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Abstract: The two-parameter logistic (2PL) item response model is likely the most frequently applied
item response model for analyzing dichotomous data. Linking errors quantify the variability in
means or standard deviations due to the choice of items. Previous research presented analytical work
for linking errors in the one-parameter logistic model. In this article, we present linking errors for
the 2PL model using the general theory of M-estimation. Linking errors are derived in the case of
log-mean-mean linking for linking two groups. The performance of the newly proposed formulas
is evaluated in a simulation study. Furthermore, the linking error estimation in the 2PL model is
also treated in more complex settings, such as chain linking, trend estimation, fixed item parameter
calibration, and concurrent calibration.
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1. Introduction

Item response theory (IRT) models [1,2] are an important class of multivariate statistical
models for analyzing dichotomous random variables used to model testing data from
educational or psychological applications. Of particular relevance is the application of item
response models in educational large-scale assessments [3], such as the programme for
international student assessment (PISA; [4]) study.

In this article, we only investigate unidimensional IRT models. Let X = (X1, . . . , XI)
be the vector of I dichotomous random variables Xi ∈ {0, 1} (also referred to as items). A
unidimensional item response model [5] is a statistical model for the probability distribution
P(X = x) for x = (x1, . . . , xI) ∈ {0, 1}I , where

P(X = x; δ, γ) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
φ(θ; µ, σ)dθ , (1)

where φ is the density of the normal distribution with mean µ and standard deviation σ.
The vector δ = (µ, σ) contains the distribution parameters. The vector γ = (γ1, . . . , γI)
contains all estimated item parameters of item response functions Pi(θ; γi) = P(Xi = 1|θ).

The one-parameter logistic (1PL) model (also referred to as the Rasch model; [6])
employs the item response function Pi(θ) = Ψ(θ − bi), where Ψ denotes the logistic
distribution function, and bi is the item difficulty of item i. In this case, γi = (bi). The
two-parameter logistic (2PL) model [7] additionally includes the item discrimination ai (i.e.,
γi = (ai, bi)), and the item response function is given by Pi(θ) = Ψ(ai(θ − bi)).

Note that distribution parameters δ and item parameters γ cannot be simultaneously
identified. In applications such as PISA in which a country mean µ and a country standard
deviation σ, item parameters γi are often fixed at values γ∗i that are used for all countries.
In this situation, µ and σ can be identified. If sample data x1, . . . , xN for N persons are
available, unknown model parameters in (1) can be estimated by (marginal) maximum
likelihood (ML) using an expectation maximization algorithm [8,9].

In practice, data-generating item parameters γi differ from assumed fixed item pa-
rameters γ∗i . This property is also referred to as differential item functioning (DIF; [10,11]).
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DIF effects ei are defined as deviations ei = γi − γ∗i . The occurrence of DIF causes addi-
tional variability in the estimated (country) mean µ and standard deviation σ [12,13]. The
estimated distribution parameters depend on the choice of selected items, even in infinite
sample sizes of persons. This variability is quantified in the linking error [14–19].

There exist simple formulas for linking errors based on variance components for
the 1PL model [15,17]. For more complex models, resampling techniques [20,21] such as
jackknife [15,17] or the (balanced) half sampling [18] of items can be employed. In this
article, we provide closed formulas for the linking error for the 2PL model in various
applications based on the M-estimation theory. The proposed formulas have the advantage
of avoiding computationally more demanding resampling approaches for computing
linking errors.

The rest of this article is structured as follows. The foundation of the M-estimation
theory for the application of the computation of the linking error in the 2PL model is
presented in Section 2. The specialization of M-estimation to log-mean-mean linking is
treated in Section 3. The performance of the newly proposed linking errors is investigated
in a simulation study in Section 4. Section 5 provides a further analytical treatment of the
linking error in the 2PL model to more complex applications. Finally, this article closes
with a discussion in Section 6.

2. Linking Error and M-Estimation

In this section, we discuss the computation of the linking error in the 2PL model for
two groups. We do this in a general setting of M-estimation theory [22–24] because our
treatment will apply to many of the recently discussed linking methods. However, we
focus on log-mean-mean linking in this article as an important example in Sections 3 and 4.

Assume that the 2PL model holds in two groups g = 1, 2 or two time points. The goal
is to determine the mean µ and the standard deviation σ of the second group, while the
first group is assumed to have a mean of 0 and a standard deviation of 1. The DIF effects fi
and ei for logarithmized item discriminations and item difficulties follow

log ai2 = log ai1 + fi
bi2 = bi1 + ei

. (2)

It is assumed that fi and ei are independently and identically distributed with zero
means and variances τ2

a , τ2
b , and the covariance is defined as Cov(ei, fi) = τab.

In the first step of the linking approach, the 2PL model is separately estimated in each
of the two groups. Because the ability θ for the first group has zero mean and a standard
deviation of 1, the identified item parameters âi1 and b̂i1 equal the data-generating item
parameters ai1 and bi1, respectively, (i = 1, . . . , I). In the second group, we fix the mean to 0
and the standard deviation to 1 and obtain identified parameters

âi2 = σai2 and b̂i2 = σ−1(bi2 − µ) . (3)

In the second step of the linking approach, identified item parameters {(âi1, b̂i1)}
and {(âi2, b̂i2)} are used in determining the mean µ and the standard deviation σ in the
second group. Note that we assume that identified item parameters are known. Hence, we
implicitly have infinite sample sizes of persons. In practice, we estimate item parameters
from finite sample sizes. Appropriate adjustments are discussed in Section 5.8.

A general estimating equation of the type

I

∑
i=1

g(δ; âi1, b̂i1, âi2, b̂i2) =
I

∑
i=1

g(δ; ai1, bi1, fi, ei) = 0 (4)

is employed for determining the parameter δ = (σ, µ) or δ = (s, µ) with s = log σ as the
distribution parameters of interest. M-estimation theory provides the asymptotic variance
in an estimate δ̂. Because linking errors refer to the uncertainty regarding item choice, this
asymptotic variance can be used to compute the linking error.
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In the two-group 2PL case, we have two unknown distribution parameters σ (or
s = log σ) and µ. Hence, g = (g1, g2) involves two equations for two unknowns that must
be solved. The two M-estimation equations of the linking approaches can be generally
written as

I

∑
i=1

g1(δ; ai1, bi1, fi, ei) = 0

I

∑
i=1

g2(δ; ai1, bi1, fi, ei) = 0
(5)

M-estimation theory provides the asymptotic variance (for I → ∞) for the estimate δ̂ with
the sandwich formula [22]

VI(δ̂) = AI(δ̂)
−1BI(δ̂)AI(δ̂)

−1 . (6)

The matrix AI is denoted as the bread matrix, while the matrix BI is referred to as the meat
matrix. The latter matrix is given by

BI(δ) =
I

∑
i=1

Var
(

g(δ; ai1, bi1, fi, ei)g(δ; ai1, bi1, fi, ei)
>
)

, (7)

where Var denotes a covariance matrix. The bread matrix AI is given as

AI(δ) =
I

∑
i=1

E
(

∂g
∂δ

(δ; ai1, bi1, fi, ei)

)
. (8)

The two matrices in Equations (7) and (8) require the computation of expected values
and variances of random variables. If these were unavailable or the quantities could not
be algebraically determined, sample-based versions of the bread and the meat matrix are
frequently used [23]. The meat matrix BI can be estimated based on sample data using (7)

B̂I(δ̂) =
I

∑
i=1

g(δ̂; âi1, b̂i1, âi2, b̂i2)g(δ̂; âi1, b̂i1, âi2, b̂i2)
> . (9)

An empirical version of AI is given by

ÂI(δ̂) =
I

∑
i=1

∂g
∂δ

(δ̂; âi1, b̂i1, âi2, b̂i2) . (10)

If AI(δ̂) and BI(δ̂) are used for computing the variance matrix for δ̂ (i.e., VI,ESW(δ̂)),
the estimate is denoted as the expected sandwich (ESW) estimate. The observed sandwich
(OSW) estimate is obtained by using ÂI(δ̂) and B̂I(δ̂) in the formula of the variance matrix
(i.e., VI,OSW(δ̂)). Finally, a bias-corrected observed sandwich (BOSW) is obtained by using
VI,BOSW(δ̂) = I/(I − 1)VI,OSW(δ̂) (see [25–27]).

We want to emphasize that M-estimation theory is not restricted to applications of
linking approaches for two groups and two distribution parameters. The parameter δ
can be of any finite dimensionality and could, for example, involve 2(G − 1) unknown
parameters for linking G groups.

M-estimation theory was applied in the investigation of DIF and linking in [28–30].
The simultaneous treatment of standard errors and linking errors in IRT models relying on
M-estimation was presented in [18,31] (see also [32]).
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3. Linking Error of Log-Mean-Mean Linking

We now apply the M-estimation of computing linking errors to log-mean-mean
linking [33,34] for linking two groups in the 2PL model. The logarithm of the standard
deviation s = log σ is estimated by

ŝ =
1
I

I

∑
i=1

(log âi2 − log âi1) . (11)

It can be shown that ŝ is an unbiased and consistent estimate for s [34]. Moreover, σ̂ is
obtained by computing σ̂ = exp(ŝ).

