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Abstract: Pulchellin is a plant biotoxin categorized as a type 2 ribosome-inactivating protein (RIPs)
which potentially kills cells at very low concentrations. Biotoxins serve as targeting immunotoxins
(IT), consisting of antibodies conjugated to toxins. ITs have two independent protein components,
a human antibody and a toxin with a bacterial or plant source; therefore, they pose unique setbacks in
immunogenicity. To overcome this issue, the engineering of epitopes is one of the beneficial methods
to elicit an immunological response. Here, we predicted the tertiary structure of the pulchellin
A-chain (PAC) using five common powerful servers and adopted the best model after refining. Then,
predicted structure using four distinct computational approaches identified conformational B-cell
epitopes. This approach identified some amino acids as a potential for lowering immunogenicity by
point mutation. All mutations were then applied to generate a model of pulchellin containing all
mutations (so-called PAM). Mutants’ immunogenicity was assessed and compared to the wild type
as well as other mutant characteristics, including stability and compactness, were computationally
examined in addition to immunogenicity. The findings revealed a reduction in immunogenicity in all
mutants and significantly in N146V and R149A. Furthermore, all mutants demonstrated remarkable
stability and validity in Molecular Dynamic (MD) simulations. During docking and simulations,
the most homologous toxin to pulchellin, Abrin-A was applied as a control. In addition, the toxin
candidate containing all mutations (PAM) disclosed a high level of stability, making it a potential
model for experimental deployment. In conclusion, by eliminating B-cell epitopes, our computational
approach provides a potential less immunogenic IT based on PAC.

Keywords: pulchellin A-chain (PAC); ribosome-inactivating protein (RIPs); immunotoxin (IT);
immunogenicity; B-cell epitopes; molecular docking; molecular dynamic (MD) simulation
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1. Introduction

Ribosome-inactivating proteins (RIPs) are poisonous N-glycosylase enzymes that
depurinate eukaryotic and prokaryotic rRNAs, resulting in inactivating ribosome’s catalytic
activity. RIPs have been discovered in various organisms, such as plants, fungi, and bacteria.
Type 1, type 2, and type 3 are the three primary RIPs found in plants, based on their related
genes and structural features [1]. Plants produce a wide range of poisonous molecules,
including type 2 ribosome-inactivating proteins (RIP-2) like abrin toxin, which have highly
selective rRNA N-glycosylase activity [2]. Although toxins are hazardous and possibly
fatal, they are utilized as therapeutics, compounding immunotoxins (ITs), which are fusion
proteins with quite selective targeting properties [3]. Pulchellin, extracted from Abrus
pulchellus tenuiflorus plant seeds, is a type 2 RIP that is a potent plant toxin, akin to abrin
and ricin. Pulchellin consists of a RIP-active polypeptide (A-chain) and a galactose-binding
lectin (B-chain) connected by a disulfide bond [4]. The B-chain, a nontoxic carbohydrate-
binding component, is critical for mediating A-chain endocytosis and could be employed
as a medication delivery mechanism [5,6]. Having N-glycosylase function, the A-chain
is the catalytic element breaking a particular adenine residue from a conserved loop of
the significant rRNA subunit [7]. The catalytic residues in the pulchellin A-chain are
maintained in locations identical to those in the A-chains of ricin and abrin. There are
four isoforms of pulchellin, and the isoform II is the most potent one having LD50 toxicity
of 15 µg/kg in mice [8]. ITs are hybrid antibodies combining a toxin with a binding element.
A fragment antigen-binding (Fab) region of an antibody that targets a specific antigen on
desired cells performs as the binding element for the toxin part, which significantly hinders
protein synthesis and leads to cell death [9,10]. Various toxins are used for producing ITs
from a bacterial source up to plants [11,12]. ITs could highlight underlying immunogenicity
since they include two macromolecular components identified as foreign molecules by the
immune system due to the presence of epitopes [13]. As a result, the clinical implication
of ITs might be restricted, particularly in frequent therapies. To address this issue, several
strategies have been employed, including immunosuppressive drugs, which could bring
about undesirable outcomes [14].

Protein engineering has recently been a favored method for reducing the immuno-
genicity of potential epitopes to implement these chimeric antibodies more efficiently [9,15].
The immune response can be inhibited by removing epitopes participating in immuno-
genicity [16,17]. B-cell epitopes are frequently present at a few distinct locations on the
protein’s surface, and the most prevalent kind of neutralizing B-cell epitope is found in
Discontinuous portions [18]. Point mutation using computational tools is an efficient way
of lowering the immunogenicity of non-self proteins [19].

We employed multiple 3D modeling to generate a reliable 3D structure in the current
work because the crystallographic structure of pulchellin has not been disclosed. Potential
epitopes were identified using four servers, each with a specific algorithm. After, the final
model was modeled and refined. To reduce the immunogenicity of the toxin, immunogenic
B-cell epitopes were altered to non-polar and short side chain amino acids. Afterward, the
immunogenicity of mutants was determined, a toxin candidate containing all mutations
(PAM) was successfully predicted, and validation features were evaluated. Ultimately,
molecular dynamic simulation was used to assess specific key characteristics such as
stability, compactness, and solvent-accessible surface area.

2. Materials and Methods
2.1. Retrieval of Protein Sequences

The National Center of Biotechnology Information (NCBI) (https://www.ncbi.nlm.
nih.gov/, accessed on 23 March 2022) and UniProt (http://www.uniprot.org, accessed on
23 March 2022) databases were used to obtain the A-chain sequence of prepropulchellin II
in FASTA format. NCBI accession number ABW23504 and UniProt ID B1NQC0 matched
and were selected for further analysis.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.uniprot.org
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2.2. Modeling of Three-Dimensional Structure

Five Automated homology-modeling of protein structure servers were used to predict
Tertiary structure of PAC. Employing template-based modeling, these online servers pro-
duce high-grade 3D protein structure using amino acid sequences: GalaxyTBM (http://
galaxy.seoklab.org/cgi-bin/submit.cgi?type=TBM, accessed on 28 March 2022) [20], I-TASSER
(https://zhanglab.ccmb.med.umich.edu/ITASSER/, accessed on 28 March 2022) [21], PHYRE2
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index, accessed on 28 March
2022) [22], Raptor X (http://raptorx.uchicago.edu/StructurePrediction/predict, accessed
on 28 March 2022) [23], and SWISS-MODEL (https://swissmodel.expasy.org, accessed on
28 March 2022) [24].

