL is based on modifying
the Langmuir prevalent multicomponent adsorption equilibria model centered on single-
component isotherms fitted on pure component data. So, the adsorbed moles of component
i per unit mass of adsorbent at equilibrium (q∗i ) are given by:

q∗i =
(IP1,i)(pi)

1 + ∑2
k=1(IP2,k)(pk)

(19)

where, as referred to previously, the Langmuir isotherm parameters IP1,i, and IP2,i are
defined from the pure component i, and p represents the gas partial pressure.

With this second approach, based on modeling the complete cycle of one single bed,
the so-called “Single Bed Approach” can retain the accuracy of multiple-bed simulation
using the transfer of information through predefined “interaction” modules as soon as the
“cross-over” data are accurate enough. As a consequence, the selected scheme significantly
improves the computational speed since it reduces the total number of equations to be
solved to achieve the final results.

4.3. High-Fidelity Adsorption Simulation Model

Another model consisting of a unidimensional but pseudo-homogeneous, non-isothermal,
diabatic, and non-isobaric model represents the third option for modeling. However, it
is defined as the high-fidelity model for simulating pressure swing adsorption (PSA) pro-
cesses. In short, as presented by Haghpanah et al. (2013) [22,36], it is a set of non-linear
and algebraic NAPDEs. It is still used to describe species concentration, temperature, and
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pressure variation along the bed length and time dimension. The first principles equations
leveraged in the model are described as follows.

4.3.1. Conservation Equations

The following equation represents the mass conservation of each chemical species i in
the gas phase:

εt
∂Ci
∂t

= εb
∂

∂z

(
DLC

∂yi
∂z

)
+ εb

∂(vCi)

∂z
− ρb,ads

∂qi
∂t

(20)

Ci and C are the concentration of component i and total concentration in the gas phase,
respectively; yi is component i gas phase mole fraction; ρb,ads is the adsorbent bulk packing
density; and εb, and εt are bed and total void fraction. Moreover, v is the interstitial velocity,
qi is the component i solid phase concentration, DL is the axial dispersion coefficient, and z
and t are the space and time dimensions, respectively.

The above component mass balance equation applies the ideal gas law to convert the
concentration in terms of gas phase mole fraction, pressure, and temperature. Consequently,
the following equation is obtained:

∂yi
∂t

+
yi
P

∂P
∂t
− yi

T
∂T
∂t

= DL
εb
εt

T
P

∂

∂z

(
P
T

∂yi
∂z

)
− εb

εt

T
P

∂

∂z

(
yivP

T

)
−

ρb,adsRT
εtP

∂qi
∂t

(21)

where yi is the component i gas phase mole fraction, P is the gas phase pressure, and T is
the gas phase temperature.

The preceding equation represents the constituent mass balance for each chemical
species i. To obtain the total mass balance equation, we sum over this equation for all
component species i ∈ I. The resulting total mass balance expression is as follows:

∂P
∂t

=
P
T

∂T
∂t
− εbT

εt

∂

∂z

(
Pv
T

)
−

ρb,adsRT
εtP

∑
i∈I

∂qi
∂t

(22)

For computing the temperature variations due to adsorption and adsorbent–column–
wall interactions, the following heat balance equation is utilized along with cp,ads and cp,a
which are the adsorbent and adsorbate heat capacity (in kJ/kmol), respectively; cpg is the
ideal gas mixture heat capacity (in kJ/kmol); and Kz, the axial heat conductivity:(

ρb,adscp,ads + ρb,adscp,a ∑
i∈I

∂qi
∂t

)
∂T
∂t

= KZ
∂2T
∂z2 +

cpgεb
R

∂(vP)
∂z − cp,aρb,adsT ∑

i∈I

∂qi
∂t −

cpgεt
R

∂P
∂t − ρb,ads ∑

i∈I

∂qi
∂t −

2hin
rin

(T − TW)
(23)

where ∆Hi is the heat of adsorption of component i, hin is the column–wall heat transfer
coefficient, and rin is the bed column radius.