An estimate of the group mean µ is obtained using

µ̂ =
1
I

I

∑
i=1

(
exp(ŝ)b̂i2 − b̂i1

)
. (12)

We can reformulate (11) and (12) as M-estimators

I

∑
i=1

g1(δ; ai1, bi1, fi, ei) =
I

∑
i=1

(log âi2 − log âi1 − s) = 0 and (13)

I

∑
i=1

g2(δ; ai1, bi1, fi, ei) =
I

∑
i=1

(
exp(s)b̂i2 − b̂i1 + µ

)
= 0 (14)

using g = (g1, g2). Now, we determine the linking errors for σ̂ and µ̂ in log-mean-mean
linking using the sandwich formula (6) of M-estimation. First, we compute the variance
matrix of g. We obtain using âi2 = ai1 exp(s) exp( fi) and b̂i2 = σ−1(bi1 − µ)

I

∑
i=1

Var(g1(δ; ai1, bi1, fi, ei)) =
I

∑
i=1

Var(log âi2 − log âi1 − s) =
I

∑
i=1

Var( fi) = Iτ2
a , (15)

I

∑
i=1

Cov(g1(δ; ai1, bi1, fi, ei), g2(δ; ai1, bi1, fi, ei)) =
I

∑
i=1

Cov( fi, ei) = Iτab , and (16)

I

∑
i=1

Var(g2(δ; ai1, bi1, fi, ei)) =
I

∑
i=1

Var(ei) = Iτ2
b . (17)

Hence, it follows that

BI(δ̂) = I
(

τ2
a τab

τab τ2
b

)
(18)

Now, we compute derivatives of g with respect to s and µ and obtain the bread
matrix as

AI(δ̂) =


∂g1

∂s
∂g1

∂µ

∂g2

∂s
∂g2

∂µ

 = I
(

−1 0
−(µ− b•1) 1

)
(19)

The inverse of the bread matrix can be determined as

AI(δ̂)
−1 = −I−1

(
1 0

µ− b•1 −1

)
(20)

Formulas (18) and (19) involve unknown parameters τa, τb, τab, and µ that must be
estimated. The quantities fi and ei can be replaced with their sample estimates to estimate
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unknown variances and covariances in the AI and BI matrices. We obtain the expected
sandwich estimator (ESW) VI,ESW using Equation (6) by

AI,ESW(δ̂) = I
(

−1 0
−(µ̂− b•1) 1

)
and BI,ESW(δ̂) = I

(
τ̂2

a τ̂ab
τ̂ab τ̂2

b

)
. (21)

The observed sandwich (OSW) estimate VI,OSW uses empirical moments in the estima-
tion. First, the bread matrix is estimated by

AI,OSW(δ̂) =


−I 0

exp(s)
I

∑
i=1

b̂i2 I

 . (22)

The meat matrix is estimated by

BI,OSW(δ̂) =


I

∑
i=1

(log âi2 − log âi1 − ŝ)2
I

∑
i=1

(log âi2 − log âi1 − ŝ)(exp(ŝ)b̂i2 − b̂i1 + µ̂)

I

∑
i=1

(log âi2 − log âi1 − ŝ)(exp(ŝ)b̂i2 − b̂i1 + µ̂)
I

∑
i=1

(exp(ŝ)b̂i2 − b̂i1 + µ̂)2

 (23)

Finally, we use a bias-corrected variant of the observed sandwich estimator [27] as

VI,BOSW =
I

I − 1
VI,OSW . (24)

Linking errors can be obtained as square roots of the diagonal elements of the variance
matrices V . The linking error for ŝ based on the ESW estimate is given by

LE(ŝ) =
τ̂a√

I
. (25)

By utilizing the delta method, we can obtain the linking error for σ̂ = exp(ŝ) as

LE(σ̂) = σ̂
τ̂a√

I
. (26)

Finally, the linking error for µ̂ can be estimated by

LE(µ̂) =

√
τ̂2

b + (µ̂− b•1)2τ̂2
a − 2(µ̂− b•1)τ̂ab

I
. (27)

In the absence of a nonuniform DIF, we have τ̂2
a = τ̂ab = 0, and the linking error for

the 1PL model is obtained from (27)

LE(µ̂) =
τ̂b√

I
. (28)

Interestingly, the presence of a nonuniform DIF (τ2
a > 0) introduces additional uncertainty

in computing the group mean. However, there is only an effect of a nonuniform DIF if
the average item difficulty does not match the group mean (i.e., µ̂− b•1 6= 0). In typical
applications, the third term 2(µ̂− b•1)τ̂ab in (27) will be much more important than the
second term (µ̂− b•1)2τ̂2

a . Hence, a nonuniform DIF particularly plays an important role if
uniform and nonuniform DIF effects are strongly correlated.
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4. Simulation Study
4.1. Method

In this simulation study, we investigate the performance of different linking error
estimates for the log-mean-mean linking approach in the 2PL model. In particular, we
compare the jackknife linking error (JK) with linking errors obtained by the empirical
sandwich (ESW), observed sandwich (OSW), and the bias-corrected observed sandwich
(BOSW) estimates. The formulas for the sandwich estimates are presented in Section 3.
The jackknife linking error estimate is computed by repeating the linking procedure when
omitting the ith item for i = 1, . . . , I. Let u = µ or u = σ be the distribution parameter of
interest and û be the corresponding estimate. Let û(−i) be the estimated parameter if item i
was removed from the linking procedure. Then, the jackknife linking error is defined as
(see [15])

LE(û) =

√√√√ I − 1
I

I

∑
i=1

(û(−i) − û)2 (29)

For identification, the first group had a zero mean and a standard deviation of the
ability variable θ. For the second group, we defined µ = −0.2 and σ = 0.9 in the simula-
tion. Item parameters for 10 items are presented in Table 1. In the simulation, we used
I = 10, 20, 40, or 80 items. For item numbers as multiples of 10, we duplicated the item
parameters of the 10 items presented in Table 1 accordingly. The standard deviation of uni-
form DIF effects ei was chosen as τb = 0.25 or 0.50. The standard deviation of nonuniform
DIF effects fi was chosen as τa = 0.01 or 0.25. The first condition mimics the case of the
practical absence of nonuniform DIF effects. The correlation of DIF effects between ei and
fi was set at 0.3 in all simulation conditions (i.e., τab = 0.3 · τaτb). Finally, we chose three
types of distributions for DIF effects ( fi, ei). We specified them as a bivariate normal copula
model and chose different marginal distributions. First, we chose the normal distribution
(i.e., denoted as “Normal”) as a marginal distribution appropriately scaled by τa and τb.
Second, we chose a scaled t distribution with four degrees of freedom (i.e., denoted as
“t4”) with an appropriate scaling factor to match the desired standard deviation of DIF
effects. Third, we use the distribution function F of a normal mixture model (i.e., denoted
as “Normal Mixture”) of the type

F = (1− ε)N(0, τ2) + εN(0, kτ2) , (30)

where k = 3 and ε = 0.05. This distribution can be interpreted as a contaminated dis-
tribution that includes a few outlying DIF effects in N(0, kτ2) with proportion ε. Such a
distribution is often employed in robust statistics [35]. For a prespecified DIF effect τb, we
obtain from (30) the determining equation τ =

(
(1− ε) + εk2)−1/2

τa.

Table 1. Simulation Study: Used item parameters of the 2PL model.

Item ai bi

1 0.73 −1.31
2 1.25 1.44
3 1.20 −1.20
4 1.47 0.10
5 0.97 0.10
6 1.38 −0.74
7 1.05 1.48
8 1.14 −0.61
9 1.15 0.82
10 0.67 −0.07

Note. ai = item discrimination; bi = item difficulty.
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To disentangle standard errors due to the sampling of persons from linking errors
due to item choice, we assumed no sampling error for identified parameters {(âi1, b̂i1)}
and {(âi2, b̂i2)}. That is, identified item parameters for the second group only vary across
replications in the simulation study because different DIF effects fi and ei were simulated
in each replication. It seems reasonable in the simulation study in the comparison of the
different M-estimation approaches with a jackknife to exclude the effects of sampling errors
because these are just another source of uncertainty in distribution parameter estimates.

In each of the 4 (I)× 2 (τb)× 2 (τa)× 3 (distribution) = 48 cells of the simulation,
40,000 replications were conducted. We assessed coverage rates at the 95% confidence level
based on the normal distribution for distribution parameter estimates. The linking error
computation for the estimated standard deviation σ̂ = exp(ŝ) utilized the delta method.

The R software [36] was used for simulation and analysis. We used the qmixnorm
function from the R package KScorrect [37] for determining quantiles in the data simulation
of DIF effects. Because analytical solutions are not available to compute a quantile function
for the normal mixture model, the qmixnorm function approximates the quantile function
using a spline function calculated from cumulative density functions for the specified
mixture distribution [37]. Quantiles for probabilities near zero or one are approximated by
taking a randomly generated sample.

4.2. Results

In Table 2, the coverage rates for the estimated mean µ̂ are presented as a function of the
standard deviation of the DIF effects, the number of items, and the type of distribution for
the DIF effects. It turned out that there were no substantial differences in the performance
of the different linking error methods with respect to the distribution types of the DIF
effects. The jackknife and the ESW estimates were very similar. The OSW estimate did
not reach the desired coverage rates in a short test (i.e., I = 10) but improved in longer
tests. Moreover, the BOSW slightly improved the OSW estimate but still was inferior to the
ESW estimate.

Table 2. Simulation Study: Coverage rates for estimated mean µ̂ as a function of the standard
deviation of DIF effects for a (τa) and b (τb), number of items (I), and the type of distribution for
DIF effects.

