
Citation: Goncharov, S.; Nechesov, A.

Polynomial-Computable

Representation of Neural Networks

in Semantic Programming. J 2023, 6,

48–57. https://doi.org/10.3390/

j6010004

Academic Editor: Christos Bouras

Received: 17 November 2022

Revised: 27 December 2022

Accepted: 4 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Polynomial-Computable Representation of Neural Networks in
Semantic Programming
Sergey Goncharov *,† and Andrey Nechesov *,†

Sobolev Institute of Mathematics, Academician Koptyug Ave., 4, 630090 Novosibirsk, Russia
* Correspondence: s.s.goncharov@math.nsc.ru (S.G.); nechesov@math.nsc.ru (A.N.)
† These authors contributed equally to this work.

Abstract: A lot of libraries for neural networks are written for Turing-complete programming lan-
guages such as Python, C++, PHP, and Java. However, at the moment, there are no suitable libraries
implemented for a p-complete logical programming language L. This paper investigates the issues of
polynomial-computable representation neural networks for this language, where the basic elements
are hereditarily finite list elements, and programs are defined using special terms and formulas
of mathematical logic. Such a representation has been shown to exist for multilayer feedforward
fully connected neural networks with sigmoidal activation functions. To prove this fact, special
p-iterative terms are constructed that simulate the operation of a neural network. This result plays
an important role in the application of the p-complete logical programming language L to artificial
intelligence algorithms.

Keywords: polynomiality; polynomial algorithm; logical programming language; semantic program-
ming; AI; neural networks; machine learning

1. Introduction

The conception of semantic programming [1] was developed in the 1970s and 1980s.
The main objective of this direction was to create a logical programming language in which
programs were given by the basic constructions of mathematical logic such as formulas
and terms. A hereditarily finite list superstructure HW(M) of the signature σ was chosen
as the virtual execution device. At first, the programs were Σ and ∆0-formulas [2], but this
language was Turing-complete [3].

In 2017, Goncharov proposed considering the programs as the terms and presented the
conception of conditional terms [4]. In the new L1 language, L1-programs and L1-formulas
were inductively specified through the standard terms and ∆0-formulas of the signature
σ. The polynomial-computable (p-computable) model HW(M) of the signature σ was
chosen as a virtual execution device. The authors of [5] showed that any L1-program
and L1-formula has a polynomial computational complexity. The question arises as to
whether all algorithms of polynomial computational complexity can be represented in this
language or in its polynomial-computable extensions. This has been an open problem for
several years.

Only in 2021 did Goncharov and Nechesov propose the conception of the p-iterative
terms [6]. Extension of the L1 language with p-iterative terms leads to the language L. In [6],
it is shown that the class of all L-programs coincides with the class of all algorithms of a
polynomial computational complexity P.

The main area of application of semantic programming is artificial intelligence. In arti-
ficial intelligence, the black box problem [7] has been around for a long time. Most often,
AI gives a result without explaining it. It does not explicitly share how and why it reaches
its conclusions. One of the main directions in AI is machine learning [8]. Most machine
learning algorithms implemented using neural networks give a result but do not explain

J 2023, 6, 48–57. https://doi.org/10.3390/j6010004 https://www.mdpi.com/journal/j

https://doi.org/10.3390/j6010004
https://doi.org/10.3390/j6010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/j
https://www.mdpi.com
https://orcid.org/0000-0003-2954-0900
https://orcid.org/0000-0001-7631-7440
https://doi.org/10.3390/j6010004
https://www.mdpi.com/journal/j
https://www.mdpi.com/article/10.3390/j6010004?type=check_update&version=2

J 2023, 6 49

it. Our work is the first step toward the separation of artificial intelligence algorithms in
the stage where a result can be logically explained and the stage where a result is given
without explanation.

The main objective of this paper is to build a polynomial-computable representation [9]
for multilayer feedforward fully connected neural networks [10,11] using the basic elements
of the model HW(M). This type of neural network plays a great role in many artificial
intelligence algorithms [12], and such a library for them in the p-complete logical language
L is necessary.