2.3. Three-Dimensional Structure Validation

Available web applications were utilized in order to choose the optimal model in-
cluding Verify 3D (http://services.mbi.ucla.edu/Verify3D, accessed on 3 April 2022),
ERRAT (http://services.mbi.ucla.edu/ERRAT, accessed on 3 April 2022), PROCHECK
(https://servicesn.mbi.ucla.edu/PROCHECK, accessed on 3 April 2022), and ProSA-web
(https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 3 April 2022). By defining
a structural class depending on its position and surroundings (alpha, beta, loop, polar,
and nonpolar), the Verify 3D determines the compatibility of an atomic model (3D) with
its sequence of amino acids. It examines the outputs and compares them to qualified
structures [25]. ERRAT program is used to validate bad contacts of the protein structure.
The error function is founded on nonbonded atom-atom interactions, represented in the
structure [26]. The ProSA software takes advantage of the benefits of interactive web-based
programs to present scores and energy graphs that identify possible issues in protein struc-
tures. The z-score evaluates the variation of the total energy of the structure from an energy
distribution calculated from random conformations and reflects the ultimate quality of the
model [27]. PROCHECK analyzes the total and residue-by-residue geometry of a protein
structure, providing a Ramachandran plot that shows (ϕ) and (ψ) bond angles. In the
plot, the amino acids are split into four sections (favored, additionally allowed, generously
allowed, and disallowed) [28]. According to the validation results, the most favorable
model was chosen for refinement.

2.4. Selected Model Refinement

GalaxyRefine2 was used to refine the chosen model (http://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE2, accessed on 5 April 2022). This server exploits molecular
dynamics simulation to achieve repetitive structure perturbation and subsequent structural
relaxation. As opposed to GalaxyRefine, GalaxyRefine2 protocol is said to be more precise,
offering ten refinement models and only up to 300 amino acids are allowed for refinement
submission [29]. Validation servers (Verify 3D, ERRAT, PROCHECK, and ProSA-web)
assessed the refinement models’ validity, and ultimately, the top refined model was selected
for subsequent steps.

2.5. Predicting Conformational B-Cell Epitopes

The final pulchellin A-Chain (PAC) model was exploited to identify possible B-cell
epitopes in the form of discontinued structure. Various web servers (described below) were
employed to achieve this goal. Each residue’s score was calculated using the servers listed
below. Several residues were determined as possible epitopes based on servers’ scores.
Ultimately, in common residues were marked as immunogenic spots. EPSVR (Antigenic
Epitopes Prediction with Support Vector Regression) is a discontinuous information-based
predictor of B-cell antigenic epitopes on protein surfaces (http://sysbio.unl.edu/EPSVR,
accessed on 8 April 2022). There are six distinct characteristics employed by the EPSVR
server: residue epitope propensity, conservation score, side chain energy score, contact
number, surface planarity score, and secondary structure composition. There is no such
issue as a threshold for this server [30]. DiscoTope 2.0 is a new version of the DiscoTope

http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TBM
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TBM
https://zhanglab.ccmb.med.umich.edu/ITASSER/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://raptorx.uchicago.edu/StructurePrediction/predict
https://swissmodel.expasy.org
http://services.mbi.ucla.edu/Verify3D
http://services.mbi.ucla.edu/ERRAT
https://servicesn.mbi.ucla.edu/PROCHECK
https://prosa.services.came.sbg.ac.at/prosa.php
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE2
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE2
http://sysbio.unl.edu/EPSVR
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method that includes a new spatial neighborhood definition and a half-sphere exposure
as a surface measure (https://services.healthtech.dtu.dk/service.php?DiscoTope-2.0, ac-
cessed on 8 April 2022). Amino acid statistics, spatial information, and surface accessibility
are the features on which this server is based. The default threshold (−3.7) was set for
prediction [31]. Geometrical characteristics of protein structure is a method that the Ellipro
server exploits to predict conformational B-cell epitopes (http://tools.iedb.org/ellipro,
accessed on 8 April 2022). This server uses three algorithms: ellipsoid prediction of the
protein structure, The residue protrusion index (PI) measuring, and employing PI values to
cluster the adjacent residues. Ellipro utilizes two features to define a threshold: minimum
residue score and maximum distance (Å). These parameters were set at 0.5 and 6 respec-
tively (default values) [32]. SEPPA creates a triangular unit patch by combining exposed
and nearby residual features (http://www.badd-cao.net/seppa3/index.html, accessed on 8
April 2022). SEPPA 3.0 is the most recent version. It has improved performance on common
protein antigens by updating the training dataset and incorporating new characteristics that
allow for reliable prediction of N-linked glycoprotein antigens. The prediction threshold
was the default value (Threshold: 0.089) [33]. The AUC (Area under the ROC Curve) is
a number that varies from 0 to 1 and represents the method’s total performance. The AUC
of a model whose predictions are 100%incorrect is 0.0, whereas the AUC of a model whose
predictions are 100%accurate is 1.0 [34]. For EPSVR, DiscoTope 2.0, Ellipro, and SEPPA 3.0,
the AUC scores were 0.597, 0.727, 0.732, and 0.740, respectively.

2.6. Establishment of Mutants

Initially, the 3D structure of PAC was exposed to the ConSurf server (https://consurf.
tau.ac.il/, accessed on 10 April 2022) to determine whether candidate immunogenic
residues are classified as highly conserved and functional residues or not. This server
examines the evolutionary pattern of the macromolecule’s amino acids and nucleic acids
to identify sections crucial for structure and function [35]. After showing that proposed
immunogenic residues do not have a particular role, three non-polar amino acids having
a short side chain (A, V, L) were chosen for point mutations.

