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Abstract: The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has generated a renewed
interest in the larger family of Coronaviridae, which causes a variety of different respiratory infections
in a variety of different hosts. Understanding the mechanisms behind the ability of a family of viruses
to spill over into different hosts is an ongoing study. In this work, we studied the relationship between
specific amino acid sites and the solvent accessibility of the surface (or spike) protein of different
Coronaviridae. Since host specificity hinges on the portion(s) of the protein that interfaces with the
host cell membrane, there could be a relationship between information gain in specific amino acid
sites and solvent accessibility. We found a connection between sites with high information gain and
solvent accessibility within several major subgenera of Coronaviridae. Such a connection could be
used to study other lesser-known families of viruses, which is desirable because information gain is
much easier to compute when the number of sequences is large, as we show. Finally, we produced a
visualization of the sequences within each major subgenus and discussed several regions of interest,
as well as focused on some pairs of Coronaviridae hosts of interest.
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1. Introduction

The viruses of the family Coronaviridae are so-called because of their peculiar crown-
shaped surface (or spike) protein—see Figure 1 for the genomic structure of a coronavirus,
which includes the spike region. Coronaviruses cause a variety of known respiratory
infections [1], including SARS (SARS-CoV), Middle-Eastern Respiratory Syndrome (MERS-
CoV), and, of course, SARS-CoV-2, which is responsible for the ongoing COVID-19 global
pandemic. Many of the Coronaviridae affect a wide variety of hosts, and often spill over to
other hosts [2]. SARS-CoV was believed to have jumped to humans via palm civets and
horseshoe bats [3], MERS-CoV from dromedary camels [4], whereas SARS-CoV-2 likely
originated from bats [5].

Figure 1. The genome of a coronavirus ranges from 26–32 kb in length [6], and codes for two non-
structural and four structural proteins. The non-structural proteins are coded by ORF1ab, which
contains the RNA-dependent RNA polymerase region (RdRp). The structural proteins include spike
(S), envelope (E), membrane (M), and nucleocapsid (N). The S gene region encodes the spike protein,
which is responsible for attaching the virus to receptors on the host cell membrane.

Our understanding of the mechanisms that could allow different viruses to spill
over from one host to another is continuously updating as the viruses evolve and we
gather more sequencing data. Here, we considered information gain (IG) [7] for explaining
host specificity, something that is convenient in light of the constant accumulation of new
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sequencing data, since the IG computation only requires a multiple alignment of a set of
sequences.

Definition 1 (Information Gain). Information gain is a measure of how much information a
feature provides about a target class [7]. Given a protein sequence, the IG of an amino acid site in
terms of a host is the following:

IG(host, site) = H(host)− H(host | site) (1)

where
H(C) = ∑

i∈C
−pi log pi

where H(C) is the entropy of category C, the notation C represents the host/site, and pi is the
probability of element i of category C.

Intuitively, the information gain of a given amino acid site is how much information
this site provides for deciding the host, e.g., whether the sequence is of a virus that infects
bats, humans, or camels. Such a measure, while simple to compute, has the potential to
capture important trends when the number of sequences analyzed is sufficiently large.

Since it is the portion(s) of the surface protein responsible for fusing to the host
cell membrane that determines host specificity [8], one might expect information gain to
be enriched for sites corresponding to solvent-exposed extracellular residues. For this
reason, we performed solvent accessibility prediction for sequences in several different
major subgenera (Sarbecovirus, Merbecovirus, etc.), and then demonstrated higher IG in
solvent-exposed sites on the spike protein sequence.

The Coronaviridae are a family of enveloped, positive-sense single-stranded RNA
viruses that can cause respiratory [9], gastrointestinal [10], liver [11], and neurological
diseases [12] in humans and animals. The viral envelope, which is composed of a lipid
bi-layer, is essential for survival and replication [13], as it protects the viral genome and
mediates interactions with host cells. The solvent exposure of the virus determines the
stability of the viral envelope and affects its interactions with host cells and the environ-
ment [14]. The spike proteins on the surface of the envelope are particularly sensitive
to solvent exposure [15], and changes in solvent exposure can cause structural changes
in these proteins, which can affect their function [16]. Therefore, the solvent exposure
of the Coronaviridae is an important factor to consider when studying the biology and
pathogenesis of these viruses. The advantages of studying solvent exposure in the spike
protein of Coronaviridae include

• Understanding protein stability: Solvent exposure can provide insights into the stability
and conformational changes in the spike protein, which are critical for its function and
viral infectivity [17].