The following steady-state momentum balance, i.e., Darcy’s law, is applied for taking
into account the pressure drop along the adsorbent column:

−∂P
∂z

=
150
4rp2

(
1− εb

εb

)2
µv (24)

where rp is the particle radius and µ is the gas mixture viscosity.
The linear driving force (LDF) model uses ∂qi to reduce the computational complexity

of capturing the mass transfer of adsorbate from gas to the solid phase and vice versa,

∂qi
∂t

= ki(q∗i − qi) (25)

where q∗i is the equilibrium adsorption capacity computed using a dual-site Langmuir
isotherm and ki is the LDF mass transfer coefficient.
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4.3.2. MOC Process Performance Metrics

With the high-fidelity model, the oxygen purity (PO2) is obtained for the production
stage of the PSA process by determining the amount of O2 at the product exhaust divided
by the total amount of O2 and N2 as follows:

PO2 =

(∫ t f
0

yO2 Pv
RT

P0v0
T0

∣∣∣∣
z=1

dt
)

(∫ t f
0

yO2 Pv
RT

P0v0
T0

∣∣∣∣
z=1

dt
)(∫ t f

0
yN2 Pv

RT
P0v0
T0

∣∣∣∣
z=1

dt
) (26)

where Z = 1 denotes the product outlet end, yO2 and yN2 are the gas phase compositions
of oxygen and nitrogen; P, v, and T are the scaled pressure, interstitial velocity, and
temperature, respectively; P0, v0, and T0 are the respective scaling parameters; and tf is the
production step duration of a cycle [37,38].

The net oxygen output amount is calculated by subtracting the amount of oxygen
utilized during the purge and pressurization stages from the amount of oxygen obtained
during the production stage. As a result, the overall O2 recovery (RO2) of a PSA cycle is
derived as follows, wherein the denominator represents the amount of fresh oxygen fed
during the production step:

RO2 =

(∫ t f
0

yO2 Pv
RT

P0v0
T0

∣∣∣∣
z=1

dt
)
−
( yp,O2 Ppvptp

RTp

)
−
(∫ tpres

0
ypres,O2 Pv

RTpres
P0v0
T0

∣∣∣∣
z=pres,inlet

dt

)
( y f ,O2

Pf v f t f
RTf

) (27)

where yp,O2, ypres,O2, and yf,O2 are the oxygen molar fractions of the purge, pressurization,
and production feed streams and Tp, Tf, and Tpres are the purge, production, and pressuriza-
tion step feed temperatures. Tp and tf are the duration for the purge and production steps,
and Z = pres.inlet at the inlet column end during the pressurization step. In addition, vp, vf,
Pp, Pf are the interstitial feed velocity and pressure for the purge and production streams.

The net number of moles of oxygen collected during production is converted to L/min
in standard conditions to calculate the standard amount of oxygen production rate (PCO2)
as follows:

PCO2 =

[(∫ t f
0

yO2 Pv
RT

P0v0
T0

∣∣∣∣
z=1

dt
)
−
( yp,O2 Ppvptp

RTp

)
−
(∫ tpres

0
ypres,O2 Pv

RTpres
P0v0
T0

∣∣∣∣
z=pres,inlet

dt

)](
RTST P×1000×60

pST Ptcycle

)
(28)

where TSTP = 273 K and PSTP = 101,325 Pa are the standard temperature and pressure
conditions, and tcycle is the duration of a PSA cycle in seconds.

Finally, we compute the BSF in terms of the quantity of adsorbent required in kg to
generate 1 ton per day of net O2 product as follows:

BSF =
ρb,adsπr2

inL[(∫ t f
0

yO2 Pv
RT

P0v0
T0

∣∣∣∣
z=1

dt
)
−
( yp,O2 Ppvptp

RTp

)
−
(∫ tpres

0
ypres,O2 Pv

RTpres
P0v0
T0

∣∣∣∣
z=pres.inlet

dt

)]( 1000× tcycle

24× 3600× 0.032

)
(29)

where ρb,ads is the adsorbent bulk density, and rin and L are the column radius and
length, respectively.