2.7. Obtaining the 3D Structure of Mutants and Evaluating Their Initial Properties

To create mutant models and assess their stability, the SDM2 server was employed
(http://marid.bioc.cam.ac.uk/sdm2, accessed on 12 April 2022). This free web tool calcu-
lates a stability score using a statistical potential energy function and provides The PDB
(Protein Data Bank) file format for mutants [36]. The validity of the 3D structure of each
mutant supplied from the SDM2 server was subjected to validation servers (similarly
performed in Section 2.3).

2.8. Analyzing Immunogenicity of Mutants

The immunogenicity of each mutant was investigated using the servers indicated
before (EPSVR, DiscoTope 2.0, ElliPro, and SEPPA 3.0). Score changes of antigenic spots
were scrutinized at the location of mutations. Supportive analysis was performed by
SDM2 and Discovery Studio 4.5 software. SDM2 provides structural environment data
like side chain solvent accessibility, residue depth, and packing density [36]. Furthermore,
sidechain accessibility and hydrophobicity of mutants were assessed by Discovery Studio
4.5 software.

2.9. Building Pulchellin Containing All Mutations Model

After establishing point mutation, the pulchellin containing all mutations (PAM),
including T82A, T100A, D101V, Q121A, N146V, D147A, and R149A, was predicted and
refined by GalaxyTBM and GalaxyRefine2, respectively. The validity of 3D structure of
PAM was measured by validation servers similar to the previous step in Section 2.3. The
immunogenicity of the final model of PAM was then examined by the servers mentioned
previously (EPSVR, DiscoTope 2.0, ElliPro, and SEPPA 3.0).

https://services.healthtech.dtu.dk/service.php?DiscoTope-2.0
http://tools.iedb.org/ellipro
http://www.badd-cao.net/seppa3/index.html
https://consurf.tau.ac.il/
https://consurf.tau.ac.il/
http://marid.bioc.cam.ac.uk/sdm2
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2.10. Molecular Docking

The molecular docking was accomplished by AutoDock Vina version 4.2 [37]. PAC
wildtype and mutant models were employed as receptors, and the active sites of PAC were
identified using homology to other RIP-2 families like Ricin [8]. Using residues C13 through
G18 from the RNA sequence (5′GGGUGCUCAGUACGAGAGGAACCGCACCC3′), the
structure of the ligand was retrieved from the 29-mer Sarcin-Ricin loop (PDB ID 1SCL) [38].
The underlined characters represented the ligand sequence and “A” bold font shows the
target adenine (Figure 1). The grid box size was set at 20 × 22 × 22 Å for x, y, and z,
respectively, with 1 Å spacing between the grid points. The grid center of x, y, and z, was
set to 68, 10, and 37, respectively. To acquire specific control on the docking process of
mutants, docking of Abrin-A with CGAGAG was performed simultaneously. For this
purpose, the x, y, and z grid centers were set at 67, 7, and 37, respectively without changing
other parameters. Each docking was carried out 100 runs utilizing the Lamarckian Genetic
Algorithm (LGA). The graphics of interaction quality was plotted by AutoDockTools-1.5.6.
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Figure 1. Ligand structure (CGAGAG) used in molecular docking. The hydrolysis of the adenine
base of A15 in the loop region is catalyzed by the A-chain of type 2 RIPs.

2.11. Molecular Dynamics Simulation

MD (Molecular dynamics) simulations could be a valuable technique for studying
stability and structural change of macromolecules under physiological circumstances.
GROMACS and the CHARMM 27 all-atom force field were used to perform MD simula-
tions of all docking Protein-ligand complexes (Abrin-A, PAC mutants and wild type with
CGAGAG) [39]. The topology files of the receptor were generated by GROMACS but the
topology of ligands was prepared by SwissParam [40], since GROMACS is not able to pro-
duce ligand topology autonomously. A dodecahedron box of 48 × 60 × 48 Å TIP3P water
molecules was applied to solvate the complex, with a spacing of 10 Å between the complex
and the solvated box’s edge. After applying sodium ions to neutralize the solvated system,
the systems were energy minimized using the steepest descent technique. The “genrestr”
module was used to restrain the ligand position and temperature coupling groups were
set at Protein_LIG water_and_ions. The system was equilibrated with velocity-rescale
thermostat at 300 K (reference temperature) for 100 ps using NVT (constant Number of
particles, Volume, and Temperature). Then, NPT with Berendsen pressure coupling at
one atmosphere (reference pressure) (constant Number of particles, Pressure, and Temper-
ature) for another 100 ps. The long-range electrostatic interactions were estimated using
Particle Mesh Ewald (PME), and for covalent bond constraints, the Linear Constraint Solver
(LINCS) algorithm was deployed [41]. Following this, the MD simulation of the equili-
brated system was run for 100 ns. The assessment of RMSD (root mean square deviation),
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RMSF (root mean square fluctuation), the radius of gyration (Rg), solvent accessible surface
area (SASA), and hydrogen bonding (H-bonds) was performed using GORMACS MD
simulation trajectories. Additionally, binding energy between mutants and CGAGAG were
estimated using MM/PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) tool
based on MMPBSA.py of AmberTools20 [42].

3. Results and Discussion

Exploiting plants to synthesize toxins like pulchellin, might promote the production of
recombinant immunotoxins (antibody–toxin fusion proteins) [43]. The use of toxic enzymes
to make ITs is a vital field. The main limits to the clinical use of heterologous proteins
derive from their immunogenicity and, to a lesser extent, from their systemic toxicity. The
creation of macromolecules with lower immunogenicity could be accomplished effectively
by theoretical protein engineering [44]. In this regard, the immunogenic zones of pulchellin
were discovered by an in silico analysis of conformational B-cell epitopes, and then, point
mutations were employed to obtain the least immunogenic mutants without influencing
the stability and functional features of the wild type model.

