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Analysis of High-Temperature Superconducting Current Leads:
Multiple Solutions, Thermal Runaway, and Protection
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Institute of Thermal Research, 2 Kanigos Str., 106 77 Athens, Greece; rkrik@uth.gr

Abstract: The multiple steady states of Ag/Bi2212-composite high-Tc superconducting leads mod-
eling current delivery to a superconducting magnet have been numerically calculated. The model
is based on longitudinal conduction combined with convective heat dissipation from a helium gas
stream along the conductor. Because of the nonlinearities introduced by the voltage–current relation-
ship and the temperature-dependent material properties, up to three solutions have been identified
within the range of parameters considered. Linear stability analysis reveals that two of them are
stable, i.e., the superconducting and the normal branches, while the remaining one is unstable. The
limit points separating the stable from the unstable steady states form the blow-up threshold, beyond
which any further increase in the operating current results in a thermal runway. Interesting findings
are that for low filling ratios no bounded solution exists when the length of the lead exceeds the
lower limit point, while very high maximum temperatures may be encountered along the normal
solution branch. The effect of various parameters such as the conduction–convection parameter,
the applied current, and the reduction in coolant flow (LOFA) on the bifurcation structure and
their stabilization effect on the blow-up threshold are also evaluated. Apart from the steady and
unsteady operating modes, the multiplicity analysis is also used to identify the range of the design
and operating variables where safe operation, with a sufficient margin from the onset of instabilities,
may be established, thus facilitating the protection of the leads and the device connected to it.

Keywords: current leads; high temperature superconductors; LOFA; thermal runaway; multiplicity

1. Introduction

Since the breakthrough discovery of Bednorz and Müller in 1986 [1], high-temperature
superconductors (HTSs) have been extensively used in particle accelerators, tokamaks, and
specialized high-field applications. The complexity and the development costs for such
projects call for multi-national ventures across the globe [2–10]. An extensive summary of
the active HTS current lead projects worldwide may be found in the work of Diev et al. [10].
For the current leads, in particular, HTSs offer considerable economic advantages compared
to conventional (metallic) ones, since a substantial reduction in the required cooling power
and thereby in the corresponding operating costs may be achieved [11]. However, the
beneficial absence of resistive losses is inevitably associated with electro-thermal instabilities,
triggering not only transition to the normal state (quench) but even catastrophic thermal
runaway in certain cases. To this end, a significant effort is underway to understand the
underlying mechanisms responsible for the degradation of the current-carrying capacity
of superconductors and to design devices for their effective protection and control [12–15].
Such a promising protective device that takes full advantage of the bistability is the HTS-
based fault current limiter in its various configurations (resistive, inductive) which, in the
superconducting state, introduces no additional resistive losses to the network, while during
fault conditions the transition to normal state increases the line resistance, thus limiting the
fault current [16–22].

The multiple steady states in metallic (copper) current leads stemming from the bal-
ance of the nonlinear Joule heating by conduction and convection have been demonstrated
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both experimentally and theoretically [23–26]. Two steady states exist, one stable and one
unstable, separated by a limit point. In case this limit is exceeded, no bounded solution
exists, resulting in thermal runaway (temperature blow-up). On the other hand, the advan-
tages of composite current leads, made of an HTS and a normal metal conductor, over the
conventional ones, became apparent early (Mumford [27]). Consequently, the existence and
the implications of the multiple steady states emanating from the nonlinear electro-thermal
properties of the HTS, together with the overall design, performance, and optimization,
have been addressed in several studies [28–37]. The aim of the present study is to numeri-
cally explore the multiplicity and blow-up (thermal runaway) features of composite HTS
(Ag/Bi2212) current leads operating between the liquid nitrogen temperature at the hot end
and the liquid helium temperature at the cold end. Up to three steady states have also been
identified, within the range of variables and parameters considered, for conduction and
vapor-cooled leads. The solution structure is analyzed with sufficient bifurcation diagrams
describing the effects of the filling ratio, the conduction–convection parameter, and the
applied current density on the multiplicity regions and the blow-up threshold. Apart from
the steady and unsteady operating modes, the multiplicity analysis is also used to identify
the range of the design and operating variables where a safe operation, with a sufficient
margin from the onset of instabilities, may be established, thus facilitating the protection of
the leads and the device connected to it, be that a superconducting magnet or an HTS-based
superconducting fault current limiter.