4.4. Benchmarking Numerical Data and Modeling Output

The three studied models were benchmarked according to experiments in different
studies. To add more context to this benchmarking and its importance on the performance
and operating conditions see Ref. [39] or find more information on the PSA design, the
conservation equations, and the assumptions can be found in the Supporting information
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(see Appendices: (A) The Principle of Pressure Swing Adsorption; (B) Assumptions and
conservation equations; (C) Other design considerations; (D) Examples of variables Bounds
for Process Optimization.) In the appendices, Figure S1 illustrates the PSA-based MOC
cycle divided into its eight processes, while Figure S2 shows the PSA (Skarstrom-type cycle)
generic process. Tables S1, S2 and S3 respectively give examples of Operating conditions
and performance, Decision variable bounds on design and operation, and Parameters
utilized for solving the NAPDE-based process simulation.

Table 3 compares the process and performance metrics for many reviewed studies.
Experimental data used to benchmark the three models under specific operating conditions
were compared in terms of BSF as defined in Equation (29), as well as purity and recovery
%. Notably, [12] devised a rapid PVSA process with intermediate pressurization steps
using Li·LS·X zeolite and observed that lower desorption pressure levels contributed to
lowering BSF and increasing oxygen recovery. Their test unit produced 90% pure oxygen at
0.75 L/min with a BSF of 82.8 kg ads. O2/TPD with an oxygen recovery of 29.5%. Ref. [40]
performed simulation and optimization studies for studying four-step PSA and PVSA
cycles for oxygen production with three different candidate adsorbents. Out of Sylobead
MS S624, Oxysiv5, and Oxysiv7, Oxysiv7 showed the best separation performance for both
PSA and PVSA cycles with 94.5% oxygen purity, 21.3% recovery and a 3.7 L/min production
rate. The authors extended their analysis to investigate a six-step PSA cycle for small-scale
medical applications and obtained a 94.5% pure oxygen product with 34.1% recovery and
a 4.3 L/min production rate. Ref [17] carried out simulation and experimental studies
to investigate a two-bed four-step PSA process for air separation using 5A zeolite. The
theoretical results confirm that an oxygen product with 93.4% purity can be obtained,
notwithstanding a low oxygen recovery of 20.1% and a low production rate of 0.07 L/min.
Ref [30] proposed a two-step pulsed PSA process to extend the potential miniaturization
for medical applications. With alternating pressurization and depressurization steps, they
were able to achieve an oxygen purity of 90% at a production rate of 5 L/min using 5A and
Ag·Li·X zeolite adsorbents. The authors of [34] elaborated a four-step rapid PSA process
that produces a 90% oxygen product at 1–3 L/min with an oxygen recovery of 15–30% and
BSF of 45–70. Ref. [29] developed a four-bed rotary value rapid PSA process to enhance air
separation performance. The results indicate that a 92% O2 purity at 1 L/min production
can be achieved with an oxygen recovery of 30% and a BSF of 78. Finally, [8] developed a
rapid PSA process using Li·X zeolite with a total cycle time in the range of 3–5 s. They were
able to obtain 90% pure oxygen product with 25–35% recovery with a BSF of 11.3–26.7 kg
ads. O2/TPD. Overall, all three models show good correspondence with experimental data
with ±5 to 10% accuracy.

Table 3. Experimental data used to benchmark the 3 models under specific operating condition
compared in terms of BSF, purity, and recovery.

Model

Pa Pd Cycle Cycle Purity Recovery Flowrate BSF

Ref.
(kPa) (kPa) Type Duration (s) (%) (%) (LPM) (kg

ads/TPD)

(1) S-BOF 240 60 5-step 7 90 29.5 0.75 82.8 [12]

(1) S-BOF 355 101 2-step 1.32 90 10–55 5 – [30]

(1) S-BOF 300 100 4-step 18 94.5 21.3 3.7 – [40]

(1) S-BOF 300 100 6-step 16 94.5 34.1 4.3 – [40]

(2) F-P-BM 150 101 4-step 100 93.4 20.1 0.07 – [17]

(2) F-P-BM 400 100 4-step 3 to 9 90 15–30 1–3 45–70 [34]

(2) F-P-BM 253 101 6-step 5 92 30 1 78 [29]
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Table 3. Cont.