3.1. Toxin Selection and Structural Prediction

Four isoforms for pulchellin have been discovered (P I, P II, P III, P IV). Isoforms P I
and P II have been indicated to have similar toxicities, and both are more poisonous than P
III and P IV [8]. Among all isoforms, it has been established that isoform II has the highest
level of toxicity and the corresponding recombinant protein has also been created. [4].
Moreover, in another study, this isoform was used to produce immunotoxin against HIV
envelope [10], which appeared to be an important compound according to its ability to
specific cell targeting. This led to the selection of isoform P II for examination in this
study. Because the crystal structure of pulchellin has not been determined, the first stage in
the study was to make a reliable prediction of the tertiary structure of pulchellin isoform
II. Using various online servers, I-TASSER, GalaxyWEB, Phyre2, RaptorX, and SWISS-
MODEL, the tertiary structure of the PAC was created. Based on template modeling, all
servers predict just one final model except GalaxyWEB, which indicated five last models. As
a template, this server supplied two crystal structures of the Abrin-A A chain (PDB ID 1ABR
and 5Z37). The identity of PAC and Abrin-A A chain was determined 78% when using
NCBI blast. The similarities between the Abrin-A PAC and the A-chain were investigated
using pairwise alignment. The total identity values were discovered to be about 78%, and
the catalytic residues of PAC were found to be identical to Abrin-A [8]. To choose the most
suitable model, all produced models were checked using PROCHECK, Verify 3D, ERRAT,
and ProSA-web. The outputs of validation are represented in Supplementary Table S1.

Among Galaxy predicted models, model 4 was chosen for subsequent development
based on the validation results in Supplementary Table S2. After subjecting this model to
GalaxyRefine2 and assessing the validation scores of refined models, the refined model
2 (PAC) was ultimately selected for the immunogenicity survey. Figure 2 depicts the
validation graphs for the final model.

According to Verify 3D results, 98.01% of modeled PAC residues had an average 3D–
1D greater than or Equal to 0.2. Overall Quality Factor of 97.51 was received from ERRAT
server. Obtaining a −7.74 Z-score from ProSA-web represented that PAC comes within
the normal range of scores for natural proteins with comparable size. Rama-chandran
plot revealed that 93.4%, 6.1%, 0.0% and 0.4% of residues were positioned in favored,
additionally allowed, generously allowed, and disallowed, respectively. In fact, there is
only one residue (R31) in the disallowed region. This amino acid is located in β-sheet and
is not involved in an immunogenic domain or an active site, therefore its presence in the
disallowed zone does not contradict with the present project (Table 1).
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Table 1. Validation scores of top Galaxy Model 4, before and after refinement. Verify 3D (based on
percentage of the residues had an averaged 3D–1D score ≥ 0.2), ERRAT (based on overall quality
factor), ProSA-WEB (based on Z-score), and Ramachandran Plot (F: Favored, AA: additionally
allowed, GA: generously allowed, D: disallowed). The best model of refinement with the highest
score was selected for the next steps.

Models Verify 3D (%) ERRAT ProSA-Web Ramachandran Plot (%)

Selected GALAXY Model
Before refinement 98.01% 95.88 −7.61 F = 94.7, AA = 4.8

GA = 0.0, D = 0.4

Selected GALAXY Model
After refinement 98.01% 97.51 −7.74 F = 93.4, AA = 6.1

GA = 0.0, D = 0.4
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Figure 2. Final model validation scores. (A) Verify 3D Plot showed 98.01% of the residues had
an averaged 3D–1D score≥ 0.2. (B) ERRAT plot reported 97.51 overall quality factor. Residues having
an error value of less than 95% are in a desirable protein structure. Yellow and red lines represent
portions of the 3D model that may be rejected at 95%and 99% confidence thresholds, respectively.
(C) ProSA–web of final model earned a Z–score of −7.74. (D) Ramachandran plot represented 93.4%
in favored (red), 6.1% in additionally allowed (yellow), and 0.4%.
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3.2. Immunogenic Epitopes Prediction and Making Mutants

The four servers uncovered seven shared residues (out of 251 total residues) are strong
immunogenic sites, which are T82, T100, D101, Q121, N146, D147, and R149. Except
for R149, located at the alpha helix, the remaining chosen residues are found at beta
strands. According to ConSurf server data, these residues are not in the active site and are
not categorized as highly conserved amino acids. The discontinuous B-cell epitopes are
visually portrayed in Figure 3. These residues were altered to alanine, valine, or Leucine. Of
note, the presence of aromatic amino and large hydrophilic side chains, which are known
to elicit a robust immunological response, has been confirmed [45,46]. Furthermore, it has
been demonstrated that by identifying B-cell epitopes and making a point mutation in
the immunogen residue, the immunogenicity of the protein could be reduced [47]. The
mutation can be achieved by using nonpolar amino acids with small side chains, which
could lead to a decrease in the immunogenicity of the immunogenic residues [13]. In this
study, three small side chain amino acids were used for mutation: Ala, Val and Leu.
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3.3. Making Mutants and Evaluation Stability and Immunogenicity