2. Preliminaries

The paper uses the results of the theory of semantic programming [13], which is
based on a polynomial-computable hereditarily finite list superstructure HW(M) of a
finite signature σ. The main set of HW(M) consists of the hereditarily finite list elements.
The signature σ consists of the next constant, operations and predicates:

(1) nil: a constant that selects an empty list;
(2) head(1): returns the last element of the list or is nil otherwise;
(3) tail(1): returns a list without the last element or is nil otherwise;
(4) getElement(2): returns the ith element of the list or is nil otherwise;

(5) NumElements
(1)

: returns the number of elements in the list;
(6) f irst(1): returns the first element of the list or is nil otherwise;
(7) second(1): returns the second element of the list or is nil otherwise;
(8) ∈(2): the predicate “to be an element of a list”;
(9) ⊆(2): the predicate“to be an initial segment of a list”.

Let us define the conception of L0-formulas and L0-programs in the basic language L0
as ∆0-formulas and standard terms of the signature σ, respectively.

The language L1 is defined as an inductive extention of the basic language L0 with
conditional terms of the following form:

Cond(t1, ϕ1, . . . , tn+1) =

t0, if HW(M) |= ϕ0
t1, if HW(M) |= ϕ1&¬ϕ0
. . .
tn, if HW(M) |= ϕn&¬ϕ0& . . . &¬ϕn−1
tn+1, otherwise

(1)

The conceptions of the L-formula, L-program and p-iterative term are defined
as follows.

Basis of induction: Any L1-program is an L-program, and any L1-formula is an
L-formula.

Induction step: Let g(x) be an L-program and ϕ(x) be an L-formula, where there is a
constant Cg such that for any w, the following inequality is true:

|g(w)| ≤ |w|+ Cg (2)

The notation gi(x) means the L-program g is applied i times:

gi(x) = g(gi−1(x)) where g0(x) = x

Suppose that there is a constant Cg such that for any w ∈ HW(M), the following
is true:

|g(w)| ≤ |w|+ Cg

J 2023, 6 50

The notation of the p-iterative term [6] is defined as follows:

Iterationg,ϕ(w, n) =

gi(w), if i ≤ n HW(M) |= ϕ(gi(w))

and ∀j < i HW(M) 6|= ϕ(gj(w))
f alse, otherwise

(3)

The L-program definitions in the inductive step are as follows:

• Iterationg,ϕ(t1, t2) is an L-program, where g, t1, t2 are L-programs and ϕ is an
L-formula;

• Cond(t1, ϕ1, . . . , tn, ϕn, tn+1) is an L-program, where t1, . . . , tn+1 are L-programs and
ϕ1, ϕn are L-formulas;

• F(t1, . . . , tn) is an L-program, where F ∈ σ and t1, . . . , tn are L-programs

The L-formula definitions in the inductive step are as follows:

• t1 = t2 is an L-formula, where t1, t2 are L-programs;
• P(t1, . . . , tn) is an L-formula, where P ∈ σ and t1, . . . , tn are L-programs;
• Φ&Ψ, Φ ∨Ψ, Φ→ Ψ, ¬Φ are L-formulas, where Φ, Ψ are L-formulas
• ∃xδtΦ, ∀xδtΦ are L-formulas, where t is an L-program, Φ is an L-formula and

δ ∈ {∈,⊆,≤}.

Theorem 1 ((Solution to the problem P = L) [6]). Let HW(M) be a p-computable hereditarily
finite list superstructure HW(M) of the finite signature σ. Then, the following are true:

(1) Any L-program has polynomial computational complexity.
(2) For any p-computable function, there is a suitable L-program that implements it.

In the current work, we modify the conception of the p-iterative term, and instead of
the inequality |g(x)| ≤ |x|+Cg, we require fulfillment of some conditions for an L-program
g and L-formula ϕ.

Suppose the L-program g(x) for a fixed n ∈ N and some polynomial h(x) are defined
as follows:

g(w) =

{
w∗, if w =< w1, . . . , wn >
f alse, otherwise

(4)

where w∗ =< w∗1 , . . . , w∗n > and the following conditions are fulfilled (up to a permutation):

(1) |w∗1 | ≤ |w1|+ C ·∑n
i=2 |wi|p;

(2) |w∗i | ≤ |wi|, for all i ∈ [2, . . . , n].

The next lemma almost completely repeats the proof of Theorem 1 from [6]. The same
length and complexity estimates are used:

Lemma 1. The term Iterationg,ϕ from Equation (3) with conditions (1–2) from Equation (4) on g
is a p-computable function.