Model

Pa Pd Cycle Cycle Purity Recovery Flowrate BSF

Ref.
(kPa) (kPa) Type Duration (s) (%) (%) (LPM) (kg

ads/TPD)

(3) H-FASM
195 43 6-step 3.8 to 6.8

92–93 41–45 – 23.1–36.7 [15]

(3) H-FASM
304 to 101 4-step 3 to 5

90 25–35 5 11.3–22.7 [8]
405

(1) S-BOF: Simulation-based optimization framework,

(2) F-P-BM: First-principle-based modeling

(3) H-FASM: High-fidelity adsorption simulation Model.
Fitting Parameters:

Operating pressure: adsorption Pa and desorption Pd (kPa)
Cycle duration of the PSA process tcycle: (s)

Oxygen purity (%)
Oxygen recovery (%)

Production flowrate (LPM)
BSF: Amount of adsorbent required in kg to generate 1 ton per day of net O2 product

(kg ads/TPD)

5. Discussions

While we have discussed various systems, we acknowledged that large-scale methods
(such as cryogenic fractionation units) are unsuitable for medical institutions because of
their substantial investment and large occupation of area [39]. So, we emphasized the
continued research need for optimizing and miniaturizing smaller oxygen PSA plants. This
is not only of practical significance, but it is also relevant to progress towards compact
equipment and a high degree of automation.

To ensure the flexibility of the PSA, the question lies in over-designing the apparatus
to deliver a higher purity of oxygen than desired at a determined minimal flow rate.
After that, we resolve to obtain PSA size and operating conditions while maximizing the
mapping of the possible use specifications (e.g., we can do so by determining the area
covered by flow rate and purity). Consequently, as soon as there becomes a need for
greater throughput or purity, such an adaptable PSA process could take on new product
specification requirements with flat (or fixed) output equipment without breaching the
request for purity. Therefore, we only need to model a single bed for continuous oxygen
delivery instead of completely modeling a multiple-beds configuration.

5.1. Modeling Considerations

We investigated ways to optimize portable medical oxygen concentrators (MOCs)
using the PSA process to generate and deliver medical-grade O2, notably for patients with
serious lung diseases, COVID-19 or COPD. In particular, we can model or optimize flexible
adsorption PSA-based apparatuses able to produce O2 with variable flow rates and purity
requirements over time. In addition, the flexible design is inherently advantageous because
the same device can be adapted to meet changing oxygen needs.

So, all decision criteria need to be considered, not just in the purely thermodynamic-
related aspect but also the cost, size, and functionality aspects. Vice-versa, taking care only
with cost and ease of installation does not optimize the quality of the generated oxygen. In
addition, one can add the following contextual operating conditions for oxygen therapy,
which should be adjusted appropriately based on the assessment of oxygen requirements
(see WHO, 2020, 2021).
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5.1.1. Maximum Flow Output

O2 needs evaluation to characterize the upper limit flow a MOC should deliver. Small
MOCs are often available as 3 to 10 LPM units. As an example, while children take at most
2 LPM, a 5 LPM device could simultaneously support two pediatric patients (even if one is
with hypoxic acute respiratory illness). On top of that, this 5 LPM unit could help adults.
Based on current WHO guidelines [3]: “An oxygen concentrator unit that delivers between
1 and 10 LPM would be the most versatile for surgical care applications.”.