• Drug discovery: Knowledge of the solvent exposure of the spike protein can aid in
the discovery of drugs that target the virus by disrupting the protein’s stability or
function [18].

• Vaccine design: Studying solvent exposure can inform the design of vaccines that elicit
an immune response against the spike protein, which is a crucial target for neutralizing
antibodies [19].

• Mechanism of action: Understanding the solvent exposure of the spike protein can
provide insights into the mechanism of action of the virus and how it enters host
cells [16].

• Evolution: Studying solvent exposure can also provide information on how the virus
evolves and adapts to changing environments, which can inform the development of
strategies to control the spread of the virus [17].

Recently, as the amount of sequencing data becomes large enough, some efforts
have been made to study families of viruses using machine learning approaches. These
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methods apply some form of classification [20] or clustering [21]. One way to improve
the performance of these machine learning methods is to make use of biological domain
knowledge [22]. Using statistical analysis is another method that could be used to improve
the performance of underlying machine learning models (as suggested by Ali et al. in [20]).
In this work, we studied the relationship between specific amino acid sites (within MSA)
and the solvent accessibility of the surface (or spike) protein of different Coronaviridae.
While we applied this study to the family Coronaviridae as a proof of concept, one could
apply this to newer families of lesser-known viruses in the hopes of better understanding
how protein structure affects their host specificity. Our contributions in this paper are
the following:

1. We used information gain (IG) to evaluate the importance of amino acid sites of the
spike sequence, which could be used to study the behavior of the virus.

2. Obtaining structural information about the spike protein, namely solvent accessibility,
we evaluated if there is any relationship between this and IG.

3. We show that there is such a connection between IG and solvent accessibility, the latter
requiring much more time to compute.

4. We performed several case studies to show the biological relevance of the relationship
between solvent accessibility and IG.

The rest of the paper is organized as follows. Section 2 contains the detail on the data
collection and statistics. Section 3 contains the study that shows a connection between
information gain and solvent accessibility. Section 4 provides some case studies on regions
and pairs of hosts of interest. Finally, we conclude our paper in Section 5.

2. Data Collection and Statistics

In this section, we first discuss details on the collection of the sequence data using
different sources. We then provide some descriptive statistics of this data, and some
visualization of the data using the t-distributed stochastic neighborhood embedding (t-
SNE) method.

2.1. Data Collection
Virus Pathogen Resource (ViPR):

Data were obtained from ViPR (https://www.viprbrc.org) on 9 February 2022. We
downloaded all 1,441,773 unaligned complete S protein sequences of the family Coronaviri-
dae for host “All”. Because this database is overwhelmed with SARS-CoV-2 sequences
due to the COVID-19 pandemic, and the ViPR search utility is such that hosts can only be
specified but not filtered (as far as we know), we downloaded all 1,439,557 such sequences
for all hosts and the dataset for host “human” was excluded, resulting in a remaining
2216 sequences. Note that some of the sequences with no host label (according to ViPR)
might still pertain to a human host. We then queried the National Center for Biotechnology
Information (NCBI) resource (since the sequences from ViPR are annotated with NCBI
IDs) to obtain the taxonomic and host information of these 2216 sequences. Of these, 14 se-
quences were from the Piscanivirinae, Serpentovirinae, and Torovirinae subfamilies, which
were previously part of the Coronaviridae family but were re-classed to the Tobaniviridae
family in 2018 [23]. We removed these 14, resulting in a remaining 2202 sequences, which
are distributed across different taxa as given in Table 1.

https://www.viprbrc.org
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Table 1. Genus/subgenus distribution over 2022 sequences for all hosts except for “Human” down-
loaded from ViPR. The “CoV” is short for “coronavirus”.