Normal t4 Normal Mixture

τa τb I JK ESW OSW BOSW JK ESW OSW BOSW JK ESW OSW BOSW

0.01 0.25

10 92.2 92.2 90.8 92.1 92.9 92.9 91.5 92.9 92.7 92.7 91.3 92.7
20 93.8 93.8 93.2 93.8 94.5 94.5 93.8 94.5 94.4 94.4 93.8 94.4
40 94.6 94.6 94.3 94.6 94.9 94.9 94.5 94.8 94.9 94.9 94.6 94.9
80 95.2 95.2 95.0 95.1 95.2 95.2 95.0 95.1 95.2 95.2 95.1 95.2

0.01 0.50

10 92.5 92.5 91.2 92.5 92.9 92.9 91.5 92.9 93.1 93.1 91.7 93.0
20 94.1 94.1 93.5 94.1 94.6 94.6 94.0 94.6 94.4 94.4 93.8 94.4
40 94.7 94.7 94.4 94.7 95.0 95.0 94.7 95.0 94.8 94.8 94.5 94.8
80 95.1 95.1 94.9 95.0 95.3 95.3 95.1 95.3 95.4 95.4 95.2 95.3

0.25 0.25

10 93.9 93.8 91.1 92.6 94.6 94.4 92.0 93.4 94.4 94.3 91.8 93.1
20 94.8 94.8 93.1 93.8 94.9 94.9 93.2 93.9 95.1 95.1 93.4 94.0
40 95.1 95.1 93.7 94.0 95.5 95.5 94.0 94.4 95.2 95.2 93.6 94.0
80 95.2 95.2 93.9 94.0 95.4 95.4 94.2 94.4 95.5 95.5 94.3 94.4

0.25 0.50

10 93.0 92.9 90.9 92.3 93.7 93.6 91.6 93.0 93.5 93.5 91.3 92.7
20 94.3 94.3 93.1 93.8 94.4 94.4 93.2 93.8 94.5 94.5 93.3 94.0
40 95.0 95.0 94.2 94.6 95.1 95.1 94.3 94.7 95.1 95.1 94.3 94.6
80 95.2 95.2 94.6 94.8 95.2 95.1 94.6 94.7 95.1 95.1 94.4 94.6

Note. Normal = DIF effects normally distributed; t4 = DIF effects distributed according to scaled t4 distribution;
Normal Mixture = DIF effects distributed according to contaminated mixture model; JK = linking error (LE)
estimated by jackknife; ESW = LE estimated by expected sandwich estimator; OSW = LE estimated by observed
sandwich estimator; BOSW = LE estimated by bias-corrected observed sandwich estimator; coverage rates smaller
than 92.5% or larger than 97.5% are printed in bold.
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In Table 3, the coverage rates for the estimated standard deviation σ̂ are presented as a
function of the standard deviation of the DIF effects, the number of items, and the type of
distribution for the DIF effects. The OSW and BOSW had particular issues in the coverage
rates with very small nonuniform DIF effects. These issues also remained in the longer
tests. However, the estimated standard deviations of the nonuniform DIF effects τ̂a turned
out to be unbiased and can be detectable in such situations to indicate that linking errors
for σ̂ would be tiny in this situation. Hence, the practical absence of nonuniform DIF effects
using the simulation condition τa = 0.01 might not be very realistic, and future studies
could investigate the performance using τa = 0.10.

Table 3. Simulation Study: Coverage rates for estimated standard deviation σ̂ as a function of the
standard deviation of DIF effects for a (τa) and b (τb), number of items (I), and the type of distribution
for DIF effects.

Normal t4 Normal Mixture

τa τb I JK ESW OSW BOSW JK ESW OSW BOSW JK ESW OSW BOSW

0.01 0.25

10 92.6 92.6 86.1 87.3 92.9 92.9 84.9 86.2 92.9 92.9 85.3 86.7
20 93.8 93.8 83.0 83.8 94.5 94.5 82.1 82.8 94.4 94.4 82.5 83.3
40 94.6 94.6 80.2 80.6 95.0 95.0 79.1 79.5 94.9 94.9 79.2 79.5
80 95.2 95.2 77.9 78.1 95.1 95.1 76.2 76.4 95.0 95.0 76.3 76.6

0.01 0.50

10 92.1 92.2 92.3 93.0 93.2 93.2 91.8 92.6 93.0 93.0 92.2 92.9
20 94.1 94.1 91.3 91.7 94.4 94.4 90.7 91.2 94.2 94.2 90.8 91.3
40 94.5 94.5 91.3 91.6 94.8 94.8 90.6 90.8 94.9 94.9 90.7 90.9
80 95.1 95.1 93.7 93.7 95.0 95.0 92.5 92.6 95.3 95.3 92.9 93.0

0.25 0.25

10 92.3 92.3 89.8 91.3 93.1 93.1 90.5 92.0 92.6 92.6 90.0 91.4
20 93.8 93.8 92.4 93.0 94.5 94.5 93.0 93.6 94.2 94.2 92.7 93.3
40 94.7 94.7 93.6 93.9 95.1 95.1 93.9 94.3 94.7 94.7 93.7 94.0
80 94.9 94.9 94.0 94.2 95.2 95.2 94.3 94.5 95.2 95.2 94.3 94.5

0.25 0.50

10 92.3 92.3 87.7 89.3 93.0 92.9 88.2 89.7 92.7 92.6 88.0 89.5
20 94.1 94.1 91.2 91.8 94.3 94.3 91.2 91.9 94.1 94.1 90.9 91.6
40 94.8 94.8 92.7 93.0 94.9 94.9 92.7 93.0 94.9 94.9 92.7 93.1
80 95.1 95.1 93.3 93.4 95.4 95.4 93.5 93.7 95.1 95.1 93.3 93.4

Note. Normal = DIF effects normally distributed; t4 = DIF effects distributed according to scaled t4 distribution;
Normal Mixture = DIF effects distributed according to contaminated mixture model; JK = linking error (LE)
estimated by jackknife; ESW = LE estimated by expected sandwich estimator; OSW = LE estimated by observed
sandwich estimator; BOSW = LE estimated by bias-corrected observed sandwich estimator; coverage rates smaller
than 92.5% or larger than 97.5% are printed in bold.

Overall, the findings of this simulation study indicate that the sandwich estimates (in
particular the ESW) are as effective as the jackknife estimates for linking errors.

5. Further Applications of the Linking Error in the 2PL Model

In this section, several applications of the linking error computations in the 2PL model
are presented. In Section 5.1, the M-estimation theory is applied to linking approaches
other than the log-mean-mean linking. Section 5.2 discusses the computation of the linking
errors if the items are nested within testlets. The linking errors for chain linking and trend
estimation are discussed in Sections 5.3 and 5.4, respectively. In Section 5.5, the linking
error under a fixed item parameter calibration is derived. Section 5.6 presents the linking
error in the 2PL model for a concurrent calibration. Section 5.7 investigates the computation
of the linking errors of derived parameters. Finally, Section 5.8 focuses on the computation
of the total error and sampling error corrections in the linking error estimation.

5.1. Different Linking Methods

We now illustrate how the sandwich estimates in the M-estimation theory from
Section 2 can be used for other linking approaches.
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5.1.1. Robust Log-Mean-Mean Linking

Log-mean-mean linking involves two steps that compute the mean for determining
the logarithm of the standard deviation s = log σ and the mean µ. A few outlying items
might introduce bias in the estimated distribution parameters [18]; robust estimators for
the location measures can be preferred. In this case, the estimating functions for δ = (s, µ)
are given by

I

∑
i=1

g1(δ; ai1, bi1, fi, ei) =
I

∑
i=1

ρ(log âi2 − log âi1 − s) = 0 and (31)

I

∑
i=1

g2(δ; ai1, bi1, fi, ei) =
I

∑
i=1

ρ
(

exp(s)b̂i2 − b̂i1 + µ
)
= 0 (32)

using a robust function that fulfills the property ρ(x)/|x| → ∞ for |x| → ∞ (see [29,30]).
For example, if the median was used, ρ would be the sign function ρ(x) = 1{x>0} − 1{x<0}.
A differentiable approximation of this function is given by ρ̃(x) = d

dx (x2 + ε)p/2 for p = 1
and ε = 0.01. The observed sandwich formula can be easily applied to obtain linking errors
for a wide class of robust linking approaches.

5.1.2. Haebara Linking

Haebara (HAE) linking [38] aligns item response functions instead of directly aligning
item parameters. The linking function in HAE linking is given as

H(µ, σ) =
I

∑
i=1

∫ [
Ψ
(

âi1(θ − b̂i1)
)
−Ψ

(
σ−1 âi2(θ − σb̂i2 − µ2)

)]2
ω(θ)dθ , (33)

where ω is a weighting function. By defining the difference

h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2) = Ψ
(

âi1(θ − b̂i1)
)
−Ψ

(
σ−1 âi2(θ − σb̂i2 − µ2)

)
, (34)

we can rewrite (33) as

H(µ, σ) =
I

∑
i=1

∫ [
h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2)

]2
ω(θ)dθ . (35)

The estimating equations for σ and µ can be determined by

I

∑
i=1

g1(δ; ai1, bi1, fi, ei) =
I

∑
i=1

∫
h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2)

[
∂

∂σ
h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2)

]
ω(θ)dθ = 0 and (36)

I

∑
i=1

g2(δ; ai1, bi1, fi, ei) =
I

∑
i=1

∫
h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2)

[
∂

∂µ
h(θ, µ, σ; âi1, b̂i1, âi2, b̂i2)

]
ω(θ)dθ = 0 . (37)

Again, linking errors can be easily obtained using the observed sandwich (OSW) formula.