5.1.2. Oxygen Concentration Output at Higher Altitudes

One of the considerations that receive more importance while supply chains are
stretched and often unable to appropriately respond to the demand for medical oxygen
is higher altitude (being scarcer in oxygen, e.g., oxygen levels from sea level at 20.9% O2
become 19.4% at 2000 m or even 18.6% at 3000 m). Although partial (O2) pressure in the
atmosphere is smaller at high altitudes, patients in the installations of these higher altitudes
may require higher volumetric flowrates for adequate medical oxygen quality than patients
at sea level, this being especially true for longer duration therapy. Beyond 2000 m (above
sea level), the performance requirements of devices at high temperatures and humidity
should not be as strict as those provided in early studies since the conditions rarely reach up
to extremes (i.e., 313 K and 95% RH simultaneously) at these altitudes because temperature
and humidity tend to decrease at higher altitudes [5]. Since two parameters play opposite
directions, modeling might be the only way to define a design’s final outcome or optimum.

5.1.3. Humidification

While it is always key to refer to clinical guidelines to decide if adding humidity to
medical gas, per WHO standards, is not required when O2 is utilized at minimal flow rates
(i.e., less than 2 L per minute), nonetheless, it may be necessary for higher O2 flowrate
needs. In this case, a special bottle (for example, for humidification) might be connected
between the MOC and the patient (i.e., in the breathing circuit). Humidifiers typically
have threads for direct attachment to concentrators with threaded outputs or require a
humidifier adapter for concentrators with oxygen-barbed connectors.

5.1.4. Recommendations

Our recommendations are two-fold, and they are tied to the ultimate goal of the
modeling process:

• First, we suggest considering a simulation-based optimization framework (see Section 4.1)
or high-fidelity modeling (see Section 4.3) to cope with the optimization-related chal-
lenges with varying specifications and operations and to achieve this with higher
accuracy. These two would allow for the best synthesis (design + operation) of
adsorption-based MOC systems but also require more computation time and resources.

• Second, the simpler first-principles-based model (see Section 4.2), with simplifications
and assumptions, makes it faster to generate a large volume of scenarios and, in
that way, could represent a better approach for a feasibility study dealing with many
options and designs. So, it would be the first choice for a quick turnaround process
evaluation, establishing a diversity of scenarios, or unfolding feasibility studies.

5.2. Cost Effectiveness

One aspect of this discussion is the operating costs of a MOC. For a PSA oxygen plant
to be cost-effective and feasible for quick implementation, especially in remote locations,
proper modeling of its implementation should be performed. So, time is essential for the
PSA plant to stay relevant and cost-effective. Therefore, modeling should be kept fast and
reliable. Especially in periods of emergency, a well-designed PSA process would be a more
feasible option, although it should be reserved for mid-size or small-size installations, since
it is more expensive for larger volumes of pure O2.
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Notably, there is convincing evidence that well-designed PSA-based units are a feasible
and cost-effective approach for administering O2 therapy, notably where oxygen cylinders
and piped systems are unsuitable or inaccessible (Duke et al. 2010, WHO 2020) [2,7]. This
relies on high-quality MOCs that can provide multiple patients with a viable but flexible
and reliable source of O2. While oxygen concentrators draw from the ambient air to deliver
constant, clean, and highly-concentrated O2, MOCs may operate for multiple years (e.g.,
up to five years) with minimal energy supply, maintenance, and upkeep needs. Therefore,
it is important to have them properly designed, if not optimized, to support a mix of
potential situations.

An exergy analysis in order to validate the conclusion is prominently featured in
Table 4. This exergy analysis allows us to compare different processes based on the second
law of thermodynamics by finding the exergy loss in the process units. Exergy analysis
represents a fundamental tool for the optimization of a process, individuating the unit
equipment characterized by lower exergy efficiency. The exergy of the process can be
evaluated by the following equation:

Exin/out = Min/out[(H − H0)− T0(S− S0)] (30)

where M [kmol/s] is the molar flowrate of the studied stream entering the unit equipment,
H is the molar enthalpy at P and T, H0 is the molar enthalpy at the pressure and temperature
of the equilibrium state (i.e., P = 1 atm and T = To = 298 K), S is the entropy at P and T, and
So is the entropy of the stream under equilibrium state conditions. Both molar enthalpies
are in [kJ/kmol], while the entropies are in [kJ/K·kmol].

Table 4. Variation in the operating pressure, compressor work, and energy consumption with feed
purity for MOCs at an operating temperature of 333 K.