Genus Subgenus No.
Sequences Genus Subgenus No. Sequences

AlphaCoV Colacovirus 3 BetaCoV Embecovirus 175
AlphaCoV Decacovirus 11 BetaCoV Hibecovirus 1
AlphaCoV Duvinacovirus 33 BetaCoV Merbecovirus 289
AlphaCoV Luchacovirus 4 BetaCoV Nobecovirus 11
AlphaCoV Minacovirus 6 BetaCoV Sarbecovirus 614
AlphaCoV Minunacovirus 7 BetaCoV unknown 11
AlphaCoV Nyctacovirus 5 DeltaCoV Andecovirus 2
AlphaCoV Pedacovirus 370 DeltaCoV Buldecovirus 147
AlphaCoV Rhinacovirus 56 DeltaCoV Herdecovirus 2
AlphaCoV Setracovirus 7 DeltaCoV unknown 4
AlphaCoV Tegacovirus 51 GammaCoV Cegacovirus 7
AlphaCoV unknown 23 GammaCoV Igacovirus 344
unknown unknown 19 - - -

Global Initiative on Sharing All Influenza Data (GISAID):

Data were also obtained from GISAID (https://www.gisaid.org) on 9 February 2022.
We downloaded all 7,940,305 unaligned S (spike) protein sequences of SARS-CoV-2 from
GISAID. We then filtered out the 7,935,111 sequences tagged with host “Human” (or
“Hombre”), resulting in a remaining 5194 sequences for all hosts except for “Human”. Since
there was no way to restrict the search to complete sequences (like with ViPR, or as far
as we know), we removed 59 sequences that were more than three standard deviations
(σ = 115.38) shorter than the mean (µ = 1259.27) sequence length, resulting in a remaining
5135 sequences with lengths ranging from 1128 to 1276. Since these were all SARS-CoV-2
sequences, they were all of the subgenus Sarbecovirus (genus Betacoronavirus).

Data Integration:

We then combined these two datasets into a single dataset of 2022 + 5135 = 7337
sequences, and then added 2663 randomly selected sequences from the 1,439,557 sequences
for host “Human” downloaded from ViPR (above) for an even 10,000 sequences. All
but one of these 2663 sequences were of the subgenus Sarbecovirus, that one being of
subgenus Embecovirus (genus Betacoronavirus). In the end, the “major” subgenera and
hosts were considered, those represented by more than 100 sequences, and are depicted in
Tables 2 and 3.

Data Processing:

For each of the sets of sequences, represented by the subgenera and hosts, we per-
formed a multiple alignment with Mafft ( https://mafft.cbrc.jp/alignment/software/)
(accessed on 9 February 2022) using default parameters. We then removed from this
alignment any position (column) containing only X and - , since they are a “wildcard”
character and a gap, respectively. This is preferable to removing all X characters from the
sequences beforehand, because it allows the aligner to decide what each X means, rather
than making an irreversible decision. Since we are only interested in host specificity (not
subgenus specificity), we computed the information gain of each site of the alignment
for each subgenus of Table 2 only. Note that, while some subgenera have many more
sequences than others (Table 2). The Host-based grouping of sequences is also reported
in Table 3. The length statistics for different subgenera and hosts are reported in Table 4
and Table 5, respectively. In Table 2, most notable subgenus is Sarbecovirus, we studied the
host specificity within each subgenus, independent of the others. Still, what this means is
that the results will be more reliable for subgenera with a larger number of sequences—for
example, in Table 6, Sarbecovirus has a notably stronger correlation value and smaller p-
value—something we discuss more in Section 3 below. The information of the spike protein

https://www.gisaid.org
https://mafft.cbrc.jp/alignment/software/
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was predicted using the SCRATCH Protein Predictor by taking protein sequences as the
input (http://scratch.proteomics.ics.uci.edu/) (accessed on 9 February 2022), classifying
the sites as being solvent-exposed on a scale of 1 to 20. We provide more statistics and
visualization of these data in the subsequent sections.

Table 2. Subgenera-based grouping of sequences.

Subgenus No. Sequences

Buldecovirus 147
Embecovirus 176
Igacovirus 344
Merbecovirus 289
Pedacovirus 370
Sarbecovirus 8411

Table 3. Hosts-based grouping of sequences.