5.2. Linking Error with Testlets

In educational large-scale assessment studies such as PISA, several items frequently
share a common item stimulus. In this situation, items are nested within testlets [39–41].
It was demonstrated that DIF effects are also pronounced at the testlet level and not only
at the item level [17,42]. This additional source of uncertainty should be included in the
computation of linking errors to avoid negatively biased linking error estimates.

We illustrate how to apply the theory of M-estimation in the case of testlets. The
linking error for σ̂ and µ̂ in log-mean-mean linking is derived. Let there be H testlets, and
there are Ih ≥ 1 items within each testlet h. It holds that ∑H

h=1 Ih = I. The data-generating
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model for DIF effects in the 2PL model in Equation (2) is adapted to include DIF effects
at the item and the testlet level. DIF effects for logarithmized item discriminations now
include two terms referring to testlets (i.e., h) and items within testlets (i.e., item i nested
within testlet h). We assume

log aih2 = log aih1 + fh + fih
bih2 = bih1 + eh + eih

(38)

Note that item parameters now possess an item index i and a testlet index h in (38).
Again, it is assumed that the DIF effects are independently distributed across items, and
we define τ2

a,testlet = Var( fh), τ2
a,item = Var( fih), τ2

b,testlet = Var(eh), τ2
b,item = Var(eih),

τab,testlet = Cov(eh, fh), and τab,item = Cov(eih, fih).
The estimating equations in log-mean-mean linking are the same. However, they

must include the testlet structure of items. The estimating Equations (13) and (14) are
rearranged as

H

∑
h=1

Ih

∑
i=1

g1(δ; aih1, bih1, fh, fih, eh, eih) =
H

∑
h=1

Ih

∑
i=1

(log âih2 − log âih1 − s) = 0 and (39)

H

∑
h=1

Ih

∑
i=1

g2(δ; aih1, bih1, fh, fih, eh, eih) =
H

∑
h=1

Ih

∑
i=1

(
exp(s)b̂ih2 − b̂ih1 + µ

)
= 0 . (40)

The essential change in the computation of the sandwich variance in the testlet case is
that the variance matrix BI (i.e., the meat matrix) requires the computation of the variance
that is carried out at each testlet h instead of each individual item i (see [27]). To indicate
the dependency from the testlet structure, it is more appropriate to label the meat matrix
BH because testlets are independent units, not items. The entry involving the variance in
DIF effects in item discriminations in the meat matrix can be computed as

H

∑
h=1

Var

(
Ih

∑
i=1

g1(δ; ai1, bi1, fh, fih, eh, eih)

)
=

H

∑
h=1

Var

(
Ih

∑
i=1

(log âi2 − log âi1 − s)

)
=

(
H

∑
h=1

I2
h

)
τ2

a,testlet + Iτ2
a,item . (41)

The other variance and the covariance can be derived similarly. Consequently, the meat
matrix is given by

BH(δ̂) =

(
H

∑
h=1

I2
h

)(
τ2

a,testlet τab,testlet
τab,testlet τ2

b,testlet

)
+ I

(
τ2

a,item τab,item
τab,item τ2

b,item

)
. (42)

The bread matrix AH only involves the expected value of the derivatives of the estimating
equations. Hence, this matrix remains unchanged in a testlet structure [27].

The unknown variance and covariance components in (42) can be replaced by sample
estimates. Then, an expected sandwich variance estimate can be obtained. A sample
estimate of the meat matrix can be obtained by replacing the population variance in (41)
with an empirical variance. Like in the case of independent items, the observed sandwich
variance estimate V̂H can be modified to obtain a bias-corrected variant. In the testlet case,
one should use correction factor H/(H − 1) instead of I/(I − 1).

5.3. Linking Error in Chain Linking

In this subsection, we discuss the computation of the linking error in chain
linking [33,43,44] in log-mean-mean linking. Figure 1 illustrates the test design in the
chain linking. The items are administered at three time points, T1, T2, and T3 (or in three
groups). The goal is to determine the distribution parameters at T3. The distribution
parameters of the ability variable θ at T3 can be compared with those at T1 by carrying out
the linking step T1↔T2 and T2↔T3. The set of all items is denoted as J = {1, . . . , I} and
is partitioned into three distinct sets, J0, J1, and J2. The set J0 contains items that were
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administered at all three time points. Items in J1 and J2 are administered at T1 and T2
and T2 and T3, respectively. We fix the distribution parameters at the first time point T1 to
a mean of 0 and a standard deviation of 1. The mean of θ at T2 is denoted by µ1 and the
standard deviation by σ1. The mean of θ at T3 is denoted by µ2 and the standard deviation
by σ2.

Figure 1. Illustration of chain linking at three time points: T1, T2, and T3.

We assume that the 2PL model holds at the three time points. For longitudinal data,
DIF is referred to as item parameter drift (IPD; [45,46]). The data-generating model involves
IPD effects fit for item discriminations and eit for item intercepts (t = 1, 2).

log ai2 = log ai1 + fi1

bi2 = bi1 + ei1

log ai3 = log ai2 + fi2

bi3 = bi2 + ei2

(43)

All IPD effects are allowed to be correlated within each item i but are uncorrelated
across items.

In chain linking, the 2PL model is separately estimated for the three time points. The
identified item parameters are given as âi1 = ai1, b̂i1 = bi1 and

âi2 = ai2σ1

b̂i2 = σ−1
1 (bi2 − µ1)

âi3 = ai3σ2

b̂i3 = σ−1
2 (bi3 − µ2)

(44)

In the first linking step T1↔T2, the mean µ1 and the standard deviation σ1 = exp(s1)
are determined in log-mean-mean linking. In the second linking step T1↔T2, linking
constants s2 and m2 are derived that refer to the linear transformation θ 7→ exp(s2)θ + m2.

In the chain linking approach, the unknown parameters are collected in the vector
δ = (µ1, s1, m2, s2). The parameters of interest (µ2, σ2) are computed as a derived parameter
given by

µ2 = exp(s2)µ1 + m2 and σ2 = exp(s2)σ1 . (45)
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Let Ik = |Jk| be the number of items in the sets Jk for k = 0, 1, 2. We define κ0 = I0/I
and κk = Ik/I for k = 1, 2. The two successive linking steps are formulated as a joint linking
problem involving four estimating equations

I

∑
i=1

g1(δ; Xi)

I

∑
i=1

g2(δ; Xi)

I

∑
i=1

g3(δ; Xi)

I

∑
i=1

g4(δ; Xi)


=



I

∑
i=1

di1(log âi2 − log âi1 − s1)

I

∑
i=1

di1(exp(s1)b̂i2 − b̂i1 + µ1)

I

∑
i=1

di2(log âi3 − log âi2 − s2)

I

∑
i=1

di2(exp(s2)b̂i3 − b̂i2 + m2)


=


0
0
0
0

 , (46)

where Xi includes all identified item parameters and design variables for item i. The first
two estimating equations in (46) refer to log-mean-mean linking of the step T1↔T2, while
the last two refer to step T2↔T3. In Equation (46), dummy indicators dik are used that take
the value of one if item i is contained in J0 or Jk for k = 1, 2. Note that ∑I

i=1 dik = Ik for
k = 1, 2 and ∑I

i=1 di1di2 = I0.
We simplify the terms in (46) to

g1(δ; Xi) = di1{log âi2 − log âi1 − s1} = di1 fi1 (47)

g2(δ; Xi) = di1

{
exp(s1)b̂i2 − b̂i1 + µ1

}
= di1ei1 (48)

g3(δ; Xi) = di2{log âi3 − log âi2 − s2} = di2 fi2 (49)

g4(δ; Xi) = di2

{
exp(s2)b̂i3 − b̂i2 + m2

}
= di2σ−1

1 ei2 (50)

We can now compute the meat matrix BI

BI(δ) = I


κ1τ2

f1
κ1τe1 f1 κ0τf1 f2 κ0σ−1

1 τf1e2

κ1τe1 f1 κ1τ2
e1

κ0τe1 f2 κ0σ−1
1 τe1e2

κ0τf1 f2 κ0τe1 f2 κ2τ2
f2

κ2σ−1
1 τe2 f2

κ0σ−1
1 τf1e2 κ0σ−1

1 τe1e2 κ2σ−1
1 τe2 f2 κ2σ−2

1 τ2
e2

 . (51)

Moreover, we can determine the expected value of the bread matrix E(AI(δ)) as

AI(δ) =



−Iκ1 0 0 0

Iκ1D1 Iκ1 0 0

0 0 −Iκ2 0

0 0 Iκ2D2 Iκ2


, where (52)

D1 = I−1κ−1
1

I

∑
i=1

di1(bi1 − µ1)

D2 = I−1κ−1
2

I

∑
i=1

di2(bi1 − µ2)

. (53)
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The inverse of AI can be computed as

[AI(δ)]
−1 =



−I−1κ−1
1 0 0 0

I−1κ−1
1 D1 I−1κ−1

1 0 0

0 0 −I−1κ−1
2 0

0 0 I−1κ−1
2 D2 I−1κ−1

2


. (54)