2. Analysis

Consider a Bi-based composite high-Tc conductor (Ag/Bi2212) with a constant cross
section A, length L, thermal conductivity K, electric resistivity ρ̂, and specific heat C,
schematically depicted in Figure 1. The warm end is maintained at the liquid nitrogen
temperature, TH = 77K, and the cold end at the liquid helium temperature TL = 4.2K.
A helium gas stream of constant mass flow rate

.
m is used to cool the conductor along

the longitudinal direction X. Assuming that the conductor is thermally thin (i.e., the Biot
number is much less than unity), the transverse temperature gradients may be neglected
and the energy balance for the lead and the cooling gas stream takes the form (Krikkis [26]):

C(T)A
∂T
∂t

=
∂

∂X

[
K(T)A

∂T
∂X

]
− HP(T − Tg) + EJA (1)

[C(T)A]g
∂Tg

∂t
=

.
mcp(Tg)

∂Tg

∂X
− HP(T − Tg) (2)

where T is the conductor’s temperature, Cg is the gas heat capacity, Tg its temperature, H
is the convective heat transfer coefficient, E is the electric field intensity, and J is the total
transport current density. The boundary conditions for the cold and hot ends are:

T(0) = TL, T(L) = TH , Tg(0) = TgL (3)

The total current density is equal to the sum of currents in the superconducting core Js
and the matrix Jm, according to the following relationship:

J = η Js + (1− η)Jm (4)

For the Ag/Bi2212 composite conductor, the voltage–current characteristic curve is de-
scribed by a power-law equation, considering current sharing between the superconductor
and the metal (Ag) matrix connected in parallel:

E = Ec

[
Js

Jc(T, B)

]n
= Jmρ̂m(T, B) (5)

where Ec is the voltage criterion, n is the power-law exponent, also known as the n-value,
and ρ̂m is the matrix resistivity.
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where 𝐸  is the voltage criterion, n is the power-law exponent, also known as the n-value, 
and 𝜌  is the matrix resistivity. 

 
Figure 1. Geometry and energy balance on the current leads. 
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In the above equations, α, β, γ, χ, and 𝐵  are fitting parameters, 𝑇  is the critical tem-
perature of the superconductor in the zero magnetic field, and 𝐽  and 𝐵  are the approx-
imation of the critical current density and the critical magnetic field at zero temperature, 
respectively. The set of parameters adopted in the present study is the same as that used 
by Romanovskii and Watanabe [41] and is summarized in Table 1. 

Table 1. Fitting parameters used in the critical current density curve, Equation (6), of Ag/Bi2212. 𝐵  1.0 [T] 𝐵  465.5 [T] 𝐽  5.9 × 108 [A/m2] 𝑇  87.1 [K] 
α 10.33 [–] 
β 6.76 [–] 
γ 1.73 [–] 
χ 0.27 [–] 

Figure 1. Geometry and energy balance on the current leads.

2.1. Material Properties

The critical current density of Ab/Bi2212 is described by a relationship proposed
by Bottura [38] which is based on the results presented by van der Laan et al. [39] and
Wesche [40]:

Jc(T, B) = J0

[
1− T

Tc

]γ

f (T, B) (6)

f (T, B) = (1− χ)
B0

B0 + B
+ χ exp

[
− βB

Bc0 exp(−αT/Tc)

]
(7)

In the above equations, α, β, γ, χ, and B0 are fitting parameters, Tc is the critical
temperature of the superconductor in the zero magnetic field, and J0 and Bc0 are the approx-
imation of the critical current density and the critical magnetic field at zero temperature,
respectively. The set of parameters adopted in the present study is the same as that used by
Romanovskii and Watanabe [41] and is summarized in Table 1.

Table 1. Fitting parameters used in the critical current density curve, Equation (6), of Ag/Bi2212.