Host No. Sequences

Bat 233
Camel 290
Cat 292
Chicken 321
Deer 147
Environment 3423
Human 2927
Pig 553
Weasel 1195

Table 4. Length statistics, including average length, standard deviation length, and alignment length
for the major subgenera.

Subgenus No. Seq. Avg.Len. SD Align. Len.

Buldecovirus 147 1163.10 12.49 1312
Embecovirus 176 1358.23 15.39 1445
Merbecovirus 289 1352.58 3.09 1403
Igacovirus 344 1164.93 7.31 1442
Pedacovirus 370 1382.84 17.72 1462
Sarbecovirus 8411 1270.90 4.15 1398

Table 5. Length statistics including average length, standard deviation length, and alignment length
for the major hosts.

Host No.Seq. Avg.Len. SD Align.Len.

Bat 233 1282.06 66.15 2076
Camel 290 1335.49 54.46 1624
Cat 292 1282.86 44.02 1628
Chicken 321 1163.93 3.58 1199
Deer 147 1271.14 11.93 1276
Environment 3423 1271.33 1.26 1365
Human 2927 1272.57 11.56 1847
Pig 553 1310.72 109.15 1715
Weasel 1195 1272.85 11.96 1622

http://scratch.proteomics.ics.uci.edu/
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Table 6. Rank correlation comparisons of information gain and solvent accessibility.

Subgenus
Spearman Rank Correlation Kendall Rank Correlation

Correlation Value p-Value Correlation Value p-Value

Buldecovirus 0.3319 3.996671379687281× 10−35 0.2400 1.9838872978121717× 10−35

Igacovirus 0.2245 5.60950280481785× 10−18 0.1558 1.2834910986811683× 10−17

Embecovirus 0.3382 5.330451027010657× 10−40 0.2409 9.358899326269566× 10−39

Merbecovirus 0.2995 1.7944803412415015× 10−30 0.2114 4.157343061564072× 10−29

Pedacovirus 0.2206 1.4050087772378643× 10−17 0.1626 3.840562973426854× 10−17

Sarbecovirus 0.6109 6.314866462884465× 10−168 0.4464 7.402190248518821× 10−160

2.2. Dataset Statistics

We first give some statistics on the average sequence length and standard deviation
(SD) of the length distribution for the major subgenera and hosts in Tables 4 and 5, respec-
tively. The last column of both tables shows the length of the alignment template. Note that
this length tends to grow larger than the average length as both the number of sequences
and standard deviation grow, which is to be expected.

The distribution of hosts within each subgenus is given in Figure 2. Our pre-processed
dataset is available online (https://github.com/sarwanpasha/Comparative_Genomics)
(accessed on 9 February 2022). Note that some subgenera, in particular Embecovirus and
Sarbecovirus, have a much more widespread diversity of hosts than others. We note that
host label (Table 3 and Figure 2) are discrete, when, in reality, the sequences exhibit a
spectrum of host specificity; here, we just chose the most common host for each sequence
from the records (NCBI, etc.) above. With a large enough number of sequences (e.g.,
Sarbecovirus, Table 2), overall trends in host specificity should have a clear signal.

(a) Buldecovirus (b) Embecovirus (c) Igacovirus

(d) Merbecovirus (e) Pedacovirus (f) Sarbecovirus

Figure 2. Host distribution with each major subgenus.

2.3. Visualization with t-SNE

In order to visually evaluate if there is any (hidden) clustering in the sequences, we
used the t-distributed stochastic neighbor embedding (t-SNE) [24] method. The t-SNE
method maps input data to 2D real vectors, which can then be visualized as a scatter plot.
Since t-SNE takes numerical vectors as input, we obtained a numerical representation of
the sequences of each subgenus using a feature vector generation called Spike2Vec [20].