Using the matrices BI(δ) and [AI(δ)]
−1, the variance matrix VI(δ) of δ̂ can be com-

puted using the sandwich formula (6).
We now explicitly derive linking errors for σ̂2 and µ̂2. First, the standard deviation σ2

at T3 is given as σ2 = h(δ) = exp(s1) exp(s2). We derive the variance by applying the delta
method to the nonlinear transformation h and using the variance matrix VI . The first-order
partial derivatives of h are given by

u> =

(
∂σ2

∂δ

)
=
(

exp(s1) exp(s2) 0 exp(s1) exp(s2) 0
)

. (55)

Hence, the linking error of the estimated standard deviation σ̂2 can be determined as

LE(σ̂2) =
√

u>VI(δ̂)u . (56)

The algebraic derivation for the linking error formula was somewhat more intricate, which
is why the R package rSymPy package [47] as a wrapper to the SymPy computer algebra
system [48] was used. The square of the linking error for σ̂2 (i.e., the quantity LE(σ̂2)

2) is
computed using (56)

LE(σ̂2)
2 =

τ2
f1

I

[
σ2

1 σ2
2

κ1

]
+

τ2
f2

I

[
σ2

1 σ2
2

κ2

]
−

τe1 f2

I

[
D1κ0σ2

1 σ2
2

κ1κ2

]

−
τe2 f2

I

[
D2σ1σ2

2
κ2

]
−

τf1e2

I

[
D2κ0σ1σ2

2
κ1κ2

]
+

τf1 f2

I

[
2κ0σ2

1 σ2
2

κ1κ2

]
.

(57)

The linking error for the estimated mean µ̂2 can be determined as a derived parameter
using the transformation µ2 = h(δ) = exp(s2)µ1 + m2. The first-order partial derivatives
of h are given by

u> =

(
∂µ2

∂δ

)
=
(

0 exp(s2) exp(s2)µ1 1
)

. (58)

The linking error for µ̂2 can be computed by using (56)

LE(µ̂2)
2 =

τ2
f2

I

[
µ2

1σ2
2 − D2µ1σ2

κ2

]
+

τ2
e1

I

[
σ2

2
κ1

]
+

τ2
e2

I

[
1 + D2µ1σ2

κ2σ2
1

]

+
τe1 f2

I

[
D2κ0σ2 − 2κ0µ1σ2

2
κ1κ2

]
+

τe2 f2

I

[
D2 − 2µ1σ2 + µ1σ2D2

2 − D2µ2
1σ2

2
κ2σ1

)

]

+
τf1e2

I

[
D1κ0σ2 + D1D2κ0µ1σ2

2
κ1κ2σ1

]
−

τf1 f2

I

[
D1

κ0µ1σ2
2

κ1κ2

]
.

(59)
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In chain linking in the 1PL model, the linking error for µ̂2 substantially simplifies by
setting σ1 = σ2 = 1, D2 = 0 (see also [49])

LE(µ̂2)
2 =

τ2
e1

I

[
1
κ1

]
+

τ2
e2

I

[
1
κ2

]
. (60)

Note that all DIF effects referring to item discriminations vanish in this case.

5.4. Linking Error for Trend Estimates in Educational Large-Scale Assessment Studies

We now turn to the important application of linking errors for trend estimates [13,15,50,51]
in educational LSA studies such as PISA [16,52]. The main goal is to compute a linking
error for a trend estimate in country means or country standard deviations between two
successive assessments. Again, we rely on the 2PL model and use log-mean-mean linking
for the derivation of the linking errors. Previous research derived closed formulas for
linking errors in the 1PL model [17]. It was stated in official PISA publications that there
does not exist a simple generalization to the 2PL model [52]. However, this section provides
a closed formula for the 2PL model.

Figure 2 illustrates the problem of trend estimation in LSA studies. The label “NAT”
refers to a nation (i.e., a country) c. The label “INT” refers to the international metric that is
defined as a pooled sample comprising all students of participating countries in the LSA
study. A trend estimate for a country between two LSA assessments can involve means
and standard deviations at T1 and T2 (i.e., it compares NAT2 and NAT1). The first linking
step NAT1↔INT1 maps country-specific results onto an international metric at T1. This
step allows a cross-sectional comparison of countries on an international reference metric.
The second linking step INT1↔INT2 links results of two LSA studies at T1 and T2 at the
international metric. The third linking step NAT2↔INT2 maps country-specific results to
the international metric at T2.

Figure 2. Trend estimation for country means and standard deviations at two time points in an
international large-scale assessment study.

The set of administered items typically differs across assessments [53]. There are I0 link
items that are administered at both time points. A set of I1 unique items is only administered
at T1, while a set of I2 unique items is only administered at T2. For identification reasons,
we assume that the θ ability variable has zero mean and a standard deviation of one at
T1. Then, we can identify the mean µc1 and the standard deviation σc1 of country c at
T1. Furthermore, we assume that the mean at the international metric at T2 is µ0 and the
standard deviation is σ0. We can also identify the mean µc2 and the standard deviation σc2
of country c at T2.
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The first linking step NAT1↔INT1 in log-mean-mean linking estimates µc1 and
sc1 = log σc2. The second linking step INT1↔INT2 estimates µ0 and s0 = log σ0. The
third linking step NAT2↔INT2 estimates linking constants mc2 and sc2 to put the results of
country c at the international metric at T2.

The country mean and standard deviation of country c at T2 are derived functions of
the estimated linking parameters

µc2 = exp(s0)µ0 + mc2 and σc2 = exp(sc2) exp(s0) (61)

The linking constants for the link INT2↔NAT2 are recomputed using (61) as

mc2 = µc2 − exp(s0)µ0 and sc2 = log σc2 − s0 (62)

The main idea is to apply the M-estimation theory and the sandwich formula for
deriving linking errors for trend estimates. The three-step linking procedure can also be
written as a simultaneous estimation problem involving six estimating equations for the
vector of unknown linking parameters δ = (sc1, µc1, s0, m0, sc2, mc2). The trend estimate in
means is given as

∆µc = µc2 − µc1 = exp(s0)µ0 + mc2 − µc1 . (63)

The trend estimate in standard deviations is given as

∆σc = σ2 − σ1 = exp(s0 + sc2)− exp(sc1) . (64)

The source of linking errors in trend estimates is the presence of DIF effects. We now
present a data-generating model for DIF effects in item parameters in the 2PL model. Let aict
and bict for t = 1, 2 be item discriminations and item difficulties for country c. These item
parameters are referred to as national item parameters [17]. International item parameters
that result from item response models at the international metric that involves students
from all countries are denoted by αit and βit. We use the same random effects model as
in [17] for item difficulties

bict = bi + eit + eic + eict
βict = bi + eit

(65)

The variance component Var(eit) = τ2
b,IPD refers to item parameter drift (IPD; [54]). The

variance Var(eic) = τ2
b,DIF is referred to as cross-sectional country DIF, and the variance

Var(eict) = τ2
b,DIF×IPD refers to time-point-specific country DIF. All DIF effects are uncorre-

lated with each other.
We now extend the random effects model in [17] to item discriminations

log aict = log ai + fit + fic + fict
logαict = log ai + fit

(66)

All DIF effects for logarithmized item discriminations are uncorrelated, but DIF effects
e and f can be correlated for the same type of heterogeneity (i.e., Cov(eit, fit) = τab,IPD,
Cov(eic, fic) = τab,DIF, and Cov(eict, fict) = τab,DIF×IPD).

Identified national item parameters are given as âict = aictσct and b̂ict = σ−1
ct (bict − µct)

for t = 1, 2. Moreover, for international item parameters, it holds that α̂i1 = αi1 and
β̂i1 = βi1 at T1, and α̂i2 = αi2σ1 and β̂i2 = σ−1

0 (βi2 − µ0).
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We now apply the M-estimation theory to the estimation of linking errors. The three
log-mean-mean linking steps can be formalized as the following six estimating equations:

I

∑
i=1

g1(δ; Xi)

I

∑
i=1

g2(δ; Xi)

I

∑
i=1

g3(δ; Xi)

I

∑
i=1

g4(δ; Xi)

I

∑
i=1

g5(δ; Xi)

I

∑
i=1

g6(δ; Xi)



=



I

∑
i=1

di1(log âic1 − log α̂i1 − s1)

I

∑
i=1

di1(exp(s1)b̂ic1 − β̂i1 + µ1)

I

∑
i=1

di0(log α̂i2 − log α̂i1 − s0)

I

∑
i=1

di0(exp(s0)β̂i2 − β̂bi1 + µ0)

I

∑
i=1

di2(log âic2 − log α̂i2 − s2)

I

∑
i=1

di2(exp(s2)b̂ic2 − β̂i2 + m2)



=



0
0
0
0
0
0

 (67)

The estimating equations in (67) define an estimate of the parameter of interest
δ = (sc1, µc1, s0, m0, sc2, mc2). We now use the sandwich formula to derive the asymptotic
variance of δ̂ by means of the sandwich Formula (6).