B0 1.0 [T]
Bc0 465.5 [T]
J0 5.9 × 108 [A/m2]
Tc 87.1 [K]
α 10.33 [–]
β 6.76 [–]
γ 1.73 [–]
χ 0.27 [–]

The thermo-electrical properties of the composite conductor were estimated with the
aid of the formulas developed by Dresner [42] and Lim and Iwasa [43]. More specifically,
the temperature dependence of silver’s specific heat was approximated with a power-law fit
between the Debye and the Dulong–Petit limits. The electric resistivity of the silver matrix
was calculated according to Matthiesen’s rule as the sum of the temperature-independent
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residual resistivity and the temperature-dependent phonon resistivity according to the
Bloch–Grüneisen theory. The former is calculated using the residual resistivity ratio (RRR):

RRR =
ρ̂m(273K)

ρ̂m(4.2K)
(8)

where ρ̂m(273K) = 1.48× 10−8 Ωm.

2.2. The Electro-Thermal Problem in Dimensionless Form

Dimensionless variables are introduced as below:

x = X/L, Θ = T/∆Tref, Θg = Tg/∆Tref, τ = αt/L2

h = H/Href, k = K/Kref, c = C/Cref, j = J/Jref, e = E/Eref
(9)

The partial differential equations describing the temperature distribution of the con-
ductor and the cooling gas stream take the form:

c
∂Θ
∂τ

=
∂

∂x

(
k

∂Θ
∂x

)
− u2[h(Θ−Θg) + Gej

]
(10)

δ
∂Θg

∂τ
= u2h(Θ−Θg)− F

∂Θg

∂x
(11)

where δ = (AC)g/(ACref) is a time-scaling factor. Three important dimensionless numbers
appear in the above relationships, namely, the generation number G, the flow number F,
and the conduction–convection parameter u. The generation number is defined as:

G =

(
A
P

)(
EJ
HT

)
ref

(12)

Physically, it provides a measure of the ratio of the Joule heating to the heat dissipated
by conduction. The flow number is defined as:

F =

.
mcpL
Kref A

=

.
mcp∆Tref

(K∆T)ref A/L
(13)

This measures the ratio of the convective to conductive cooling, whereas the conduction–
convection parameter

u2 =
L2

(A/P)

(
H
K

)
ref

(14)

is extensively used in extended surfaces and conjugate heat transfer problems [44–46],
and strongly affects the solution and the multiplicity structure. As will become evident
in the next sections, all three numbers have a profound effect on the bifurcation structure.
Moreover, utilizing the following reference values, Eref = Ec = 10−6 [V/m], Jref = J0 =
5.9× 108 [Am−2], Tref = Tc = 87.1 [K], and Href = 10−3 [Wm−2 K−1], the voltage–current
relationship in Equation (5) may be recast as:

e =
[

js
jc(Θ, B)

]n
= jmρm(Θ, B) (15)

j = η js + (1− η)jm (16)

where ρ̂ref = Eref/Jref = Ec/J0. Under steady state conditions the partial differential Equa-
tions (10) and (11) reduce to a system of ordinary differential equations for the composite
conductor and gas temperatures Θ(x) and Θg(x):

(kΘ′)′ − u2[h(Θ−Θg) + Gej
]
= 0 (17)
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FΘ′g − u2h(Θ−Θg) = 0 (18)

where Θ′ and Θ′g denote differentiation with respect to x. The boundary conditions at the
cold and warm ends are:

Θ(0) = ΘL, Θ(1) = ΘH , Θg(0) = ΘgL (19)

2.3. Stability

As will be shown in Section 3, Equations (17) and (18) have three solutions, and an
assessment of the stability is essential since only stable solutions are physically realizable.
The stability of a certain steady state Θss(x), Θgss(x) to small perturbations, ϑ(x), ψ(x), i.e.,

Θ(x, τ) = Θss(x) + ϑ(x) exp(λτ) (20)

Θg(x, τ) = Θgss(x) + ψ(x) exp(λτ) (21)

will be determined by the eigenvalues λ of the corresponding linearized problem with
respect to the steady state. Substituting Equations (20) and (21) into Equations (10) and (11)
and considering a constant heat transfer coefficient (h = 1) for simplicity, the eigenvalue
problem describing the stability of the steady states for the lead and the gas read:(

kϑ′
)′
+ kΘΘ′ssϑ′ +

(
kΘΘΘ′2ss + kΘΘ′′ ss − cλ

)
ϑ− u2[(ϑ− ψ)− GeΘ jϑ] = 0 (22)