3. Neural Networks

This work will consider multilayer feedforward fully connected neural networks of the
type in [10] (see also [14,15]), which has one incoming layer, one output layer and several
hidden layers. For simplicity of presentation, we will assume that there are no bias neurons
in such neural networks. However, all results of this work for neural networks with bias
neurons are also valid.

J 2023, 6 51

For example, such a neural network with one hidden layer has the following form:

By default, for all neurons of the neural network, the activation function will be a
sigmoid of the form:

Sig(x) =
1

1 + e−x

The derivative of this function has the form:

Sig′(x) = Sig(x) · (1− Sig(x))

Consider the approximation [16] for the function e−x as the Taylor series expansion
up to nine terms of the form:

e−x = 1− x +
x2

2!
− x3

3!
+ · · ·+ (−1)nxn

n!
(5)

Denote the function f as the sigmoid approximation, which uses the Taylor series
from Equation (5) for e−x. In addition, denote f ′(x) = f (x)(1− f (x)) as an approximation
for a derivative function Sig′(x):

Remark 1. f and f ′ are p-computable functions.

Let c(x, y) : N × N → N be a standard pair numbering function:

c(x, y) =
(x + y + 1) · (x + y)

2
+ y, where x, y ∈ N

Let us define the notation for the mth neuron in kth layer of the neural network N as
nc(k,m). Each neuron has the following list representation:

ni : < f ,< wij1 , . . . , wijk >>

where f is a constant symbol in a signature σ for an activation function and wij are the
weights of the synapses which occur from neuron ni to neuron nj.

Neuron ni of the output layer has the form:

ni : < f ,<>>

Let us define the p-computable predicate Neuron which selects the list encodings of
the neurons. A characteristic function for this predicate is defined as follows:

Cond(1, Φ(x), 0)

where Cond is a condition term from Equation (1) and Φ(x) has the following form:

Φ(x) : (f irst(x) = f)&(NumElements(x) = 2)&
&((second(x) = nil) ∨ (∀l ∈ second(x)Number(l))

(6)

J 2023, 6 52

For some layer with a number i for our neural network, we can define the following
code:

si : < nc(i,1), . . . , nc(i,ni)
> (7)

Let us define the p-computable predicate Layer which selects a layer. A characteristic
function for this predicate is defined as follows:

Cond(1, Φ(x), 0)

where Φ(x) has the form:
Φ(x) : ∀l ∈ x Neuron(l) (8)

Then, the following code is the list encoding for neural network Ni:

Ni : < s1, . . . , sk > (9)

Let us define the p-computable predicate NeuralNetwork which selects a list encoding
of the neural network. A characteristic function for this predicate is defined as follows:

Cond(1, Φ(x), 0);

where Φ(x) has the form:

Φ(x) : ∀l ∈ x Layer(l)&(∀i ≤ NumElements(x)− 1 ∀w ∈ getElement(x, i)
NumElements(second(w)) = NumElements(getElement(x, i + 1)))&
&(∀w ∈ head(x) second(w) = nil)

(10)

Remark 2. Any neural network N is uniquely restored from the list encoding N.

Consider the p-computable hereditarily finite list superstructure HW(M) of the signature

σ∗ = σ ∪ {NeuralNetwork(1), Layer(1), Neuron(1)}

where neural networks are encoded as elements in HW(M).
Let a be the number. Then, we define a function × as follows:

a× l =
{

< a · b1, . . . , a · bk >, where l =< b1,. . . ,bk> and all bi are numbers
f alse, otherwise

(11)

Remark 3. × is a p-computable function.

Let us define the function] as follows:

l] w =

{
< a1 + b1, . . . , ak + bk >, if l =< a1,. . . ,ak>, w =< b1,. . . ,bk> and all ai , bi are numbers

f alse, otherwise
(12)

Remark 4.] is a p-computable function.

Let us define the operation ⊗ as follows:

< a1, . . . , ami > ⊗si =

< b1, . . . , bmi+1 >, if si is non-output layer
< c1, . . . , cmi >, if si is output layer
f alse, otherwise

(13)

where

bm =
mi

∑
j=1

f (aj) · GetElement(second(nc(i,j)), m), m ∈ [1, . . . , mi+1]

J 2023, 6 53

and where
nc(i,j) : GetElement(si, j)

and
cm = f (am), m ∈ [1, . . . , mi]

Lemma 2. ⊗ is a p-computable function.