The entries of the meat matrix BI(δ) in the sandwich formula are denoted by

BI(δ) =



B11 B21 0 0 B51 B61
B21 B22 0 0 B52 B62
0 0 B33 B43 0 0
0 0 B43 B44 0 0

B51 B52 0 0 B55 B65
B61 B62 0 0 B65 B66

 . (68)

The non-zero entries in BI(δ) are given as

B11 = Iκ1(τ
2
a,DIF + τ2

a,DIF×IPD)

B21 = Iκ1(τab,DIF + τab,DIF×IPD)

B22 = Iκ1(τ
2
b,DIF + τ2

b,DIF×IPD)

B33 = 2Iκ0τ2
a,IPD

B43 = 2Iκ0τ2
ab,IPD

B44 = 2Iκ0τ2
b,IPD

B51 = Iκ0τ2
a,DIF

B52 = Iκ0τab,DIF

B61 = Iκ0 exp(s0)
−1τab,DIF

B62 = Iκ0 exp(s0)
−1τ2

b,DIF

B55 = Iκ2(τ
2
a,DIF + τ2

a,DIF×IPD)

B65 = Iκ2 exp(s0)
−1(τab,DIF + τab,DIF×IPD)

B66 = Iκ2 exp(s0)
−2(τ2

b,DIF + τ2
b,DIF×IPD)

(69)
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Moreover, we can determine the bread matrix AI(δ) as

AI(δ) =



−Iκ1 0 0 0 0 0

Iκ1D1 Iκ1 0 0 0 0

0 0 −Iκ0 0 0 0

0 0 Iκ0D0 Iκ0 0 0

0 0 0 0 −Iκ2 0

0 0 0 0 Iκ2D2 Iκ2


, where (70)

D1 = I−1κ−1
1

I

∑
i=1

di1(bi − µ1)

D0 = I−1κ−1
0

I

∑
i=1

di0(bi − µ0)

D2 = I−1κ2

I

∑
i=1

di2(bi −m2)

(71)

The inverse of AI(δ) can be computed as

(AI(δ))
−1 =



−I−1κ−1
1 0 0 0 0 0

I−1κ−1
1 D1 I−1κ−1

1 0 0 0 0

0 0 −I−1κ−1
0 0 0 0

0 0 I−1κ−1
0 D0 I−1κ−1

0 0 0

0 0 0 0 −I−1κ−1
2 0

0 0 0 0 I−1κ−1
2 D2 I−1κ−1

2


(72)

Using (69) and (72), the variance matrix VI can be computed.
We now derive the linking error of the trend estimate in standard deviations that is a

nonlinear function of δ = (sc1, µc1, s0, m0, sc2, mc2)

∆σc = h(δ) = σ2 − σ1 = exp(s0 + sc2)− exp(sc1) . (73)

The first-order partial derivatives of h are given by(
∂h
∂δ

)
=
(
− exp(sc1) 0 exp(s0) exp(sc2) 0 exp(s0) exp(sc2) 0

)
. (74)

Using (56), we can determine the square of the linking error LE(∆σc)2 by using com-
puter algebra software [47,48] as

LE(∆σc)2 =
τ2

a,DIF

I

[
σ2

1
κ1

+
σ2

2
κ2
− 2σ1σ2κ0

κ1κ2

]
+

τ2
a,IPD

I

[
2σ2

2
κ0

]
+

τ2
a,DIF×IPD

I

[
σ2

1
κ1

+
σ2

2
κ2

]

+
τab,DIF

I

[
D2σ1σ2κ0

κ1κ2σ0
+

D1σ1σ2κ0

κ1κ2
−

D1σ2
1

κ1
−

D2σ2
2

κ2σ0

]
−

τab,IPD

I

[
2D0σ2

2
κ0

]

−
τab,DIF×IPD

I

[
D1σ2

1
κ1

+
D2σ2

2
κ2σ0

]
.

(75)
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We now compute the linking error for the trend estimate in the mean in the 2PL model.
The country mean difference can be computed as

∆µc = h(δ) = µc2 − µc1 = exp(s0)µ0 + mc2 − µc1 . (76)

The first-order partial derivatives are given as(
∂h
∂δ

)
=
(

0 −1 exp(s0)µ0 exp(s0) 0 1
)

. (77)

The linking error for the trend estimate in means is given by

LE(∆µc)2 =
τ2

b,DIF

I

[
1
κ1

+
1

κ2σ2
0
− 2κ0

σ0κ1κ2

]
+

τ2
b,IPD

I

[
2σ2

0 (1 + D0µ0)

κ0

]
+

τ2
b,DIF×IPD

I

[
1
κ1

+
1

σ2
0 κ2

]

+
τab,DIF

I

[
D1

κ1
+

D2

σ0κ2
− D2κ0

κ1κ2
− D1κ0

σ0κ1κ2

]
+

τ2
a,IPD

I

[
2σ2

0 µ0(µ0 − D0)

κ0

]

+
τab,IPD

I

[
2D0σ2

0 + 2µ0D2
0σ2

0 − 2D0σ2
0 µ2

0 − 4µ0σ2
0

κ0

]
+

τab,DIF×IPD

I

[
D1

κ1
+

D2

σ0κ2

]
.

(78)

The linking error formula for the 1PL model derived in [17] can be obtained from the
terms in (78) that involve the variance components τ2

b,DIF, τ2
b,IPD, and τ2

b,DIF×IPD by setting
σ2

0 = 1 and D0 = 0:

LE(∆µc)
2 =

τ2
b,DIF

I

[
1
κ1

+
1
κ2
− 2κ0

κ1κ2

]
+

τ2
b,IPD

I

[
2
κ0

]
+

τ2
b,DIF×IPD

I

[
1
κ1

+
1
κ2

]
(79)

All other components in (78) vanish in the case of the 1PL model.

5.5. Linking Error in Fixed Item Parameter Calibration

In this subsection, linking errors for the estimated mean and the estimated standard
deviations under fixed item parameter calibration (FIPC) are derived. It is assumed that
one uses fixed item parameters ai1 and bi1, but the true item parameters ai2 and bi2 have
DIF effects and follow the data-generating model (2).

The FIPC is typically applied using marginal maximum likelihood estimation [55].
However, we derive the linking error for a diagonally weighted least squares (DWLS)
estimation that approximates the former estimation method [56]. The DWLS minimizes the
weighted sums of the differences between the estimated and model-implied item thresholds
as well as the tetrachoric correlations. For the simplicity of exposition in this subsection,
we assume that there are only DIF effects in item difficulties (i.e., uniform DIF). Hence, we
can assume that the standard deviation σ can be estimated without bias.

The item-specific weights in the DWLS estimation are precision weights ω that are
defined as the inverse of the variance in thresholds τ. When omitting a factor that involves
the sample size, precision weights ω are determined by

ω = ω(τ) =
φ(τ)2

Φ(τ)(1−Φ(τ))
. (80)

Equation (80) is displayed in Figure 3. It can be seen that extreme thresholds are downweighted.
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Figure 3. Precision weights ω as a function of the threshold τ (see Equation (80)).

The optimization function for µ in DWLS is given by

H(µ) =
I

∑
i=1

ωi(τ̂i2 − τi2(µ))
2 , (81)

where τ̂i2 is the identified threshold of item i and τi2 is the model-implied threshold. Now,
define αi = aiσ

(
a2

i σ2 + L
)−1/2, where L is the logistic variance that is the byproduct of

using the logistic instead of the probit link function in the 2PL model. Then, (81) can be
rewritten as

H(µ) =
I

∑
i=1

ωiαi
(
b̃i2 − (µ− bi1)

)2
=

I

∑
i=1

wi

(
b̂i2 − (µ− bi1)

)2
, (82)

where wi = Cωiαi (C is an appropriate scaling constant) and b̂i2 = α−1
i τ̂i2. Note that

b̃i2 = µ0 − bi2 = µ0 − bi1 − ei for a data-generating true mean µ0.
The minimization of (82) leads to a weighted mean

µ̂ =

I

∑
i=1

wi(b̃i2 − bi1)

W
= µ0 −

I

∑
i=1

wiei

W
, (83)

where W = ∑I
i=1 wi, and µ0 in (83) denotes the true mean.

Hence, one can determine the linking error as the variance in the second term on the
right-hand side in (83). We then obtain the linking error in fixed item parameter calibration

LE(µ̂) =

√
I

∑
i=1

w2
i

W
τb . (84)
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By the Cauchy–Schwarz inequality, it holds that

W =
I

∑
i=1

wi ≤
√

I ·

√√√√ I

∑
i=1

w2
i . (85)

Hence, we get from (84) by using (85)

LE(µ̂) ≥ 1√
I

τb . (86)

Hence, the linking error has a lower bound in which all item-specific weights were set
equal to one. This case corresponds to the linking error in the Rasch model obtained for
mean-mean linking [15,17]

LE(µ̂) =
τb√

I
. (87)

This linking error is also obtained in FIPC of the 1PL model using unweighted least squares
(ULS) estimation.

Interestingly, the finding in (86) illustrates that using incorrect item parameters in
the FIPC in the presence of DIF effects results in a precision loss. Hence, the maximum
likelihood estimation can only achieve the most efficient estimates under correctly specified
models. Because it is almost always expected that there are some intentionally unmodeled
DIF effects in real datasets, the dominance of the maximum likelihood estimation in LSA
practice can be questioned.

5.6. Linking Error in Concurrent Calibration

In this subsection, we derive the linking error for the estimation of the 2PL model in
two groups. The mean and the standard deviation of the ability variable θ are fixed to 0 and
1, respectively. The mean µ and the standard deviation σ of the second group are estimated.