Fψ′ + δλψ− u2(ϑ− ψ) = 0 (23)

where c = c(Θss), k = k(Θss), kΘ = (∂k/∂Θ)Θss(x), kΘΘ = (∂2k/∂Θ
2
)Θss(x), eΘ =

(∂e/∂Θ)Θss(x), and primes denote differentiation with respect to x. The corresponding
boundary conditions are

ϑ(0) = ϑ(1) = ψ(0) = 0 (24)

If all eigenvalues are negative then the steady state solution under consideration is
stable (and denoted with a continuous line on the bifurcation diagrams). If, on the other
hand, at least one eigenvalue is positive, the steady state solution is unstable (denoted
with a dashed line). For the numerical solution of Equations (22) and (23), the steady state
solutions Θss(x) and Θgss(x) must be available, so Equations (17) and (18) are attached to
Equations (22) and (23), forming an extended boundary value problem. The eigenfunctions
were normalized using the condition ϑ′(0) = 1.

3. Results and Discussion

The numerical methods and the computer code developed in [26] were applied to the
solution of the two-point boundary value problem described by Equations (17)–(19). The
same algorithms were also utilized for the numerical continuation and the stability analysis
(eigenvalues and eigenfunctions). Let us consider first the limiting case where F � 1, that
is the gas coolant is in abundance, so Θ′g → 0 and the gas temperature remains constant
along the composite conductor, i.e., Θg = ΘL. Consequently, Equation (17) is reduced to

(kΘ′)′ − u2[h(Θ−ΘL) + Gej] = 0 (25)

As can be seen from the above equation, the conductor temperature Θ(x) will be
a function of the conduction–convection parameter u and the applied current j. It will
additionally depend on the generation number G, the residual resistivity ratio RRR, the
external magnetic field, and the material properties. Because of the nonlinearities involved
in Equation (25), the corresponding bifurcation diagram Θ′L versus u consists of multivalued
curves, which are depicted in Figure 2 for a filling ratio of η = 0.1 and different current
densities. More specifically, for a given value of the conduction–convection parameter,
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up to three solutions exist bounded by two limit points, shown as (•) and denoted with
different colors for clarity, which are the roots of the equation(

du/dΘ′L
)

j = 0 (26)

and denoted as
[
uu

LP, (Θ′L)
u
LP

]
for the upper one and

[
ul

LP, (Θ′L)
l
LP

]
for the lower one, where

(Θ′L)
u
LP > (Θ′L)

l
LP. Two steady states are stable, indicated with a continuous curve, and

one is unstable, marked with a dashed line. The source of the multiplicity is the nonlinear
voltage–current relationship in Equation (5). To obtain a geometrical perspective of the
multiplicity, the solution structure is schematically represented in Figure 3. Figure 2 is
quite revealing and certain features are worth pointing out. For low values of the current
density, the Joule heating is negligible and all solutions coincide on the stable branch
denoted as superconducting. As the current density increases, a series of limit points
appear on the right, for high values of the conduction–convection parameter, indicating
the existence of multiple solutions. Interestingly, for a lead length u > uu