According to the evaluation of stability and immunogenicity of each mutation (Supple-
mentary Table S3), seven final mutants were obtained: T82A, T100A, D101V, Q121V, N146V,
D147A, and R149A. The stability of all mutants has increased after mutation except D101V,
according to SDM2 server results. Immunogenicity changes and SDM2 overall stability of
obtained mutants are described in Table 2. SDM2 employs two structural parameters for
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evaluating protein stability: residue-occluded packing density (OSP) and residue depth.
High residue packing density areas (4 and 8 Å depth levels) are commonly observed with
extremely destabilizing mutations. Destabilizing mutations have negative pseudo ∆∆G
levels, whereas stabilizing mutations exhibit positive pseudo ∆∆G values. The mutant
T100A displayed the most stable one according to the SDM2 results. All mutations, accord-
ing to the EPSVR and DiscoTope servers, result in a reduction in immunogenicity. Except
for T100A and D101V, practically all mutants reported a decline in immunogenicity in
SEPPA analysis. In ElliPro conformational server, however, no significant changes were
identified. Bioinformatics techniques and databases are critical for finding appropriate
epitopes and lowering the immunogenicity of a targeted protein [48]. In this study, we just
used conformational B-cell epitopes (not linear) because protein has a three-dimensional
structure in its native state and predicting linear epitopes for immunogenicity could not be
an effective strategy. In fact, defining epitopes is considerably dependent on conformational
structure [49]. There are several methods and servers which could predict conformational
B-cell epitope. Each server takes into account a variety of factors and by using a combi-
nation of servers, identifying immunogenic areas could be more precise [50]. The PAC
epitopes were defined using four conformational B-cell epitope prediction systems with
four distinct methods. For the prediction of conformational B-cell epitope in surface protein
in SARSCoV2, Lon et al. employed the SEPPA3.0 and Ellipro servers [51]. Ellipro, EPSVR,
and DiscoTope servers were used in another investigation to discover potent B- and T-cell
epitopes of four structural proteins of SARS-CoV-2 [52].

Table 2. Score changes of immunogenic residues according to conformational B-cell epitope predictor
servers alongside prediction of overall stability through SDM2 server.

Wild Type and Mutant
Residues

DiscoTope Score
Threshold: −3.7

EPSVR
Score

SEPPA
Score

Threshold: 0.089

Ellipro Conformational
Score

Threshold: 0.5

Pseudo ∆∆G of
Protein Stability

Wild type: T82 −3.58 94 0.190 0.734 -

T82A −4.96 76 0.169 0.733 0.12
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Wild type: T100 −3.37 90 0.223 0.734 -

T100A −4.4 86.00 0.337 0.732 0.35
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Wild type: D101 −2.41 90 0.247 0.734 -

D101V −4.33 82.00 0.260 0.735 −0.26
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Wild type: Q121 −1.65 87 0.088 0.572 -

Q121A −3.96 67.00 0.046 0.567 0.24
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epitopes [53,54]. The accessibility of side chains could be reduced as a result of mutations 

to small side chain amino acids, resulting in a reduction in antigenicity. According to the 

SDM server and Discovery studio results, the most reduction in residues accessibility was 

observed in R149A (Table 3). However, following mutation, the N146V mutant revealed 

the most accessible residues among the others. 
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Wild type: N146 −2.53 96 0.234 0.713 -

N146V −5.22 75.00 0.200 0.723 0.02
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validation servers, and the results were highly acceptable (Supplementary Table S4), ex-

cept for the D101V mutation, which showed a small drop in ERRAT output (from 97.51 to 

95.85) and a decline in the number of residues in the favored region in Ramachandran plot 

(decreased from 93.4 to 93). Nonetheless, this reduction was unimportant because D101V 

conformational structure reliability remained within the acceptable limit. Side chain ac-

cessibility and hydrophobicity are two features that play a role in immunogenicity. Resi-

dues that are more accessible and, as a result, more hydrophilic can be more likely to form 

epitopes [53,54]. The accessibility of side chains could be reduced as a result of mutations 

to small side chain amino acids, resulting in a reduction in antigenicity. According to the 

SDM server and Discovery studio results, the most reduction in residues accessibility was 

observed in R149A (Table 3). However, following mutation, the N146V mutant revealed 

the most accessible residues among the others. 

Furthermore, after evaluating the attributes of point mutations, we opted to create a 

PAM model by combining all point mutations into a single model. As a result, the Galaxy 

server predicted and refined the favored model of PAM. A final model’s validation scores 

corresponded to permissible values across all validation servers (Supplementary Tables 

S5 and S6). Subsequently, it was discovered that there was a remarkable reduction in the 

number of shared Immunogenic residues by using servers computing conformational B-

cell epitopes. Although certain residues remained immunogenic, no residues were found 

Wild type: D147 −3.65 98 0.075 0.758 -

D147A −5.85 96.00 0.063 0.722 0.15

J 2023, 6, FOR PEER REVIEW  10 
 

is considerably dependent on conformational structure [49]. There are several methods and 

servers which could predict conformational B-cell epitope. Each server takes into account a 

variety of factors and by using a combination of servers, identifying immunogenic areas could 

be more precise [50]. The PAC epitopes were defined using four conformational B-cell epitope 

prediction systems with four distinct methods. For the prediction of conformational B-cell 

epitope in surface protein in SARSCoV2, Lon et al. employed the SEPPA3.0 and Ellipro servers 

[51]. Ellipro, EPSVR, and DiscoTope servers were used in another investigation to discover 

potent B- and T-cell epitopes of four structural proteins of SARS-CoV-2 [52]. 

Table 2. Score changes of immunogenic residues according to conformational B-cell epitope pre-

dictor servers alongside prediction of overall stability through SDM2 server. 