Given some sequence σ on alphabet Σ, Spike2Vec generates substrings (also called
mers) of length k, i.e., k-mers. In Σ, we have the following 20 characters (amino acids):
“ACDEFGHIKLMNPQRSTVWY”. From a sequence, k-mers are generated by applying
a sliding window of size k over the sequences. Given a sequence of length N, the total
number of k-mers that could be generated is N − k + 1.

https://github.com/sarwanpasha/Comparative_Genomics
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After generating the k-mers, Spike2Vec creates a feature vector Φ (a frequency vector),
which contains the frequency (count) of each k-mer occurring in the sequence. The length
of the feature vector Φk(σ) is |Σ|k. Since we worked with spike protein (amino acid)
sequences and took k = 3 in our experiments, the feature vector length that we used
was 203 = 8000. This feature vector can be used as the input for t-SNE plots. The t-SNE
plots of the sequences of each of the six major subgenera, colored by host, are given in
Figure 3. In Embecovirus, we note that the two major groups, Cow and Human, are well
separated. In Merbecovirus, there is some grouping for the Camel host. Interestingly,
in the Pedacovirus, there seem to be two distinct groups of sequences that both affect
the Pig (or Swine). Finally, in Sarbecovirus, there is some grouping of Humans, Weasel,
and Bat. While these t-SNE plots capture sequence variability, this may or may not be
related to information gain, since only a few such sites in the sequence might be important
for specifying the host—something we explored in the case studies in Section 4 below.

(a) Buldecovirus (b) Embecovirus

(c) Igacovirus (d) Merbecovirus

(e) Pedacovirus (f) Sarbecovirus

Figure 3. t-SNE plots for the six major subgenera (as mentioned in Table 2) of the Coronaviridae,
colored by host.

3. Information Gain and Solvent Accessibility

For each major subgenus (of Table 2), we computed the information gain (IG) of
each site in its alignment, according to Equation (1), and extracted the solvent-accessible
positions. We achieved this using the SCRATCH Protein Predictor, which uses ACCpro
for predicting the relative solvent accessibility of protein residues [25–27]. The ACCpro
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predictor is based on one-dimensional recursive neural networks (1D-RNNs), with each
amino acid residue predicted as buried or exposed from a scale of 1 to 20.

Given the solvent accessibility and IG for each site of a spike protein of a coronavirus,
the Spearman rank correlation coefficient (rs) and Kendall rank correlation coefficient (τ)
were then calculated for each subgenus according to the following definitions.

Definition 2 (Spearman Rank Correlation). The Spearman rank correlation coefficient rs mea-
sures the degree of association between two variables, where both variables are ordinal. The rs can be
calculated as:

rs = 1−
6× Σ(d2

i )

n× (n2 − 1)
(2)

where di is the difference in the rank of Si and IGi, and n is the number of observations.

Definition 3 (Kendall Rank Correlation). The Kendall rank correlation coefficient τ is a measure
of the concordance between two variables, where both variables are ordinal or categorical. The τ can
be calculated as:

τ =
c− d

n× (n−1)
2

(3)

where c is the number of concordant pairs, d is the number of discordant pairs, and n is the number
of observations.

The values of these coefficients range from −1 to 1, where −1 represents a perfect neg-
ative correlation, 0 represents no correlation, and 1 represents a perfect positive correlation.
The rank correlation between IG values and the average rank of each site is given in Table 6
using the Spearman and Kendall rank correlation.

The results show that there is a moderate to strong positive correlation between the
solvent accessibility of different sites on the spike protein and their information gain for
each subgenera. This implies that the sites of the spike protein that are more solvent
accessible (i.e., exposed) also have higher information gain, indicating that they are more
informative about the host. The p-value of all of the viruses is very low, which means
that the correlation is statistically significant at the level of 0.05 or less, indicating that the
observed correlation is unlikely to be due to chance. The notably strongest correlation is
viewed in Sarbecovirus, which has many more hosts than the other subgenera, which is
likely due to its disproportionately many (≈8K) sequences compared to the other subgenera
(due to the fact that it contains SARS-CoV-2); hence, we would expect the same trend in a
stronger correlation as the number of sequences of subgenera increases.

The information gain of a site can be interpreted as the reduction in uncertainty or
disorder of the host variable given that site. Therefore, if a site has a high information
gain, it means that it provides a large amount of information about the host, and if a
site has a low information gain, it means that it provides very little information about
the host. Hence, since we can observe in Table 6 that solvent accessibility is positively
correlated with information gain, this implies that the sites of the spike protein that are
more solvent-accessible (i.e., exposed) are also more informative about the host; that is,
IG can be used as a proxy for solvent accessibility. This is desirable, given that it is much
more computationally expensive (in terms of runtime and memory usage) to infer solvent
accessibility (with SCRATCH) than to compute information gain (see Table 7).