LP, that is to the
limit point corresponding to the lower value of Θ′L, no feasible solution exists, i.e., within
the temperature operating limits imposed by the materials. Now looking at the left side
of Figure 2, for u less than approximately 0.2, a unique stable solution exists, namely, the
superconducting one. As the length of the lead increases, the limit point corresponding to
the higher value of the cold end temperature gradient is encountered and Equation (25)
provides three solutions. However, as shown in Figure 4, when the filling ratio increases,
the lower limit point shifts to lower cold end temperature gradients and the boundary of the
multiplicity region is practically determined by the limit point corresponding to the higher
values of Θ′L. The temperature profiles corresponding to the multiplicity region described
above are shown in Figure 5 for u = 0.8 and u = 0.9, and in Figure 6 for u = 2 and u = 3,
respectively, both for a filling ratio of η = 0.2. A lower stable temperature distribution
corresponds to the superconducting state where the Joule heating is negligible, a balance
between conduction and cooling by convection is being established, and the temperature
is below the critical one. The temperature gradient remains positive throughout the lead
length, that is, the solution is monotonic, indicating that the heat flows from the hot end to
the cold one. For the unstable branch, the conductor is in the so-called mixed state, as in
certain segments the critical temperature is exceeded and the conductor is in the normal
state. The temperature profile is non monotonic. The phenomenon is more pronounced in
the upper stable solution, where the conductor is mostly in the normal state, especially for
high values of the conduction–convection parameter. A salient feature is that the maximum
temperature encountered becomes extremely high as u increases since the curves in Figure 4
above the upper limit point become very steep because of the imposed boundary conditions
in Equation (19). This problem was addressed by Dresner [14] (paragraphs 10.3 to 10.8,29),
where under certain simplifying assumptions the upper limit point may be estimated
analytically. In essence, temperatures up to 2900 K are predicted. Indeed, maximum
temperatures of a similar magnitude are predicted from the present model, as shown in
Figure 7, where the curves of constant current density become very steep and almost vertical.
Although values of Θmax up to 30 (~2600 K) are plotted, to test the code for smoothness
and continuity, the bifurcation calculations were carried out up to Θmax = 40. It looks
that another limit point may exist, as the zero-dimensional calculations of Romanovskii
and Watanabe [41] show, but since the corresponding temperatures are excessively high,
the topic is no longer pursued. Sample stability results are summarized in Table 2, where
several eigenvalues were calculated for various combinations of the conduction–convection
parameter and the current density. Negative eigenvalues are associated with the stable
superconducting and normal branches, whereas the positive eigenvalue is associated with
the instability of the intermediate branch of the solutions. Since each curve exhibits two
limit points that define the multiplicity region, as u approaches either limit point, defined
by Equation (26), the eigenvalues of the stable and the unstable solutions tend to zero. It is
worth pointing out that the destabilizing effect of u on the superconducting steady states is
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also apparent from the absolute magnitude of the minimum eigenvalue which determines
the rate of transient response to disturbances. Their ratio λmin(u = 0.9)/λmin(u = 3) is
approximately 6:1, indicating that longer leads are easier to destabilize.
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Figure 5. Temperature profiles for u = 0.8 and 0.9, F � 1.

Now, using a different parameterization, let us project the solution on the (j, Θ′L) plane
along a curve with constant u, as presented in Figure 8. The bifurcation curves have an “S”
form exhibiting two limit points determined by the roots of the equation(

dj/dΘ′L
)

u = 0 (27)

as they separate the stable from the unstable solutions. The lower stable solutions corre-
spond to the superconducting branch, whereas the upper ones correspond to the normal
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branch. As the conduction–convection parameter increases, the limit point on the left-
hand side shifts to lower current densities; thus, cryostability is destroyed and bistability
(superconducting-normal) is encountered as the current increases. It is important to men-
tion that beyond the limit point on the right-hand side in Figure 8, that is, for j > jl

LP, no
solution exists. This is of paramount practical importance because if the operating current
during a transient or a fault (i.e., LOFA) exceeds the limit point, Equation (25) can exhibit
unbounded growth in finite time, that is, thermal runaway or temperature blow-up. In
other words, the existence of the jl