Mole Fraction of
Oxygen in Feed Pressure Compressor

Work (Wc) Energy Consumption per O2 Nm3

kPa (kJ/mol) (kWh) (kJ)

0.21 390 41,120 0.509 1832

0.40 290 23,620 0.293 1055

0.50 250 18,430 0.228 821

0.60 220 14,600 0.181 652

0.70 190 11,640 0.144 518

The chemical exergy in the PSA section of the process is calculated as:

Exin/out = Min/out(Σn i xi exi + RTo Σni xi ln(xi)) (31)

where n is the number of chemical species, xi is the mole fraction of i species at inlet or
outlet, exi (kJ/kmol) is the standard chemical exergy of i species at P = 1 atm and To = 298 K,
and R is the gas constant.

The exergy associated with mechanical processes, such as fluid machinery (e.g., pumps
and compressors), is equal to the unit power, whereas the exergy related with a heat transfer
can be calculated using the Carnot efficiency. Note that the kinetic and potential exergy
are neglected since their order of magnitude is much lower than the chemical and process
exergy contributions. Tables 4 and 5 show the impact of operating conditions on the main
parameters involved in the exergy analysis. Table 4 outlines the impact of varying mole
faction of oxygen in the feed, while Table 5 put forward the input temperature influence on
Typical power consumption for different size of MOC.
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Table 5. Impact of operating conditions on power consumption and lost work (exergy destruction)
for MOCs.
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MOC Typical Power Consumption

5 LPM 10 LPM 20 LPM

(kPa) (kJ/kmol) (kJ/kmol) (W) (W) (W)

303 9.94 5.40 390 41,120 13,430 153 305 611

318 8.24 4.50 380 40,080 12,940 149 298 595

333 7.55 3.72 420 44,490 14,980 165 330 661

293 5.98 2.56 460 48,880 16,960 182 363 726

The exergy efficiency and destroyed exergy are calculated:

η =
Exprod
Ex f eed

= 1− Extot d
Ex f eed

(32)

Extot d = Ex f eed− Exprod = TAMB Sgen (33)

where Exprod and Exfeed are the total exergy produced from the system and the input (i.e.,
fed to the system), respectively, TAMB is the ambient temperature, and Sgen is the entropy
generated (in [kJ/K·kmol]). The destroyed exergy might then be divided into exergy lost
to irreversibility and waste. Figure 6 illustrates, with a “Grassman” diagram, the flow of
exergy in the system for operation at 390 kPa operating conditions (numbers in % of Input
exergy or Exfeed).

Table 6 illustrates the extent of the simulation conditions and some of the outcomes of
the complementary exergy and energy-related simulation by showing a typical calculation
of the backup energy requirement for a MOC.
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Table 6. Typical calculation of backup energy requirement for MOCs.

Variable Notes Example Value

(A) MOC consumption
[power in W]

Usually, 100 W and 600 W for small
units, contingent on the operating

conditions and sizes

600 W
(Corresponding to a 20 LPM unit

approximately—see exergy analysis)

(B) The approximate duration of a
typical power outage to support

[average in hours per day]
Varies from facility to facility 3 h

(C) Additional compensation for losses
[% relating to a reasonable reserve

according to the context]

Consider that electric energy storage
(such as Li batteries) will lose capacity
and necessitate replacement over time

10%

(D) Battery depth-of-discharge 10–70% depending on the
battery type 40%

Sample calculations

(E) Total concentrator backup energy
requirement per day A × B × (1 + C) 600 W × 3 h × (1 + 0.10) = 1980 Wh = 1.98 kWh

Total backup (electrical battery) energy
storage requirements E × (1/D) 1980 Wh × (1/0.4) = 3960 Wh = 4.95 kWh

Note: the total energy stored in a battery bank (in Wh) is equal to the total number of batteries × V × Ah. (Ah,
ampere hour; kWh, kilowatt hour; Wh, watt hour).

