#
First Principles Computation of New Topological B_{2}X_{2}Zn (X = Ir, Rh, Co) Compounds

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Method

## 3. Results and Discussion

#### 3.1. Crystal Structure

#### 3.2. Volume Optimization

#### 3.3. Formation Energy

#### 3.4. Elastic Properties

#### 3.5. Phonon Frequencies

#### 3.6. Electronic Band Structure and DOS Properties

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kane, C.L.; Mele, E.J. Z
_{2}topological order and the quantum spin hall effect. Phys. Rev. Lett.**2005**, 95, 146802. [Google Scholar] [CrossRef][Green Version] - Kane, C.L.; Mele, E.J. Quantum spin hall effect in graphene. Phys. Rev. Lett.
**2005**, 95, 226801. [Google Scholar] [CrossRef][Green Version] - Hasan, M.Z.; Kane, C.L. Topological insulators. Rev. Mod. Phys.
**2010**, 82, 3045. [Google Scholar] [CrossRef][Green Version] - Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys.
**2011**, 83, 1057. [Google Scholar] [CrossRef][Green Version] - Yang, B.J.; Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun.
**2014**, 5, 4898. [Google Scholar] [CrossRef][Green Version] - Xu, G.; Weng, H.; Wang, Z.; Dai, X.; Fang, Z. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr
_{2}Se_{4}. Phys. Rev. Lett.**2011**, 107, 186806. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zyuzin, A.A.; Wu, S.; Burkov, A.A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B
**2012**, 85, 165110. [Google Scholar] [CrossRef][Green Version] - Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na
_{3}Bi. Science**2014**, 343, 864–867. [Google Scholar] [CrossRef][Green Version] - Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H.; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd
_{3}As_{2}. Nat. Commun.**2014**, 5, 3786. [Google Scholar] [CrossRef][Green Version] - Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe
_{2}. Nat. Commun.**2017**, 8, 257. [Google Scholar] [CrossRef] - Noh, H.J.; Jeong, J.; Cho, E.J.; Kim, K.; Min, B.I.; Park, B.G. Experimental Realization of Type-II Dirac Fermions in a PdTe
_{2}Superconductor. Phys. Rev. Lett.**2017**, 119, 016401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gibson, Q.D.; Schoop, L.M.; Muechler, L.; Xie, L.S.; Hirschberger, M.; Ong, N.P.; Car, R.; Cava, R.J. Three-dimensional Dirac semimetals: Design principles and predictions of new materials. Phys. Rev. B
**2015**, 91, 205128. [Google Scholar] [CrossRef][Green Version] - Schoop, L.M.; Pielnhofer, F.; Lotsch, B.V. Chemical principles of topological semimetals. Chem. Mater.
**2018**, 30, 3155–3176. [Google Scholar] [CrossRef][Green Version] - Liang, T.; Gibson, Q.; Ali, M.N.; Liu, M.; Cava, R.J.; Ong, N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd
_{3}As_{2}. Nat. Mater.**2015**, 14, 280–284. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science
**2015**, 349, 613–617. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lv, B.Q.; Xu, N.; Weng, H.M.; Ma, J.Z.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; Matt, C.E.; Bisti, F.; et al. Observation of Weyl nodes in TaAs. Nat. Phys.
**2015**, 11, 724–727. [Google Scholar] [CrossRef] - Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature
**2015**, 527, 495–498. [Google Scholar] [CrossRef][Green Version] - Huang, S.M.; Xu, S.Y.; Belopolski, I.; Lee, C.C.; Chang, G.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun.
**2015**, 6, 7373. [Google Scholar] [CrossRef][Green Version] - Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe
_{2}. Nat. Phys.**2016**, 12, 1105–1110. [Google Scholar] [CrossRef][Green Version] - Xu, N.; Weng, H.M.; Lv, B.Q.; Matt, C.E.; Park, J.; Bisti, F.; Strocov, V.N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat Commun.
**2016**, 7, 11006. [Google Scholar] [CrossRef][Green Version] - Yu, R.; Weng, H.; Fang, Z.; Dai, X.; Hu, X. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu
_{3}PdN. Phys. Rev. Lett.**2015**, 115, 036807. [Google Scholar] [CrossRef][Green Version] - Xie, L.S.; Schoop, L.M.; Seibel, E.M.; Gibson, Q.D.; Xie, W.; Cava, R.J. A New Form Ca
_{3}P_{2}A Ring Dirac Nodes. APL Mater.**2015**, 3, 083602. [Google Scholar] [CrossRef][Green Version] - Xu, Q.; Yu, R.; Fang, Z.; Dai, X.; Weng, H. Topological nodal line semimetals in the CaP
_{3}family of materials. Phys. Rev. B**2017**, 95, 045136. [Google Scholar] [CrossRef][Green Version] - Wang, Z.; Wang, G. A New Strongly Topological Node-Line Semimetals β-PbO
_{2}. Phys. Lett. A**2017**, 381, 2856–2859. [Google Scholar] [CrossRef] - Yamakage, A.; Yamakawa, Y.; Tanaka, Y.; Okamoto, Y. Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn.
**2016**, 85, 013708. [Google Scholar] [CrossRef][Green Version] - Feng, X.; Yue, C.; Song, Z.; Wu, Q.; Wen, B. Topological Dirac nodal-net fermions in AlB
_{2}-Type TiB_{2}ZrB_{2}. Phys. Rev. Mater.**2018**, 2, 014202. [Google Scholar] [CrossRef][Green Version] - Huang, H.; Liu, J.; Vanderbilt, D.; Duan, W. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys. Rev. B