LP establishes a safety margin between the operating
current and the maximum permissible (or safe) current beyond which thermal runaway is
encountered. As an example, the safety margin for a design with u = 0.6 and an operating
current density j = 3× 10−3 is shown in Figure 8. Although the multiplicity and the
solution structure for copper current leads is different since only two solutions exist, the
thermal runaway phenomenon is common to both composite and metallic conductors, as
for example it is shown in [26]. Thermal runaway due to Joule heating is also observed
when the composite or the metallic wire is immersed in a boiling liquid pool [47], although
the solution structure in this case is far more complicated because of the nonlinear and
nonmonotonic boiling curve. Hot spot curves have been also calculated by Wesche and
Fuchs [30] in their Figure 6, simulating a complete loss of coolant for composite HTS leads
(Bi-2212 bulk material and Bi-2223/Ag tapes). In general, similar behavior is encountered
in superconducting devices, where during several experiments it was observed that the
quenching to a normal state of current-carrying high-temperature superconducting wires,
tapes, or films was followed by the sample local destruction due to overheating (Pfoten-
hauer and Lawrence [48], Vysotsky et al. [49], Romanovskii and Watanabe [50]), whilst the
most well-known is perhaps the one associated with the LHC event [51,52]. Furthermore,
the inherent difficulties in the protection of HTS magnets from abrupt thermal runaways
have been underscored by Maeda and Yanagisawa [53]. Hence, thermal runaway is a com-
mon problem for the components of the superconducting magnet, including the coil and
both the HTS and the metallic parts of the current lead [47]. Therefore, the line connecting
the limit points is also the threshold for thermal runaway (blow-up threshold) and should
be taken into consideration when designing protective apparatus for the superconducting
composite. As suggested in Figure 9, the same high maximum temperatures are expected
along the normal branch for a fixed conduction–convection parameter.
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Figure 7. Effect of u on maximum temperature along the normal branch, 𝐹 ≫ 1. 

Now, using a different parameterization, let us project the solution on the (𝑗, 𝛩 ) 
plane along a curve with constant u, as presented in Figure 8. The bifurcation curves have 
an “S” form exhibiting two limit points determined by the roots of the equation 

( ) 0L u
dj d ′Θ =  (27)

as they separate the stable from the unstable solutions. The lower stable solutions corre-
spond to the superconducting branch, whereas the upper ones correspond to the normal 
branch. As the conduction–convection parameter increases, the limit point on the left-
hand side shifts to lower current densities; thus, cryostability is destroyed and bistability 
(superconducting-normal) is encountered as the current increases. It is important to men-
tion that beyond the limit point on the right-hand side in Figure 8, that is, for 𝑗 > 𝑗LP, no 
solution exists. This is of paramount practical importance because if the operating current 
during a transient or a fault (i.e., LOFA) exceeds the limit point, Equation (25) can exhibit 
unbounded growth in finite time, that is, thermal runaway or temperature blow-up. In 
other words, the existence of the 𝑗LP establishes a safety margin between the operating 
current and the maximum permissible (or safe) current beyond which thermal runaway 
is encountered. As an example, the safety margin for a design with 𝑢 = 0.6 and an oper-
ating current density 𝑗 = 3 × 10  is shown in Figure 8. Although the multiplicity and 
the solution structure for copper current leads is different since only two solutions exist, 
the thermal runaway phenomenon is common to both composite and metallic conductors, 
as for example it is shown in [26]. Thermal runaway due to Joule heating is also observed 
when the composite or the metallic wire is immersed in a boiling liquid pool [47], although 
the solution structure in this case is far more complicated because of the nonlinear and 
nonmonotonic boiling curve. Hot spot curves have been also calculated by Wesche and 
Fuchs [30] in their Figure 6, simulating a complete loss of coolant for composite HTS leads 
(Bi-2212 bulk material and Bi-2223/Ag tapes). In general, similar behavior is encountered 
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Table 2. Eigenvalues λi for the steady states with RRR = 10 and F � 1.

u = 3, j = 0.6×10−3, η = 0.20 u = 0.9, j = 1.5×10−3, η = 0.10
i Stable (sc) Unstable (ss) Stable (n) Stable (sc) Unstable (ss) Stable (n)

1 −2.0966 +5.1103 −2.5046 −13.1606 +6.3686 −2.6312
2 −5.3865 −3.4348 −3.4076 −49.6442 −43.5204 −38.2332
3 −10.8696 −9.5216 −8.7940 −110.4559 −95.2391 −98.6322
4 −18.5460 −16.1453 −16.4449 −195.6032 −185.5839 −184.0936
5 −28.4155 −26.6921 −26.3705 −305.0951 −291.8693 −294.5584