Wild Type and Mutant Res-

idues  

DiscoTope Score-

huyunThreshold: 

−3.7 

EPSVRhuyun-

Score 

SEPPAhuyunScorehuyun-

Threshold: 0.089 

Ellipro Conforma-

tionalhuyunScorehuyun-

Threshold: 0.5 

Pseudo ΔΔG 

of Protein 
Stability 

Wild type: T82 −3.58 94 0.190 0.734 -  

T82A −4.96 76 0.169 0.733 0.12 
 

Wild type: T100 −3.37 90 0.223 0.734 -  

T100A −4.4 86.00 0.337 0.732 0.35 
 

Wild type: D101 −2.41 90 0.247 0.734 -  

D101V −4.33 82.00 0.260 0.735 −0.26 
 

Wild type: Q121 −1.65 87 0.088 0.572 -  

Q121A −3.96 67.00 0.046 0.567 0.24 
 

Wild type: N146 −2.53 96 0.234 0.713 -  

N146V −5.22 75.00 0.200 0.723 0.02 
 

Wild type: D147 −3.65 98 0.075 0.758 -  

D147A −5.85 96.00 0.063 0.722 0.15 
 

Wild type: R149 −3.65 94 0.073 0.758 -  

R149A −6.15 88.00 0.051 0.654 0.33 
 

3.4. Validation Analysis and Investigating Further Properties of Mutants 

Because the mutants were obtained from the SDM2 server, it was required to assess 

their 3D structure validation once again. For this purpose, all mutants were subjected to 

validation servers, and the results were highly acceptable (Supplementary Table S4), ex-

cept for the D101V mutation, which showed a small drop in ERRAT output (from 97.51 to 

95.85) and a decline in the number of residues in the favored region in Ramachandran plot 

(decreased from 93.4 to 93). Nonetheless, this reduction was unimportant because D101V 

conformational structure reliability remained within the acceptable limit. Side chain ac-

cessibility and hydrophobicity are two features that play a role in immunogenicity. Resi-

dues that are more accessible and, as a result, more hydrophilic can be more likely to form 

epitopes [53,54]. The accessibility of side chains could be reduced as a result of mutations 

to small side chain amino acids, resulting in a reduction in antigenicity. According to the 

SDM server and Discovery studio results, the most reduction in residues accessibility was 

observed in R149A (Table 3). However, following mutation, the N146V mutant revealed 

the most accessible residues among the others. 

Furthermore, after evaluating the attributes of point mutations, we opted to create a 

PAM model by combining all point mutations into a single model. As a result, the Galaxy 

server predicted and refined the favored model of PAM. A final model’s validation scores 

corresponded to permissible values across all validation servers (Supplementary Tables 

S5 and S6). Subsequently, it was discovered that there was a remarkable reduction in the 

number of shared Immunogenic residues by using servers computing conformational B-

cell epitopes. Although certain residues remained immunogenic, no residues were found 

Wild type: R149 −3.65 94 0.073 0.758 -

R149A −6.15 88.00 0.051 0.654 0.33

J 2023, 6, FOR PEER REVIEW  10 
 

is considerably dependent on conformational structure [49]. There are several methods and 

servers which could predict conformational B-cell epitope. Each server takes into account a 

variety of factors and by using a combination of servers, identifying immunogenic areas could 

be more precise [50]. The PAC epitopes were defined using four conformational B-cell epitope 

prediction systems with four distinct methods. For the prediction of conformational B-cell 

epitope in surface protein in SARSCoV2, Lon et al. employed the SEPPA3.0 and Ellipro servers 

[51]. Ellipro, EPSVR, and DiscoTope servers were used in another investigation to discover 

potent B- and T-cell epitopes of four structural proteins of SARS-CoV-2 [52]. 

Table 2. Score changes of immunogenic residues according to conformational B-cell epitope pre-

dictor servers alongside prediction of overall stability through SDM2 server. 

Wild Type and Mutant Res-

idues  

DiscoTope Score-

huyunThreshold: 

−3.7 

EPSVRhuyun-

Score 

SEPPAhuyunScorehuyun-

Threshold: 0.089 

Ellipro Conforma-

tionalhuyunScorehuyun-

Threshold: 0.5 

Pseudo ΔΔG 

of Protein 
Stability 

Wild type: T82 −3.58 94 0.190 0.734 -  

T82A −4.96 76 0.169 0.733 0.12 
 

Wild type: T100 −3.37 90 0.223 0.734 -  

T100A −4.4 86.00 0.337 0.732 0.35 
 

Wild type: D101 −2.41 90 0.247 0.734 -  

D101V −4.33 82.00 0.260 0.735 −0.26 
 

Wild type: Q121 −1.65 87 0.088 0.572 -  

Q121A −3.96 67.00 0.046 0.567 0.24 
 

Wild type: N146 −2.53 96 0.234 0.713 -  

N146V −5.22 75.00 0.200 0.723 0.02 
 

Wild type: D147 −3.65 98 0.075 0.758 -  

D147A −5.85 96.00 0.063 0.722 0.15 
 

Wild type: R149 −3.65 94 0.073 0.758 -  

R149A −6.15 88.00 0.051 0.654 0.33 
 

3.4. Validation Analysis and Investigating Further Properties of Mutants 

Because the mutants were obtained from the SDM2 server, it was required to assess 

their 3D structure validation once again. For this purpose, all mutants were subjected to 

validation servers, and the results were highly acceptable (Supplementary Table S4), ex-

cept for the D101V mutation, which showed a small drop in ERRAT output (from 97.51 to 

95.85) and a decline in the number of residues in the favored region in Ramachandran plot 

(decreased from 93.4 to 93). Nonetheless, this reduction was unimportant because D101V 

conformational structure reliability remained within the acceptable limit. Side chain ac-

cessibility and hydrophobicity are two features that play a role in immunogenicity. Resi-

dues that are more accessible and, as a result, more hydrophilic can be more likely to form 

epitopes [53,54]. The accessibility of side chains could be reduced as a result of mutations 

to small side chain amino acids, resulting in a reduction in antigenicity. According to the 

SDM server and Discovery studio results, the most reduction in residues accessibility was 

observed in R149A (Table 3). However, following mutation, the N146V mutant revealed 

the most accessible residues among the others. 