**2016**, 93, 201114. [Google Scholar] [CrossRef][Green Version] - Hirayama, M.; Okugawa, R.; Miyake, T.; Murakami, S. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals. Nat. Commun.
**2017**, 8, 14022. [Google Scholar] [CrossRef][Green Version] - Mikitik, G.P.; Sharlai, Y.V. Band-contact lines in the electron energy spectrum of graphite. Phys. Rev. B
**2006**, 73, 235112. [Google Scholar] [CrossRef][Green Version] - Lou, R.; Ma, J.Z.; Xu, Q.N.; Fu, B.B.; Kong, L.Y.; Shi, Y.G.; Richard, P.; Weng, H.M.; Fang, Z.; Sun, S.S.; et al. Emergence of topological bands on the surface of ZrSnTe crystal. Phys. Rev. B
**2016**, 93, 241104. [Google Scholar] [CrossRef][Green Version] - Takane, D.; Wang, Z.; Souma, S.; Nakayama, K.; Trang, C.X.; Sato, T.; Takahashi, T.; Ando, Y. Dirac-node arc in the topological line-node semimetal HfSiS. Phys. Rev. B
**2016**, 94, 121108. [Google Scholar] [CrossRef][Green Version] - Wu, Y.; Wang, L.L.; Mun, E.; Johnson, D.D.; Mou, D.; Huang, L.; Lee, Y.; Bud’ko, S.L.; Canfield, P.C.; Kaminski, A. Dirac node arcs in PtSn
_{4}. Nat. Phys.**2016**, 12, 667–671. [Google Scholar] [CrossRef] - Bian, G.; Chang, T.R.; Sankar, R.; Xu, S.Y.; Zheng, H.; Neupert, T.; Chiu, C.K.; Huang, S.M.; Chang, G.; Belopolski, I.; et al. Topological nodal-line fermions in spin–orbit metal PbTaSe
_{2}. Nat. Commun.**2016**, 7, 10556. [Google Scholar] [CrossRef] [PubMed][Green Version] - Topp, A.; Lippmann, J.M.; Varykhalov, A.; Duppel, V.; Lotsch, B.V.; Ast, C.R.; Schoop, L.M. Non-Symmorphic Band Degeneracy Fermi Level ZrSiTe. New J. Phys.
**2016**, 18, 125014. [Google Scholar] [CrossRef][Green Version] - Haubold, E.; Koepernik, K.; Efremov, D.; Khim, S.; Fedorov, A.; Kushnirenko, Y.; Van Den Brink, J.; Wurmehl, S.; Büchner, B.; Kim, T.K.; et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe
_{4}. Phys. Rev. B**2017**, 95, 241108. [Google Scholar] [CrossRef][Green Version] - Schoop, L.M.; Ali, M.N.; Straßer, C.; Topp, A.; Varykhalov, A.; Marchenko, D.; Duppel, V.; Parkin, S.S.; Lotsch, B.V.; Ast, C.R. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun.
**2016**, 7, 11696. [Google Scholar] [CrossRef][Green Version] - Hu, J.; Tang, Z.; Liu, J.; Liu, X.; Zhu, Y.; Graf, D.; Myhro, K.; Tran, S.; Lau, C.N.; Wei, J.; et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett.
**2016**, 117, 016602. [Google Scholar] [CrossRef][Green Version] - Mong, R.S.; Essin, A.M.; Moore, J.E. Antiferromagnetic topological insulators. Phys. Rev. B
**2010**, 81, 245209. [Google Scholar] [CrossRef][Green Version] - Teo, J.C.; Fu, L.; Kane, C.L. Surface states and topological invariants in three-dimensional topological insulators. Phys. Rev. B
**2008**, 78, 045426. [Google Scholar] [CrossRef][Green Version] - Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.H.Y.S.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys.
**2009**, 5, 398. [Google Scholar] [CrossRef][Green Version] - Chen, Y.L.; Analytis, J.G.; Chu, J.H.; Liu, Z.K.; Mo, S.K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi
_{2}Te_{3}. Science**2009**, 325, 178–181. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J.H.; Osterwalder, J.; Patthey, L.; Fedorov, A.V.; Lin, H.; et al. Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi
_{2}Te_{3}and Sb_{2}Te_{3}. Phys. Rev. Lett.**2009**, 103, 146401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hsieh, T.H.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun.
**2012**, 3, 982. [Google Scholar] [CrossRef] [PubMed][Green Version] - Slager, R.J.; Mesaros, A.; Juričić, V.; Zaanen, J. The space group classification of topological band-insulators. Nat. Phys.
**2013**, 9, 98–102. [Google Scholar] [CrossRef][Green Version] - Kruthoff, J.; De Boer, J.; Van Wezel, J.; Kane, C.L.; Slager, R.J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X
**2017**, 7, 041069. [Google Scholar] [CrossRef][Green Version] - Fu, L. Topological crystalline insulators. Phys. Rev. Lett.
**2011**, 106, 106802. [Google Scholar] [CrossRef][Green Version] - Fang, C.; Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv.
**2019**, 5, eaat2374. [Google Scholar] [CrossRef][Green Version] - Weng, H.; Zhao, J.; Wang, Z.; Fang, Z.; Dai, X. Topological crystalline kondo insulator in mixed valence ytterbium borides. Phys. Rev. Lett.
**2014**, 112, 016403. [Google Scholar] [CrossRef][Green Version] - Hsieh, T.H.; Liu, J.; Fu, L. Topological crystalline insulators and Dirac octets in antiperovskites. Phys. Rev. B
**2014**, 90, 081112. [Google Scholar] [CrossRef][Green Version] - Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys.
**2012**, 8, 800–803. [Google Scholar] [CrossRef][Green Version] - Dziawa, P.; Kowalski, B.J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B.M.; Berntsen, M.H.; et al. Topological crystalline insulator states in Pb
_{1-x}Sn_{x}Se. Nat. Mat.**2012**, 11, 1023. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xu, S.Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J.D.; Wang, Y.J.; Lin, H.; Wray, L.A.; et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb
_{1-x}Sn_{x}Te. Nat. Commun.**2012**, 3, 1192. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhou, X.; Hsu, C.H.; Chang, T.R.; Tien, H.J.; Ma, Q.; Jarillo-Herrero, P.; Gedik, N.; Bansil, A.; Pereira, V.M.; Xu, S.Y.; et al. Topological crystalline insulator states in the Ca
_{2}As family. Phys. Rev. B**2018**, 98, 241104. [Google Scholar] [CrossRef][Green Version] - Barone, P.; Rauch, T.; Di Sante, D.; Henk, J.; Mertig, I.; Picozzi, S. Pressure-induced topological phase transitions in rocksalt chalcogenides. Phys. Rev. B
**2013**, 88, 045207. [Google Scholar] [CrossRef][Green Version] - Munoz, F.; Vergniory, M.G.; Rauch, T.; Henk, J.; Chulkov, E.V.; Mertig, I.; Botti, S.; Marques, M.A.; Romero, A.H. Topological crystalline insulator in a new Bi semiconducting phase. Sci. Rep.
**2016**, 6, 21790. [Google Scholar] [CrossRef][Green Version] - Howard, J.; Steier, J.; Haldolaarachchige, N.; Hettiarachchilage, K. Computational Prediction of New Series of Topological Ternary Compounds LaXS (X = Si, Ge, Sn) First-Principles. J
**2021**, 4, 577–588. [Google Scholar] [CrossRef] - Zhang, X.; Jin, L.; Dai, X.; Liu, G. Topological type-II nodal line semimetal and Dirac semimetal state in stable kagome compound Mg
_{3}Bi_{2}. J. Phys. Chem. Lett.**2017**, 8, 4814–4819. [Google Scholar] [CrossRef] - Wang, Z.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A
_{3}Bi (A = Na, K, Rb). Phys. Rev. B**2012**, 85, 195320. [Google Scholar] [CrossRef][Green Version] - Schoop, L.M.; Topp, A. Topological Materials and Solid-State Chemistry-Finding and Characterizing New Topological Materials. Topol. Matter. Springer Ser. Solid-State Sci.
**2018**, 190, 211–243. [Google Scholar] - Sun, Y.; Felser., C. Topological Materials in Heusler Compounds. Topol. Matter Springer Ser. Solid-State Sci.
**2018**, 190, 199–210. [Google Scholar] - Narang, P.; Garcia, C.A.; Felser, C. The topology of electronic band structures. Nat. Mater.
**2021**, 20, 293–300. [Google Scholar] [CrossRef] - Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter.
**2009**, 21, 395502. [Google Scholar] [CrossRef] [PubMed] - Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter.
**2017**, 29, 465901. [Google Scholar] [CrossRef] [PubMed][Green Version] - Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.
**1996**, 77, 3865. [Google Scholar] [CrossRef] [PubMed][Green Version] - Singh, D.J.; Nordstrom, L. Planewaves, Pseudopotentials, and the LAPW Method, 2nd ed.; Springer: New York, NY, USA, 2006; pp. 1–134. [Google Scholar]
- Sjöstedt, E.; Nordström, L.; Singh, D.J. An alternative way of linearizing the augmented plane-wave method. Solid State Commun.
**2000**, 114, 15–20. [Google Scholar] [CrossRef] - Madsen, G.K.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. Efficient linearization of the augmented plane-wave method. Phys. Rev. B
**2001**, 64, 195134. [Google Scholar] [CrossRef] - Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev.
**1964**, 136, B864. [Google Scholar] [CrossRef][Green Version] - Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
**1965**, 140, A1133. [Google Scholar] [CrossRef][Green Version] - Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S.B. Full-potential, linearized augmented plane wave programs for crystalline systems. Commput. Phys. Commun.
**1990**, 59, 399–415. [Google Scholar] [CrossRef] - Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.; Marks, L.D. WIEN2k: An APW+ lo program for calculating the properties of solids. J. Chem. Phys.
**2020**, 152, 074101. [Google Scholar] [CrossRef][Green Version] - Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater.
**2015**, 108, 1–5. [Google Scholar] [CrossRef][Green Version] - Golesorkhtabar, R.; Pavone, P.; Spitaler, J.; Puschnig, P.; Draxl, C. ElaStic: A tool for calculating second-order elastic constants from first principles. Comput. Phys. Commun.
**2013**, 184, 1861–1873. [Google Scholar] [CrossRef] - Born, M. On the stability of crystal lattices. I Math. Proc. Camb. Philos. Soc.
**1940**, 36, 160–172. [Google Scholar] [CrossRef] - Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B
**2014**, 90, 224104. [Google Scholar] [CrossRef][Green Version] - Kittle, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: New York, NY, USA, 2004; pp. 1–704. [Google Scholar]
- Koster, G.F.; Dimmock, J.D.; Wheeler, R.G.; Statz, H. Properties of the Thirty-Two Point Groups, 1st ed.; MIT Press: Cambridge, MA, USA, 1963; pp. 1–104. [Google Scholar]