J 2023, 6 312 
 

in superconducting devices, where during several experiments it was observed that the 
quenching to a normal state of current-carrying high-temperature superconducting wires, 
tapes, or films was followed by the sample local destruction due to overheating (Pfoten-
hauer and Lawrence [48], Vysotsky et al. [49], Romanovskii and Watanabe [50]), whilst 
the most well-known is perhaps the one associated with the LHC event [51,52]. Further-
more, the inherent difficulties in the protection of HTS magnets from abrupt thermal run-
aways have been underscored by Maeda and Yanagisawa [53]. Hence, thermal runaway 
is a common problem for the components of the superconducting magnet, including the 
coil and both the HTS and the metallic parts of the current lead [47]. Therefore, the line 
connecting the limit points is also the threshold for thermal runaway (blow-up threshold) 
and should be taken into consideration when designing protective apparatus for the su-
perconducting composite. As suggested in Figure 9, the same high maximum tempera-
tures are expected along the normal branch for a fixed conduction–convection parameter. 

 
Figure 8. Bifurcation diagrams in the (𝑗, 𝛩 ) plane for 𝜂 = 0.1 and 𝐹 ≫ 1. Figure 8. Bifurcation diagrams in the

(
j, Θ′L

)
plane for η = 0.1 and F � 1.
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Figure 9. Effect of j on maximum temperature along the normal branch, 𝐹 ≫ 1. 

The effects of the coolant flow reduction for a fixed current density are shown in Fig-
ure 10. This is the most general case since the variations in the gas temperature along the 
conductor are taken into consideration and the bifurcation analysis is carried out for the 
system of Equations (17) and (18). The most affected branch is the superconducting 
branch, especially at higher CCP values, where, as the flow number F gradually reduces, 
approaching the conditions of LOFA, the cold end temperature gradient substantially in-
creases and the heat leakage to the cryostat can no longer be controlled through the length 
of the leads. However, leads with 1u <  are practically unaffected, since the length of the 
conductor is not enough to enable sufficient heat exchange between the lead and the cool-
ing gas. The same can be also seen in Figure 11, where the curves along a constant CCP 
( 1)u =  are practically unaffected by the variations in the flow number. 

 
Figure 10. Effect of F on the bifurcation diagrams on the (𝑢, 𝛩 ) plane. 
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The effects of the coolant flow reduction for a fixed current density are shown in
Figure 10. This is the most general case since the variations in the gas temperature along
the conductor are taken into consideration and the bifurcation analysis is carried out for
the system of Equations (17) and (18). The most affected branch is the superconducting
branch, especially at higher CCP values, where, as the flow number F gradually reduces,
approaching the conditions of LOFA, the cold end temperature gradient substantially
increases and the heat leakage to the cryostat can no longer be controlled through the
length of the leads. However, leads with u < 1 are practically unaffected, since the length
of the conductor is not enough to enable sufficient heat exchange between the lead and the
cooling gas. The same can be also seen in Figure 11, where the curves along a constant CCP
(u = 1) are practically unaffected by the variations in the flow number.
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Figure 11. Effect of F on the bifurcation diagrams on the (𝑗, 𝛩 ) plane. 𝐹 = 10 , 10, 5 and 1. 

4. Conclusions 
A numerical bifurcation analysis was carried out for Ag/Bi2212 HTS composite cur-

rent leads operating between liquid nitrogen temperature at the hot end and liquid helium 
temperature at the cold end. A one-dimensional longitudinal conduction–convection 
model was set up and three solutions were calculated: two were stable, of which one was 
superconducting and one was normal, and one was unstable. A linear stability analysis 
was carried out for the identification of stable and unstable steady states. Interesting find-
ings may be summarized as below: 
• For a specified current density and low filling ratios (𝜂 ∼ 0.1) , no solution exists 

when u exceeds the lower limit point, i.e., 𝑢 > 𝑢LP (Figure 2). 
• The upper limit point 𝑢LP where the multiplicity region begins is a function of the 

applied current (Figure 2). 
• Very high temperatures are predicted along the normal branch of steady states. The 

maximum temperature is a very sensitive function of the conduction–convection pa-
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• Similar to the case of the metallic current leads, a temperature blow-up threshold 
exists defined by the lower limit points, which depend on the applied current and 
the conduction–convection parameter, beyond which thermal runaway is encoun-
tered (Figure 8). 
The very existence of multiple solutions, and especially the lower limit points 𝑢LP 

and 𝑗LP  associated with them, has a profound practical significance. From the design 
point of view, on one hand the higher the CCP, the lower the temperature gradient on the 
cold side. On the other hand, as the CCP increases, the safety margin towards 𝑢LP de-
creases and the current lead is more susceptible to instabilities. This is similar to the case 
from the operating point of view, where the high value of the applied current will result 
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4. Conclusions