5.3. New Avenues

While we have focused primarily on optimizing the performance of flexible PSA
processes and defining the feasibility area of product specifications (output), the outcomes
can be easily expanded to innovative approaches and procedures. For example, with
simpler/faster simulation schemes, we could even imagine using such an adaptable PSA
device in a monitored environment (in which patients are continuously supervised for the
rate of change in the oxygen level in their blood) such that a microcontroller validates the
optimal control action policies to reconfigure the operation of the MOC to meet the patient’s
oxygen needs in real time. This microcontroller (with or without artificial intelligence) can
routinely reconfigure the MOC function in real time to meet different product (or therapy)
requirements. Importantly, any optimization modeling discussed here quickly shows how
variations in required O2 flow and purity can be accommodated with the use of flexible
MOCs. Even though a PSA unit is 0intended for assumed flow and purity levels, the
controller can make appropriate operating modifications to achieve a patient’s oxygen
specification requirements. The exergy analysis performed and reported in Section 5.2
outlines the potential for improvements in the process in reducing the exergy destroyed at
the compressor level, in the PSA process and in waste stream management (see Figure 6).

However, real-time O2 demand distribution requires developing a high-fidelity micro-
controller with a fast feedback time, a topic for another discussion. To make it effective and
accurate, the way forward would be an efficient translation into machine learning models
or even deep learning networks that might be better suited to simulate the complex PSA
process. Artificial intelligence might be needed to aim beyond the prediction of such a
dynamic process outcome to implement real-time adjustments of these outcomes.

6. Conclusions

The underlying research and this review of modeling approaches represent an attempt
to add to the undertaking of providing support for important medical devices. We bench-
marked three thermodynamic simulation models of the PSA process for medical oxygen
generation. The intent was for the analysis to unveil to what extent these models could
allow for the optimization and operational flexibility of PSA-based MOC systems. It is
well known that medical PSA oxygen generator plants can be a source of medical-grade
oxygen. However, they need to be designed accordingly and properly operated. Amongst
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the key optimization goals (or criteria) of improving or modeling MOCs, we can identify
the following:

(1) Enhancing adsorbent productivity;
(2) Increasing O2 recovery;
(3) Improving unit compactness and weight.

These specific criteria become even more important with adsorbents with high-level
selectivity (N2/O2), efficient cyclic procedures, and PSA-based devices. Furthermore,
optimization is even more important since these technologies have already undertaken
substantial reductions in CAPEX and OPEX (i.e., capital and operating expenditures). This
makes them more and more viable (per production unit) compared with cryogenic ASUs.
However, further modeling and optimization are required to implement adaptable systems
in specific and varying contexts, such as remote locations, energy-limited regions, and
low-resource areas.

Considering the issues with undertaking optimization of the PSA process and its
adaptable management, we suggest both a “simulation-based optimization framework”
(Section 4.1) and a “high-fidelity modeling” (Section 4.3). However, the simpler “First-
Principles-based model” (Section 4.2), with simplifications and assumptions, makes it faster
to generate a large volume of scenarios and, in that way, could represent a better approach
for a feasibility study dealing with many options and designs.

While we focused on optimizing MOC process performance, the analysis quickly
illustrates the possibilities, including innovative approaches. One example is to use flexible
PSA-based MOCs in the monitored environment to determine MOC optimal control to
meet the patient’s oxygen requirements in real-time. The effects of design and operating
conditions shall be mapped to help the designers and engineers map outlet product specifi-
cations and production effectiveness. To make it practical and accurate, the way forward
would be an efficient translation into machine learning models or even deep learning
networks that might be better suited to simulate the complex PSA process. Continuing
research is needed, and additional steps might include obtaining faster and more accurate
real-time modeling and integrating artificial intelligence into the mix.

As a concluding remark, PSA plants can be turn-key units when properly optimized,
e.g., using any of the three tools discussed in this article. However, optimization is not the
only required item in implementing a PSA O2 plant. For example, the operating staff are
critical, and maintaining them requires specialized training. In addition, strict maintenance
schedules are needed to prevent malfunctions, while a reliable supply chain is required to
meet any additional needs.
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