Like in Section 5.5, we assume that there are only DIF effects ei in item difficulties
and no DIF effects in item discriminations. We assume that σ can be estimated without
bias and derive the linking error under concurrent calibration using DWLS. DIF effects
ei with zero means follow bi2 = bi1 + ei. The identified parameters are given by b̂i1 = bi1
and b̂i2 = bi2 − µ. The estimation of the vector of common item difficulties b = (b1, . . . , bI)
and the mean µ is conducted using a weighted square loss of differences in estimated and
model-implied item thresholds. By simplifying the setting while assuming known item
discriminations and standard deviation, the optimization function is given by

H(µ, b) =
I

∑
i=1

wi1(b̂i1 − bi)
2 +

I

∑
i=1

wi2(b̂i2 + µ− bi)
2 , (88)

where weights wig are allowed to be group specific (g = 1, 2). The estimating equations for
µ and b are given as

wi1(b̂i1 − b̂i) + wi2(b̂i2 + µ̂− b̂i) = 0 and (89)

I

∑
i=1

wi2(b̂i2 + µ̂− b̂i) = 0 . (90)

By inserting (89) into (90), we obtain

I

∑
i=1

wi2b̂i2 +
I

∑
i=1

wi2µ̂−
I

∑
i=1

wi2
wi1b̂i1 + wi2b̂i2 + wi2µ̂

wi1 + wi2
= 0 . (91)
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Equation (91) can be further simplified to

I

∑
i=1

wi1wi2
wi1 + wi2

b̂i2 +
I

∑
i=1

wi1wi2
wi1 + wi2

µ̂−
I

∑
i=1

wi1wi2
wi1 + wi2

b̂i1 = 0 . (92)

By defining w∗i = (wi1 + wi2)
−1wi1wi2, we obtain from (92)

µ̂ = −

I

∑
i=1

w∗i (b̂i2 − b̂i1)

I

∑
i=1

w∗i

= µ−

I

∑
i=1

w∗i ei

I

∑
i=1

w∗i

. (93)

Hence, we obtain the linking error for µ̂

LE(µ̂) =

√
I

∑
i=1

(w∗i )
2

W∗
τb , (94)

where W∗ = ∑I
i=1 w∗i . Again, one can conclude LE(µ̂) ≥ τb/

√
I. Hence, using the linking

error τb/
√

I that does not take item-specific weights into account provides a lower bound
of the true linking error.

If the weights wi1 and wi2 would be equal across both groups, we obtain the same
linking error like under fixed item parameter calibration.

5.7. Linking Error for Derived Parameters

In previous sections of this paper, we derived the linking error for µ and σ for dif-
ferent applications of the 2PL model. Sometimes, other distribution parameters might
be estimated. In this subsection, we assume that the ability variable θ is approximately
normally distributed and derive the linking error for nonlinear functions h of µ and σ. Let
ν = h(δ) = h(µ, σ) be a nonlinear function of the mean µ and the standard deviation σ. Let
V denote the variance matrix of δ regarding item choice (i.e., quantifying linking errors).
The linking error estimate ν̂ = h(µ̂, σ̂) is given as

LE(ν̂) =
√

u>Vu , where u> =

(
∂h
∂µ

∂h
∂σ

)
and V =

(
v2

µ vµσ

vµσ v2
σ

)
. (95)

We now illustrate the computation in two examples.

5.7.1. Proportions

First, we are interested in computing the probability p

p = h(µ, σ) = P(θ ∈ [c1, c2]) = Φ
(

σ−1(c2 − µ)
)
−Φ

(
σ−1(c1 − µ)

)
. (96)

The partial derivatives of h are given as

∂h
∂µ

= −σ−1
[
φ
(

σ−1(c2 − µ)
)
− φ

(
σ−1(c1 − µ)

)]
= −σ−1d(µ, σ, c1, c2) and (97)

∂h
∂σ

= −σ−2
[
φ
(

σ−1(c2 − µ)
)
− φ

(
σ−1(c1 − µ)

)]
= −σ−2d(µ, σ, c1, c2) , (98)
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where d(µ, σ, c1, c2) = φ
(
σ−1(c2 − µ)

)
− φ

(
σ−1(c1 − µ)

)
Hence, we can determine the

linking error of p̂ = g(µ̂, σ̂) using (95) as

LE( p̂) = σ̂−1d(µ̂, σ̂, c1, c2)
√

v̂2
µ + σ̂−2v̂2

σ + 2σ̂−1v̂µσ , (99)

where v̂2
µ, v̂2

σ, and v̂µσ are estimated linking variances and covariances.

5.7.2. Percentiles

Second, the linking error of the pth percentile Qp should be computed. The pth
percentile is defined by

P(θ ≤ Qp) = Φ
(

σ−1(Qp − µ)
)
= p . (100)

Hence, we can solve (100) for Qp and obtain

Qp = h(µ, σ) = µ + σzp , (101)

where zp = Φ−1(p) is the pth percentile for the standard normal distribution.
Now, we can compute the linking error of Q̂p. We obtain

∂h
∂µ

= 1 and
∂h
∂σ

= zp . (102)

The linking error of the percentile Qp using (95) is given by

LE(Q̂p) =
√

v̂2
µ + z2

pv̂2
σ + 2zpv̂µσ . (103)

It can be seen that for more extreme percentiles, the absolute value of zp gets larger and the
linking error for σ (i.e., v̂σ in (103)) becomes more relevant.

5.8. Computation of Total Error and Sampling Error Correction for Linking Error Estimates

In practical applications, the sampling error SE due to the sampling of persons must
also be taken into account to quantify the uncertainty in the σ and µ estimates. The total
error (TE) is given by (see [18,19])

TE =

√
SE2 + LE2 . (104)

A critical issue might be that estimated linking errors also include a portion of vari-
ability that can be attributed to the sampling error of persons. We illustrate an analytical
bias correction method for the case of log-mean-mean linking. The issue in the sandwich
estimate is the variance matrix (i.e., the meat matrix) BI (see (31) for the computation). The
identified item parameters also include a sampling error variance that can be estimated
by fitting an item response model. Let v∗ia be the variance of log âi2 − log âi1 due to person
sampling (i.e., v∗ia = Var(log âi2 − log âi1). Then, we can determine a corresponding entry
in the meat matrix BI by modifying (31) into

I

∑
i=1

Var(g1(δ; ai1, bi1, fi, ei)) =
I

∑
i=1

Var(log âi2 − log âi1 − s) =
I

∑
i=1

(Var( fi) + v∗ia) = Iτ2
a +

I

∑
i=1

v∗ia . (105)

In the derivation of (105), we relied on the property that item parameters of different
items are approximately uncorrelated in sufficiently long tests [57]. The other entries in
BI can be similarly determined. By defining v∗ib = Var(b̂i2 − b̂i1) and v∗iab = Cov(log âi2 −
log âi1, b̂i2 − b̂i1), Equations (16) and (17) can be modified to

I

∑
i=1

Cov(g1(δ; ai1, bi1, fi, ei), g2(δ; ai1, bi1, fi, ei)) = Iτab +
I

∑
i=1

v∗iab , and (106)
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I

∑
i=1

Var(g2(δ; ai1, bi1, fi, ei)) = Iτ2
b +

I

∑
i=1

v∗ib . (107)

Hence, the originally obtained meat matrix BI can be removed from sampling error
contributions by defining a bias-corrected estimate

B∗I (δ̂) = BI(δ̂)− V∗ , where V∗ =


I

∑
i=1

v∗ia
I

∑
i=1

v∗iab

I

∑
i=1

v∗iab

I

∑
i=1

v∗ib

 . (108)

This approach was implemented in the simplified setting in the 1PL model [17].
We now show how to generalize the bias-corrected estimate of the meat matrix BI . We

can rewrite the estimate from Equation (9) as

B̂I(δ̂) =
I

∑
i=1

g(δ̂; γ̂i)g(δ̂; γ̂i)
> , (109)

where γ̂i = (âi1, b̂i1, âi2, b̂i2). The estimate γ̂i includes the sampling error, and the sampling
variance is denoted as

Vi = Var(γ̂i) = E[(γ̂i − γi)(γ̂i − γi)
>] . (110)

The estimating function g in (109) can be viewed as a function g = g(δ, γ). Denote by
gγ = (∂g)/(∂γ) the matrix of partial derivatives with respect to γ. We can now apply a
Taylor expansion and obtain

g(δ̂, γ̂i) = g(δ̂, γi) + gγ(δ̂, γi)(γ̂i − γi) . (111)

Using E(γ̂i) = γ, we can obtain a bias-corrected estimate of the bread matrix as

B∗I (δ̂) = B̂I(δ̂)−
I

∑
i=1

gγ(δ̂, γi)Vigγ(δ̂, γi)
> . (112)

6. Discussion

In this article, we have shown that the sandwich formula from the M-estimation theory
can be successfully employed for computing the linking error in the 2PL model in a variety
of situations. It was shown in a simulation study for the log-mean-mean linking of two
groups that the expected sandwich estimate of the linking error produced satisfactory
coverage rates. Interestingly, it had a comparable performance to the jackknife linking error
in the 2PL model.

As with any simulation study, some limitations of our study can be stated. More
comprehensive studies could involve a different range of standard deviations of the DIF
effects, different test lengths, or other linking approaches. It might be interesting to compare
the performance of the M-estimation approach with the jackknife linking error for the more
complex linking problems of chain linking and trend estimation.

In the simulation study, we only considered uncertainty in distribution parameters due
to DIF effects (i.e., linking errors). In practical applications, there will also be a sampling of
persons, and the simultaneous assessment of sampling errors and linking errors would be
an exciting extension of this study.