Proof. We prove this lemma using the construction of the p-iterative term Iterationg,ϕ.
Let us define the operation of the L-program g for the non-output layer si as follows:

g(<< a1, . . . , ami >, si,<>>) =

=<< a1, . . . , ami−1 >, tail(si),< b(1)1 , . . . , b(1)mi+1 >>

where
< b(1)1 , . . . , b(1)mi+1 >= f (ami)× second(head(si))

and on the jth step, we have

g(<< a1, . . . , ami−j >, tail j(si),< b(j)
1 , . . . , b(j)

mi+1 >>) =

=<< a1, . . . , ami−j−1 >, tail j+1(si),< b(j+1)
1 , . . . , b(j+1)

mi+1 >>

where the notation tail j means that the list function tail is applied j times:

< b(j+1)
1 , . . . , b(j+1)

mi+1 >=< b(j)
1 , . . . , b(j)

mi+1 >] f (aj)× second(head(tail j(si)))

Using Remarks 3 and 4, we find that g is a p-computable function.
The L-formula ϕ is defined as follows:

ϕ : second(x) = nil

Conditions (1–2) from Equation (4) for the p-iterative term Iterationg,ϕ are met, and
therefore, by Lemma 1 the operation ⊗ is a p-computable function where si is non-output
layer.

If sk is an output layer, then

g(<< a1, . . . , amk >, sk >) =< f (a1), . . . , f (amk) >

Let us define the operation W as follows:

W(< a1, . . . , am1 >, N) =< o1, . . . , omk >

where N =< s1, . . . , sk >, ai is the incoming signals and oi is the outputs of the output
layer neurons:

Lemma 3. W is a p-computable function.

Proof. We prove this fact by construction of a p-iterative term Iterationg,ϕ. The function g
is defined as follows:

g(<< a1, . . . , ami >,< si, . . . , sk >>) =<< a1, . . . , ami > ⊗si,< si+1, . . . , sk >>

The construction g implies that g is a p-computable function.
The L-formula ϕ is defined as head(x) = nil.
Conditions (1–2) from Equation (4) for the p-iterative terms Iterationg,ϕ are met, and
therefore, by Lemma 1, the function W is a p-computable function.

J 2023, 6 54

Let us define the function O as follows:

O(a,< s1, . . . , sk >) =< so1, . . . , sok >

where soi =< oc(i,1), . . . , oc(i,mi)
> represents the neuron outputs for the ith layer:

Lemma 4. O is a p-computable function.

Proof. The proof almost repeats the proof of Lemma 3

The backpropagation [17,18] algorithm will be used to configure the neural network.
First, it is necessary to find the coefficients as follows:

δj =

{
(oj − tj) · oj · (1− oj), if j is an output neuron
(∑l∈L wjlδl) · oj · (1− oj), if j is an inner neuron

where tj is a target output for the jth neuron of the output layer.
The corrective weights are defined by the formula:

∆wij = −η · oi · δj

where η is a learning rate (some fixed constant ordinary from [0, 1]).
Let a =< a1, . . . , am1 > be an input and soi be the neuron outputs for the ith layer.
Let us define the function ∆ as follows:

∆(a, t,< s1, . . . , sk >) =< sδ1, . . . , sδk >

where sδi =< δc(i,1), . . . , δc(i,mi)
>:

Lemma 5. ∆ is a p-computable function.

Proof. We build the p-iterative term Iterationg,ϕ, which simulates the operation of a func-
tion ∆ as follows:

g(<<>,< so1, . . . , sok >,< s1, . . . , sk >, t >) =
=<< sδk >,< so1, . . . , sok >,< s1, . . . , sk−1 >,<>>

where
δc(k,j) = (oc(k,j) − tc(k,j))oc(k,j)(1− oc(k,j)), j ∈ [1, . . . , mk]

g(<< sδj+1, . . . , sδk >,< so1, . . . , soj+1 >,< s1, . . . , sj >,<>>) =

=<< sδj, . . . , sδk >,< so1, . . . , soj >,< s1, . . . , sj−1 >,<>>

where
δc(j,i) = (∑

l∈L
wc(j,i)c(j+1,l)δc(j+1,l))oc(j,i)(1− oc(j,i))

The L-formula ϕ is defined as follows:

ϕ : head(tail(x)) = nil

Conditions (1–2) from Equation (4) for the p-iterative term Iterationg,ϕ are met, and
therefore, by Lemma 1 the operation ∆ is a p-computable function.