Furthermore, after evaluating the attributes of point mutations, we opted to create a 

PAM model by combining all point mutations into a single model. As a result, the Galaxy 

server predicted and refined the favored model of PAM. A final model’s validation scores 

corresponded to permissible values across all validation servers (Supplementary Tables 

S5 and S6). Subsequently, it was discovered that there was a remarkable reduction in the 

number of shared Immunogenic residues by using servers computing conformational B-

cell epitopes. Although certain residues remained immunogenic, no residues were found 

3.4. Validation Analysis and Investigating Further Properties of Mutants

Because the mutants were obtained from the SDM2 server, it was required to assess
their 3D structure validation once again. For this purpose, all mutants were subjected
to validation servers, and the results were highly acceptable (Supplementary Table S4),
except for the D101V mutation, which showed a small drop in ERRAT output (from 97.51
to 95.85) and a decline in the number of residues in the favored region in Ramachandran
plot (decreased from 93.4 to 93). Nonetheless, this reduction was unimportant because
D101V conformational structure reliability remained within the acceptable limit. Side
chain accessibility and hydrophobicity are two features that play a role in immunogenicity.
Residues that are more accessible and, as a result, more hydrophilic can be more likely
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to form epitopes [53,54]. The accessibility of side chains could be reduced as a result
of mutations to small side chain amino acids, resulting in a reduction in antigenicity.
According to the SDM server and Discovery studio results, the most reduction in residues
accessibility was observed in R149A (Table 3). However, following mutation, the N146V
mutant revealed the most accessible residues among the others.

Furthermore, after evaluating the attributes of point mutations, we opted to create
a PAM model by combining all point mutations into a single model. As a result, the
Galaxy server predicted and refined the favored model of PAM. A final model’s validation
scores corresponded to permissible values across all validation servers (Supplementary
Tables S5 and S6). Subsequently, it was discovered that there was a remarkable reduction in
the number of shared Immunogenic residues by using servers computing conformational
B-cell epitopes. Although certain residues remained immunogenic, no residues were found
to be shared by all of the servers (data not shown). Therefore, it could be concluded that
the most immunogenic epitopes were successfully eliminated in the PAM model.

Table 3. Accessibility and hydrophobicity of residues before and after mutation. The R149A mutant
revealed the most decrease in Side chain accessibility in both SDM and Discovery studio. By exploiting
mutation to short side chain and non-polar amino acids, it is clear that hydrophobicity of all mutants
has been increased, which could bring about a reduction in antigenicity.

Mutant

Side Chain Accessibility
% (SDM)

Side Chain Accessibility
(Discovery Studio)

Hydrophobicity
(Kyte and Doolittle)

Original Residue Mutant Original Residue Mutant Original Residue Mutant

T82A 103.3 92.7 94.15 49.31 −0.7 1.8

T100A 74.1 66.7 64.80 38.74 −0.7 1.8

D101V 92.4 92.4 81.99 85.54 −3.5 4.2

Q121A 81.4 80.5 115.71 47.29 −3.5 1.8

N146V 104 96.3 104.95 96.61 −3.5 4.2

D147A 42.9 46 37.68 20.63 −3.5 1.8

R149A 57.4 45.5 116.47 29.68 −4.5 1.8

3.5. Molecular Docking

Molecular docking and molecular dynamic modeling were used to ensure that muta-
tions had no effect on the protein’s function. It was essential to obtain protein and ligand
complexes to operate the MD simulation. Therefore, molecular docking was exploited
initially by AutoDock Vina. This software uses a flexible docking algorithm based on
Monte Carlo simulated dockings [37]. Docking findings revealed that approximately all
ten residues of either wild type or mutants having a function at active site (based on
homology to other type 2 RIPs) were involved in interacting with the CGAGAG ligand,
even though all mutated amino acids did not contribute in interaction with ligand (sup-
plementary Table S7). More precisely, in the N146V docking result, all predicted residues
in the active site interacted with CGAGAG, and Q121A docking output represented the
least contribution in having interaction with ligand by participating seven amino acids out
of ten in the interaction process. Pulchellin belongs to the family of rRNA N-glycosylases,
and it has been documented that the A-chain of type 2 RIPs cleaves a single adenine base in
the GAGA loop [55]. Olson employed CGAGAG sequence as a ligand for interacting with
Ricin in part of a research. They demonstrated that using oligonucleotide ligand rather than
just adenine is more accurate [56]. As a result, the current investigation adopted CGAGAG
oligonucleotide as a ligand. In addition to PAC, we also used the A-chain of Abrin-A
(1ABR) as the control for two reasons; first, it is classified as rRNA N- glycosylase, same as
pulchellin, and as opposed to pulchellin, the crystallography structure of Abrin-A RIP has
been released on Protein Data Bank server. We were able to discover critical interactions
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between the binding site of receptors and the ligand, including hydrogen bonds, π-π inter-
actions, and π-sigma interactions, by exploiting the Discovery studio visualizer. Table 4
exhibits the number of several forms of interaction. According to these findings, T82A
formed the maximum number of hydrogen bonds (21 H-bonds) compared to PAC, which
had 7 bonds. There were no ligand-receptor π-π interactions in PAC or Q121A whereas,
D101V and R149A disclosed the greatest number (six π-π interactions). The highest number
of π-interactions was reported by N146V with 8 and D147A did not form any π-Sigma
interaction with ligand. By and large, practically every mutant revealed that they can
interact with ligands appropriately. Besides, in comparison to other mutants and Abrin-A,
PAM demonstrated an acceptable number of interactions with ligand, suggesting that it
would be a promising mutant for use in the next experimental work. Although molecular
docking offers valuable data, it might be insufficient to screen mutants. Therefore, MD
simulation was used to evaluate the attributes of mutants more precisely by utilizing RMSD,
gyrate, H-bonds, and binding energies.

Table 4. Molecular docking analysis of mutants interacting with CGAGAG. Bold and underlined
values represent the most and the least number of bonds or interactions, respectively.