A numerical bifurcation analysis was carried out for Ag/Bi2212 HTS composite current
leads operating between liquid nitrogen temperature at the hot end and liquid helium
temperature at the cold end. A one-dimensional longitudinal conduction–convection
model was set up and three solutions were calculated: two were stable, of which one was
superconducting and one was normal, and one was unstable. A linear stability analysis was
carried out for the identification of stable and unstable steady states. Interesting findings
may be summarized as below:

• For a specified current density and low filling ratios (η ∼ 0.1), no solution exists when
u exceeds the lower limit point, i.e., u > ul

LP (Figure 2).
• The upper limit point uu

LP where the multiplicity region begins is a function of the
applied current (Figure 2).

• Very high temperatures are predicted along the normal branch of steady states. The
maximum temperature is a very sensitive function of the conduction–convection
parameter and the applied current (Figures 7 and 9).

• Similar to the case of the metallic current leads, a temperature blow-up thresh-
old exists defined by the lower limit points, which depend on the applied cur-
rent and the conduction–convection parameter, beyond which thermal runaway is
encountered (Figure 8).

The very existence of multiple solutions, and especially the lower limit points ul
LP

and jl
LP associated with them, has a profound practical significance. From the design point

of view, on one hand the higher the CCP, the lower the temperature gradient on the cold
side. On the other hand, as the CCP increases, the safety margin towards ul

LP decreases
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and the current lead is more susceptible to instabilities. This is similar to the case from
the operating point of view, where the high value of the applied current will result in the
reduction in the safety margin towards jlLP. Therefore, a complete safety analysis of HTS
current leads, apart from the temperature monitoring sensors connected with the protecting
devices, should also take into account the design and operating margins towards ul

LP and
jlLP, as demonstrated in the present study.
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Nomenclature

A conductor cross-sectional area [m2]
B magnetic field [T]

c
(C/Cref) reduced specific heat
capacity

[–]

C volumetric heat capacity [J/(m3 K)]
E electric field intensity [V/m]

Ec
voltage criterion in Equation
(5)

[V/m]

F flow number, Equation (13) [–]

G
generation number, Equation
(12)

[–]

h
(H/Href) reduced heat
transfer coefficient

[–]

H heat transfer coefficient [W/(m2 K)]
J current density [A/m2]

k
(K/Kref) reduced thermal
conductivity

[–]

K thermal conductivity [W/(mK)]
L conductor length [m]
.

m coolant mass flow rate [kg/s]
n power-law exponent (n-value) [–]
P wetted perimeter [m]
RRR residual resistivity ratio [–]
t time [sec]
T temperature [K]

u
conduction–convection
parameter (CCP),
Equation (14)

[–]

x
(X/L) dimensionless distance
along conductor

[–]

X distance along conductor [m]
Greek Symbols
α thermal diffusivity [m2/s]

δ
(AC)g/(ACref) time scaling
factor

[–]

η filling ratio [–]

Θ
(T/Tref) dimensionless
temperature

[–]

λ eigenvalue [–]

ρ
(ρ̂/ρ̂ref) reduced electric
resistivity

[–]

ρ̂ electric resistivity [Ωm]
τ (αt/L2) dimensionless time [–]
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Subscripts
c critical property
g gas stream
H warm end (x = 1)
L cold end (x = 0)
LP reference to limit points
m matrix
ref reference value
s superconductor
ss reference to steady state
Superscripts
(′) derivative with respect to x
Abbreviations

CCP
conduction–convection
parameter

HTS
high-temperature
superconductor

LHC Large Hadron Collider
LOFA loss of flow accident
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