When all the parameters for weight correction are found, the weights can be changed
using the formula:

w∗ij = wij + ∆wij = wij − η · oi · δj

J 2023, 6 55

Let us define the function T as follows:

T(<< s1, . . . , sk >,< so1, . . . , sok >,< sδ1, . . . , sδk >>) =< s1
∗, . . . , sk

∗ >

where the weights of the neurons n∗i ∈ sm
∗ are derived from the weights of the neurons

ni ∈ sm by adding ∆wij, where j ∈ [1, . . . , mi+1]:

Lemma 6. T is a p-computable function.

Proof. The proof of this lemma is achieved by constructing a suitable p-iterative term
Iterationg,ϕ as well as Lemma 5.

The following theorem statement follows automatically from Remarks 3 and 4 and
Lemmas 2–6:

Theorem 2. Let HW(M) of the signature σ be a p-computable model.
Then, HW(M) of the signature σ ∪ {NeuralNetwork, Layer, Neuron} ∪ {×,],⊗, W, O, ∆, T}
is a p-computable model.

4. Materials and Methods

This paper used the main tools and methods of semantic programming such as p-
iteration terms, conditional terms and a p-computable hereditarily finite list superstructure
HW(M) of the signature σ. These techniques allowed us to encode the elements of the
multilayer feedforward fully connected neural networks with a sigmoidal activation func-
tion using hereditarily finite lists so that the p-iterative term satisfied conditions (1–2) from
Equation (4) simulated the operation of the neural network itself. Moreover, the construc-
tion of the p-iterative term guarantees polynomial computational complexity of the neural
network operation, as well as the backpropagation algorithm.

5. Results

The main result of this work is the construction of a polynomial-computable repre-
sentation for a multilayer feedforward fully connected neural network with the sigmoidal
activation function for a p-complete logical programming language L. This result is equiv-
alent to the statement of the Theorem 2 and allows the introduction and use of neural
networks as a basic library of L.

6. Discussion

A polynomial-computable representation of neural networks in the p-complete logical
programming language L is extremely important in practice. This allows artificial intelli-
gence algorithms to be implemented without the problems that arise in Turing-complete
languages. One such problem is the halting problem.

An open question is the existence of polynomial-computable representations for other
types of neural networks, such as recurrent neural networks [19], and modular neural
networks [20]. Most often, the answer to the existence of such representations for neural
networks in a general case will be negative. Is it possible to find such limitations for such a
representation should exist?

Moreover, we are interested not only in the existence of such representations but also
constructive implementations within the framework of the theory of semantic programming
and p-complete language L.

J 2023, 6 56

7. Conclusions

This paper shows a constructive method for polynomial-computable representation of
neural networks in the p-complete logical programming language L. Now, we can add a
library for neural networks to the p-complete language L, which will allow us to implement
algorithms both using a logical language and neural networks. Neural networks play a
great role in any direction of AI, so this p-computable representation will help expand the
expressive power of our core language L.

Since accuracy, speed and a logical explanation of the result are important criteria
for the implementation of artificial intelligence algorithms, the given p-complete logical
programming language L solves artificial intelligence problems much better than a similar
implementation in Turing-complete languages. Moreover, in this language, there is no halt-
ing problem, which is very important for the stability and reliability of software solutions.

The main applications of this result are blockchains, smart contracts, robotics and artifi-
cial intelligence. Moreover, these results will be applied in the conception of building smart
cities [21], where almost all possible options for artificial intelligence are involved: image
recognition, data mining, machine learning, neural networks, smart contracts, robotics,
finance based on cryptocurrencies and blockchains.