In most of the applications involving instruments with cognitive and noncognitive
items, linking errors are not reported even if linking approaches were utilized [43,58,59].
There might be two reasons why this is the case. First, simulation studies typically pre-
suppose that the IRT model perfectly fits the data. That is, the DIF is absent, and the
IRT model is correctly specified. Second, items could be treated as fixed, and the model
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misspecification is taken for granted but is not included in the uncertainty quantification of
the linking approach. In our view, linking errors provide additional information about the
impact of heterogeneous item functioning on parameters of interest and should, therefore,
(almost always) be additionally reported. In general, we do not think that the presence of
DIF or IPD threatens the validity of group differences or trend estimates.

It should be emphasized that our proposed linking error for the trend estimates in
the 2PL model differs from a newly proposed linking error estimate since PISA 2015 [4].
The latter relies on a recalibration approach of the item response data from the first time
point [34,60]. The new PISA linking error rather assesses the extent of the assumed nonin-
variant item parameters across the two PISA studies instead of quantifying the variability
due to heterogeneous item functioning.

The derived linking errors rely on the assumption that item parameters are identified.
In LSA studies such as PISA, balanced incomplete block designs are employed in which only
a subset of items is administered to each student [61]. If item parameters can be identified
in such test designs, linking error formulas would not change because country means and
standard deviations are based on all the items administered in the test, irrespective of the
proportion of items administered to each student.

As argued by an anonymous reviewer, the computation of linking errors relies on
the assumption of a representative item sample from an item population. Notably, the
identification of item parameters in the joint maximum likelihood estimation also requires
asymptotic regimes regarding the sample size and the number of items [62–64] but does
not require that items are a random sample from an item population. However, the main
difference in the computation of linking errors is that linking errors reflect the variability in
the distribution parameter estimates due to the DIF. Infinite item samples are not required
for model identification; they are only used as a statistical tool for justifying the statistical
inference with respect to modeled or unmodeled DIF.

Finally, we assumed that DIF effects had zero means throughout this paper. However,
this assumption is not essential in deriving linking errors because the M-estimation theory
does not require that estimated parameters converge to true parameters. The M-estimation
theory will nevertheless provide the asymptotic variance in a potentially biased estimator.
However, DIF effects could also result in a mean that is different from zero. For example,
Ref. [28] assumes that the median of the DIF effects equals zero. In this case, log-mean-mean
linking in the 2PL model could be replaced by an alternative robust linking method in which
the mean is substituted with the median. Notably, the choice of an adequate estimating
function to provide unbiased distribution parameters depending on the distribution of DIF
effects is a different topic though [18].
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Abbreviations

The following abbreviations are used in this manuscript:
1PL one-parameter logistic
2PL two-parameter logistic
DIF differential item functioning
DWLS diagonally weighted least squares
FIPC fixed item parameter calibration
IPD item parameter drift
IRT item response theory
JK jackknife
LE linking error
LSA large-scale assessment studies
PIRLS progress in international reading literacy study
PISA programme for international student assessment
ULS unweighted least squares
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48. Meurer, A.; Smith, C.P.; Paprocki, M.; Čertík, O.; Kirpichev, S.B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J.K.; Singh, S.; et al.

SymPy: Symbolic computing in Python. PeerJ Comput. Sci. 2017, 3, e103. [CrossRef]
49. Fischer, L.; Gnambs, T.; Rohm, T.; Carstensen, C.H. Longitudinal linking of Rasch-model-scaled competence tests in large-

scale assessments: A comparison and evaluation of different linking methods and anchoring designs based on two tests on
mathematical competence administered in grades 5 and 7. Psych. Test Assess. Model. 2019, 61, 37–64. https://bit.ly/3F1Hd0C.

50. Sachse, K.A.; Haag, N. Standard errors for national trends in international large-scale assessments in the case of cross-national
differential item functioning. Appl. Meas. Educ. 2017, 30, 102–116. [CrossRef]

51. Sachse, K.A.; Mahler, N.; Pohl, S. When nonresponse mechanisms change: Effects on trends and group comparisons in
international large-scale assessments. Educ. Psychol. Meas. 2019, 79, 699–726. [CrossRef]

52. OECD. PISA 2015. Technical Report; OECD: Paris, France, 2017. Available online: https://bit.ly/32buWnZ (accessed on 3
December 2022).

53. Weeks, J.; von Davier, M.; Yamamoto, K. Design considerations for the program for international student assessment. In A
Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis; Rutkowski, L., von
Davier, M., Rutkowski, D., Eds.; Chapman Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2013; pp. 259–276. [CrossRef]

54. Kang, H.A.; Lu, Y.; Chang, H.H. IRT item parameter scaling for developing new item pools. Appl. Meas. Educ. 2017, 30, 1–15.
[CrossRef]

55. König, C.; Khorramdel, L.; Yamamoto, K.; Frey, A. The benefits of fixed item parameter calibration for parameter accuracy in
small sample situations in large-scale assessments. Educ. Meas. 2021, 40, 17–27. [CrossRef]

56. Cai, L.; Moustaki, I. Estimation methods in latent variable models for categorical outcome variables. In The Wiley Handbook of
Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New
York, NY, USA, 2018; pp. 253–277. [CrossRef]

57. Yuan, K.H.; Cheng, Y.; Patton, J. Information matrices and standard errors for MLEs of item parameters in IRT. Psychometrika
2014, 79, 232–254. [CrossRef]

http://dx.doi.org/10.1111/j.0006-341X.2001.01198.x
http://dx.doi.org/10.1002/sim.6344
http://dx.doi.org/10.18637/jss.v095.i01
http://dx.doi.org/10.3102/10769986221109208
http://dx.doi.org/10.3390/stats3030019
http://dx.doi.org/10.1007/BF02289672
http://dx.doi.org/10.1007/978-1-4939-0317-7
http://dx.doi.org/10.3390/foundations1010009
http://dx.doi.org/10.1002/0470010940
https://www.R-project.org/
https://CRAN.R-project.org/package=KScorrect
http://dx.doi.org/10.4992/psycholres1954.22.144
http://dx.doi.org/10.1007/BF02294533
http://dx.doi.org/10.1111/j.1745-3984.1991.tb00356.x
http://dx.doi.org/10.1017/CBO9780511618765
http://dx.doi.org/10.1007/s11336-012-9316-y
http://dx.doi.org/10.1111/stan.12048
http://dx.doi.org/10.1080/15305058.2016.1227825
http://dx.doi.org/10.1111/emip.12000
https://CRAN.R-project.org/package=rSymPy
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1080/08957347.2017.1283315
http://dx.doi.org/10.1177/0013164419829196
https://bit.ly/32buWnZ
http://dx.doi.org/10.1201/b16061-16
http://dx.doi.org/10.1080/08957347.2016.1243537
http://dx.doi.org/10.1111/emip.12381
http://dx.doi.org/10.1002/9781118489772.ch9
http://dx.doi.org/10.1007/s11336-013-9334-4


J 2023, 6 84

58. González, J.; Wiberg, M. Applying Test Equating Methods. Using R; Springer: New York, NY, USA, 2017. [CrossRef]
59. Jewsbury, P.A. Error Variance in Common Population Linking Bridge Studies; (Research Report No. RR-19-42); Educational Testing

Service: Princeton, NJ, USA, 2019. [CrossRef]
60. Martin, M.O.; Mullis, I.V.S.; Foy, P.; Brossman, B.; Stanco, G.M. Estimating linking error in PIRLS. IERI Monogr. Ser. 2012, 5, 35–47.

Available online: https://bit.ly/2Vx3el8 (accessed on 3 December 2022).
61. Frey, A.; Hartig, J.; Rupp, A.A. An NCME instructional module on booklet designs in large-scale assessments of student

achievement: Theory and practice. Educ. Meas. 2009, 28, 39–53. [CrossRef]
62. Chen, Y.; Li, X.; Zhang, S. Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis. Psychome-

trika 2019, 84, 124–146. [CrossRef]
63. Chen, Y.; Li, X.; Zhang, S. Structured latent factor analysis for large-scale data: Identifiability, estimability, and their implications.

J. Am. Stat. Assoc. 2020, 115, 1756–1770. [CrossRef]
64. Haberman, S.J. Maximum likelihood estimates in exponential response models. Ann. Stat. 1977, 5, 815–841. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-319-51824-4
http://dx.doi.org/10.1002/ets2.12279
https://bit.ly/2Vx3el8
http://dx.doi.org/10.1111/j.1745-3992.2009.00154.x
http://dx.doi.org/10.1007/s11336-018-9646-5
http://dx.doi.org/10.1080/01621459.2019.1635485
http://dx.doi.org/10.1214/aos/1176343941

	Introduction
	Linking Error and M-Estimation
	Linking Error of Log-Mean-Mean Linking
	Simulation Study
	Method
	Results

	Further Applications of the Linking Error in the 2PL Model
	Different Linking Methods
	Robust Log-Mean-Mean Linking
	Haebara Linking

	Linking Error with Testlets
	Linking Error in Chain Linking
	Linking Error for Trend Estimates in Educational Large-Scale Assessment Studies
	Linking Error in Fixed Item Parameter Calibration
	Linking Error in Concurrent Calibration
	Linking Error for Derived Parameters
	Proportions
	Percentiles

	Computation of Total Error and Sampling Error Correction for Linking Error Estimates

	Discussion
	References