Although the study of solvent exposure comes with many advantages, such as pro-
viding direct information about the exposure of residues in the spike protein to the outside
environment, which can directly impact its stability, function, and interactions with other
molecules, its main disadvantage is the time it takes to compute its values when they are
not known previously (see Table 7). Now that the number of sequences for viruses such as
the Coronaviridae is larger, we can use the much more easy-to-compute information gain
as a proxy. While, e.g., SARS-CoV-2, is a fairly well-studied virus by now, much is known
about the spike protein structure and its solvent accessibility [16]; however, this proof of
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concept that information gain can be used as a proxy for solvent accessibility could be used
for other lesser-known families of viruses, where one would need to first compute or infer
solvent accessibility.

Table 7. Resource allocation comparison. The memory usage for IG is negligible, and hence not reported.

SCRATCH Information Gain

Avg. ± Std. Runtime (s) Avg. ± Std. Memory (kb) Avg. ± Std. Runtime (s)

Buldecovirus 596.77 ± 115.03 20,217,835.84 ± 2098.98 0.08
Igacovirus 655.56 ± 143.94 20,220,781.72 ± 2050.28 0.13

Embecovirus 1209.55 ± 149.92 20,199,994.43 ± 3598.82 0.09
Merbecovirus 1123.03 ± 170.79 20,217,275.71 ± 2520.71 0.11
Pedacovirus 1223.19 ± 112.75 20,237,607.46 ± 2847.79 0.15
Sarbecovirus 1004.81 ± 186.91 20,213,971.42 ± 310,471.89 0.21

4. Case Studies

While the main result of this work is the connection between information gain and
solvent accessibility, detailed in the previous Section 3, we provide a few case studies
in the following. Since the Coronaviridae are fairly well-known now, due to the recent
in-depth research on SARS-CoV-2, for example, such a study is more of a proof of concept—
something that would certainly be useful for discovering new information about lesser-
known families of viruses. To further validate this proof of concept, we explored a few case
studies of the Coronaviridae regarding how some of the known biological evidence relates
to the results we obtained.

4.1. Region-Wise Analysis

The comparison of normalized values of IG and SCRATCH is shown in Figure 4
for the six major subgenera of the Coronaviridae (see Table 2). Region-wise, the spike
protein of roughly 1630 amino acids is divided into S1 and S2 regions, where the S1 domain
ends (the S2 domain starts) roughly at position 770. Bashor et al., in [2], studied SARS-
CoV-2 evolution in animals and showed that substitutions in spike proteins that include
H69, N501, and D614, which also vary in human lineages of concern, were identified in
non-human hosts, including dogs, cats, and hamsters. The complete list of mutations (as
reported by Bashor et al. in [2]) in different hosts is reported in Table 8. Since we have cats
as a host in Sarbecovirus (see the t-SNE plot in Figure 3f), we can observe in Figure 4f and
Table 8 that the IG and SCRATCH values for positions 69 and 614 are on the moderate to
low side, while position 501 has a high SCRATCH value, but a low IG, which could be due
to the behavior of other hosts. Interestingly, according to the Centers for Disease Control
and Prevention (CDC) website, some of the key mutations that have been reported in the
spike protein of SARS-CoV-2, the virus that causes COVID-19 in humans, include N501Y
and D614G (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html)
(accessed on 9 February 2022).Trends in Figure 4 that remain to be explored are the relatively
low information gain (IG) in the last region (starting at position 1500) in Buldecovirus,
Embecovirus, and Merbecovirus, and the relatively high IG in the last region of Pedacovirus.
Other trends remain to be identified and explored.

Overall, we can observe that there are specific mutation positions within the spike
protein that are important in terms of coronavirus detection as determined by biologists.
Using tools such as SCRATCH values or IG can identify those possible mutations very
quickly and efficiently, which can help us to understand the virus behavior in different hosts.

https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
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Table 8. Mutations at specific sites and the respective (normalized) IG and SCRATCH values for
different species in Sarbecovirus, as reported by Bashor et al. in [2].