Author Contributions: Conceptualization, S.G. and A.N.; methodology, S.G. and A.N.; formal
analysis, S.G.; validation, S.G.; investigation, S.G. and A.N.; writing—original draft preparation, A.N.;
writing—review and editing, A.N.; supervision, S.G.; project administration, S.G.; software, A.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was performed within the state task of the Sobolev Institute of Mathematics
(Project No. FWNF-2022-0011).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ershov, Y.L.; Goncharov, S.S.; Sviridenko, D.I. Semantic programming. Inf. Process. 1986, 86, 1113–1120.
2. Ershov, Y.L. Definability and Computability; Springer: New York, NY, USA, 1996.
3. Michaelson, G. Programming Paradigms, Turing Completeness and Computational Thinking. Art Sci. Eng. Program. 2020, 4, 4.

[CrossRef] [PubMed]
4. Goncharov, S. Conditional terms in semantic programming. Sib. Math. J. 2017, 58, 794–800. [CrossRef]
5. Ospichev, S.; Ponomarev, D. On the complexity of formulas in semantic programming. Semr 2018, 15, 987–995. [CrossRef]
6. Goncharov, S.S.; Nechesov, A.V. Solution of the Problem P = L. Mathematics 2022, 10, 113. [CrossRef]
7. Bathaee, Y. The artificial intelligence black box and the failure of intent and causation. Harv. J. Law Technol. 2018, 31, 889–938.
8. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef] [PubMed]
9. Nechesov, A.V. Some Questions on Polynomially Computable Representations for Generating Grammars and Backus–Naur

Forms. Sib. Adv. Math. 2022, 32, 299–309. [CrossRef]
10. Leshno, M.; Lin, V.; Pinkuss, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Netw. 1993, 6, 861–867. [CrossRef]
11. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesus, O.D. Neural Network Design; Martin Hagan: San Diego, CA, USA, 2014.
12. Russel, S.J.; Norvig, P. Artificial Intelligence—A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2010.
13. Goncharov, S.; Nechesov, A. Polynomial Analogue of Gandy’s Fixed Point Theorem. Mathematics 2021, 9, 2102. [CrossRef]
14. Ahamed, I.; Akthar, S. A Study on Neural Network Architectures. Comput. Eng. Intell. Syst. 2016, 7, 1–7
15. Wilamowski, B. Neural network architectures and learning algorithms. IEEE Ind. Electron. Mag. 2009, 3, 56–63. [CrossRef]
16. Temurtas, F.; Gulbag, A.; Yumusak, N. A Study on Neural Networks Using Taylor Series Expansion of Sigmoid Activation Function.

In Computational Science and Its Applications—ICCSA 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2004; Volume 3046. [CrossRef]

17. Rumelhurt, D.; Hinton, G.; Williams, R. Learning representation by back-propagating errors. Nature 1986, 323, 533–536. [CrossRef]
18. Backpropagation. Available online: https://en.wikipedia.org/wiki/Backpropagation (accessed on 10 November 2022).
19. Schmidt, R. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. arXiv 2019, arXiv:1912.05911.

http://doi.org/10.22152/programming-journal.org/2020/4/4
http://www.ncbi.nlm.nih.gov/pubmed/32587627
http://dx.doi.org/10.1134/S0037446617050068
http://dx.doi.org/10.17377/semi.2018.15.083
http://dx.doi.org/10.3390/math10010113
http://dx.doi.org/10.1007/s42979-021-00592-x
http://www.ncbi.nlm.nih.gov/pubmed/33778771
http://dx.doi.org/10.1134/S1055134422040058
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.3390/math9172102
http://dx.doi.org/10.1109/MIE.2009.934790
http://dx.doi.org/10.1007/978-3-540-24768-5_41
http://dx.doi.org/10.1038/323533a0
https://en.wikipedia.org/wiki/Backpropagation

J 2023, 6 57

20. Auda, G.; Kamel, M.; Raafat, H. Modular neural network architectures for classification. In Proceedings of the International
Conference on Neural Networks, Washington, DC, USA, 3–6 June 1996; Volume 2, pp. 1279–1284. [CrossRef]

21. Nechesov, A.V.; Safarov, R.A. Web 3.0 and smart cities. In Proceedings of the International Conference “Current State and
Development Perspectives of Digital Technologies and Artificial Intelligence”, Samarkand, Uzbekistan, 27–28 October 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICNN.1996.549082

	Introduction
	Preliminaries
	Neural Networks
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