Number of Bonds or
Interactions

PAC
Wild Type

PAC Mutants
PAM Abrin-A

T82A T100A D101V Q121A N146V D147A R149A

Number of H-bonds 7 21 11 15 10 14 15 16 15 6

Number of π-π interactions 0 3 2 6 0 2 4 6 1 2

Number of π–Sigma
interactions 5 1 1 2 1 8 0 3 2 2

3.6. Molecular Dynamic Simulation

In the next step, MD simulation was performed to evaluate some main dynamic trajec-
tories, including RMSD, RMSF, Rg, SASA, and hydrogen bonding of docked complexes.
The last frame of each protein-ligand complex obtained from MD simulations is shown in
Figure 4. To get more insights into mutant MD results, the simulations of PAC wild type
and Abrin-A in complexes with ligand were performed simultaneously. Each toxin-ligand
complex’s simulation parameters and plot are described as average values (Figure 5).
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indicating the reasonable compactness of complexes. (E) The mean number of H-bonds be-tween
mutants or toxins and their ligand during a 100 ns MD simulation. (F) Average values of toxins-
ligand complexes parameters obtained through simulation. Bold and underline boxes represented
the highest and the least desirable values, respectively.



J 2023, 6 97

The spatial variation of mutants and wild type in the presence of Abrin-A was investi-
gated using RMSD and RMSF. Attempting to assess the level of stability to examine the
flexibility of the backbone structure of mutants or toxins, the RMSD of protein-ligand com-
plexes was computed against their original structure. Protein structure would possess high
stability when the RMSD value is in its minimum amount. After about five nanoseconds of
simulation, the RMSD of mutants and toxins in the complex with CGAGAG begins to stabi-
lize, according to the results. During the 100 ns MD simulation, there was no significant
variation in the RMSDs, indicating that all complexes were consistent. D147A disclosed the
least RMSD (0.32) among all mutants and wild type toxins, indicating excellent stability.
Following that, the RMSF of protein portion in all complexes was determined to quantify
residual flexibility over MD simulation. Except for wild type, N146V and D147A which
residues showed RMSF value over 6 Å at some spots, almost all protein residues in all
mutants revealed no considerable variation in the residual level. Average fluctuations
of mutants’ residues were observed to be diminished upon ligand binding compared to
wild type, which indicates that mutations not only did not disrupt the toxin stability but
lowered the residual fluctuations. Moreover, the behavior of wildtype and mutant residues
fluctuated similarly to that of Abrin-A. Kandasamy et al. evaluated the residual flexibility
and stability of the Protein-ligand combination using RMSD and RMSF. They demonstrated
that the lower value of these two factors is close associated with the higher stability of the
complexes [57]. Additionally, in complex with CGAGAG, PAM demonstrated acceptable
RMSF value and revealed a similar RMSD rate to Abrin-A. This result could bring about
promising hope for using PAM model for in vitro application.

The solvent-accessible surface area and radius of gyration of mutants were determined
to analyze their intactness. The SASA was estimated by measuring the whole area of
the protein surface, and the radius of gyration was calculated by measuring the distance
between the protein’s center of mass and both termini. A significant variation in these
values implies that the protein structure has been disrupted. Tjoa et al. employed SASA
and Rg parameters to evaluate the compactness of mutants compared to wild type in
the MD simulation section of their investigation. They revealed less structural change,
reflecting greater conformational tightness [58]. In this study, during 100 ns MD simulation,
substantial variations were not observed in the SASA and Rg values of mutants or toxins
when they bind to ligand.

When SASA and Rg values are compared between wildtype and point mutation model
complexes, it is evident that they are comparable. Furthermore, these values are strikingly
similar in Abrin-A and PAM model, suggesting that a model of pulchellin containing all
mutations could be a good choice for creating immunotoxin.

MD simulations estimated the hydrogen bonds within 0.35 nm between mutations or
toxins and ligand in a solvent setting to further confirm the docked complexes’ stability. The
directionality and specificity of contact provided by hydrogen bonding between proteins
and molecules are critical for molecular recognition [59]. According to the H-bond results,
D147A created the most H-bonds, with an average of 9–11 H-bonds, as opposed to N146V,
which formed the fewest H-bonds (average of 4–6). Additionally, the average number of
H-bonds created in the PAM was greater than in the Abrin-A complex, demonstrating
further confirmation of PAM validity.

3.7. Estimation of Binding Free Energy

The MM-PBSA method was utilized to more thoroughly describe the energy behavior
of mutants in complex with CGAGAG. To comprehend the interactions between proteins
and ligands, the Molecular Mechanics Poisson-Boltzmann Surface Area method has been
extensively used and is regarded as a reputable free energy simulation technique [60]. The
binding free energy was calculated by employing the gmx_MMPBSA to compute the latest
500 snapshots of each protein-ligand complex.
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The binding free energy was calculated using this formula:

∆Gbind = ∆Gcomplex − ∆Gprotein − ∆Gligand

where ∆Gbind represents the binding free energy, ∆Gcomplex (free energy of complex),
∆Gprotein (free energy of protein), and ∆Gligand (free energy of ligand).

Comparing PAC and PAM, PAC has a greater ∆Gbind quantity, suggesting a weaker
interaction with CGAGAG, whereas PAM has the lowest ∆Gbind values, reflecting the
strongest ligand affinity among the mutants (Figure 6). The fact that all complexes showed
a positive quantity of G bind which could be due to the large structure of the ligand
involved in the complex.
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Figure 6. Binding free energy of complexes. For 500 frames taken from the last 5 ns of the MD
simulation, binding free energy was calculated using the gmx_MMPBSA tool. In comparison to
Abrin-A and other mutants, the PAM in interaction with the ligand represented a significant amount
of binding energy.

4. Conclusions

In conclusion, utilizing in silico approaches could eliminate B-cell epitopes, resulting
in less immunogenic ITs. Here, the immunogenic portions of pulchellin were identified
using in silico analysis of conformational B cell epitopes, and these regions were then
substituted with less immunogenic residues to generate seven mutants. Once mutants
were obtained, their properties, such as immunogenicity, stability, and ligand binding, were
assessed. The toxin candidate containing all mutations (PAM model) has the maximum
stability and the lowest immunogenic areas, which makes it a promising candidate for
experimental development. It should be highlighted that this study, based on in silico
methodologies proposing potential models, could serve as a foundation for a larger project
and calls for being supported by experimental validations.
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