Variant Normalized IG Normalized SCRATCH

D614G 0.412017875 0.114198229
H655Y 0.009924703 0.162774760
H69R 0.090512449 0.154915497
D138Y 0.272433634 0.198103717
D215N 0.342889516 0.496680247
N501T 0.028416994 0.818966601
S686G 0.029752971 0.074078266

(a) Buldecovirus (b) Embecovirus

(c) Igacovirus (d) Merbecovirus

(e) Pedacovirus (f) Sarbecovirus

Figure 4. Scatter-plot-based comparison of different viruses for the normalized values computed
using SCRATCH and IG. The figure is best seen in color.

4.2. Pairwise Studies

Based on the literature and some of the trends given in the t-SNE plots of Figure 3, we
focused here on a few pairs of hosts of interest. In particular, we paired up different hosts
with Human to see which sites have the highest information gain. We took combinations
such as Bat–Human, Cat–Human, Deer–Human, and Weasel–Human from Sarbecovirus,
and Cow–Human from Embecovirus. In each case, we took all sequences from the host
with the smaller set of sequences, paired it up with an equal number of randomly selected
sequences for the other host, and multiply aligned them with Mafft (using default param-
eters). Statistics on the average sequence length, standard deviation (SD) of the length
distribution, and alignment template length (similar to Section 2.2) are given in Table 9. We
then computed information gain (IG) for each site in the respective alignment. The full
list of amino acid sites and corresponding IG values for the pairs of hosts is available on-
line (https://github.com/sarwanpasha/Comparative_Genomics/tree/main/Information_
Gain/Set_of_Hosts) (accessed on 9 February 2022). What is interesting is that sequence
variability (as determined by the t-SNE plots) is not always concordant with information

https://github.com/sarwanpasha/Comparative_Genomics/tree/main/Information_Gain/Set_of_Hosts
https://github.com/sarwanpasha/Comparative_Genomics/tree/main/Information_Gain/Set_of_Hosts
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gain (as seen here in the averages). The point of studying information gain (or solvent
accessibility) is based on the idea that sites contribute non-uniformly to host specificity,
as seen in Figure 4.

Table 9. Length statistics for the different host pairings of this case study.

Host Pair Subgenus No. Seq. Avg. Len. SD Align. Len. Avg. IG

Bat–Human Sarbecovirus 238 1257.81 14.49 1308 0.1914
Cat–Human Sarbecovirus 550 1271.48 1.32 1279 0.0070
Deer–Human Sarbecovirus 294 1271.19 8.47 1276 0.0114
Weasel–Human Sarbecovirus 2378 1271.56 1.20 1279 0.0104
Cow–Human Embecovirus 96 1359.95 3.96 1402 0.1445

5. Conclusions

In this work, we studied information gain (IG) as a source of information to explain
host specificity. Such an approach is flexible to the continuously updating sequence in-
formation since it just requires a multiple-sequence alignment. We showed a connection
between high IG and solvent accessibility, suggesting that proteins exposed to (solvents
in) the outside environment are more responsible for host specificity. We also performed a
visualization of the sequences to see some trends between different hosts in a given viral
subgenus, performing some case studies on some regions and pairs of hosts of interest.

Future work includes more measures of host specificity beyond solvent accessibility.
Since we considered spike protein (amino acid) sequences in this study, we could not
perform this; however, if given nucleotide sequences, it would be interesting to see if there
are sites that are positively or negatively selected (via an analysis of, e.g., dN/dS) for IG,
solvent accessibility, etc. Finally, some subgenera have many more sequences or a wider
diversity of hosts than others. Exploring the effects of this, but also of imperfect labeling
(e.g., many viral sequences have a spectrum of hosts, even though only one is specified in
the data), is another future direction—perhaps a more phylogeny-aware analysis could
correct for some of this. Connecting other proteomic features or aspects of the protein
structure, such as a secondary and possibly tertiary structure, is another interesting line of
future work. Finally, using this idea to obtain domain knowledge for other studies, as a
basis for further investigation, or to improve the performance of machine learning models
could be other interesting future directions.
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