**Figure 1.**(Color online) Crystal structure and BZ of the B${}_{2}{X}_{2}$Zn compound. (

**a**) Shows a tetragonal crystal structure of a layered pattern. The blue, green, and red solid spheres denote the Zn, B, and X atoms, respectively. The arrangement of atoms for each layer (Zn1, X1, and B1) is noted as top–down views. (

**b**) Shows the first BZ by displaying high symmetry points of the BZ (black dots) with labeling $\Gamma $(0, 0, 0), X(−0.5, −0.5, 0), P(0.75, −0.25, −0.25), and Z(0.5, 0.5, −0.5). The (001) surface BZ shows in labeling with $\overline{\Gamma}$, $\overline{M}$, and $\overline{X}$. Paths labeled in green display the k-path selection for the comparison of bulk and surface states calculations.

**Figure 2.**(Color online) Calculated phonon spectra of B${}_{2}{X}_{2}$Zn (X = Ir, Rh, Co) compounds. All three phonon spectra were calculated without the SOC effect and are shown on the k-path $\Gamma $-X-Z-P. (

**a**) The phonon spectrum of the Ir sample, (

**b**) the same for the Rh sample, and (

**c**) the same for the Co sample.

**Figure 3.**(Color online) Calculated electronic band structure of B${}_{2}$Ir${}_{2}$Zn compound with and without SOC interaction along the high symmetry lines on the BZ k-path $\Gamma $-M-X-Z-P-$\Gamma $. (

**a**) Calculated bulk band structure with SOC effect. (

**b**) Calculated atom-projected DOS for B${}_{2}$Ir${}_{2}$Zn with SOC and total DOS with SOC effect. (

**c**) An irreducible representation of the calculated bulk band structure without SOC. Colors have the meaning of band symmetries discussed in the text. The solid black line at zero in (

**a**–

**c**) indicates the Fermi level. (

**d**) The Fermi surface of B${}_{2}$Ir${}_{2}$Zn bands.

**Figure 4.**(Color online) Calculated surface states of (001) plane. (

**a**) The (001) surface BZ shown in labeling with $\overline{\Gamma}$, $\overline{M}$, and $\overline{X}$. Paths labeled in green display the k-path selection. (

**b-i**) Shows the arrangement of atoms for the B1 layer and (

**b-ii**) shows the surface states of the B-termination layer with 25 layers of atoms. (

**c-i**) Shows the arrangement of atoms for the Ir1 layer and (

**c-ii**) shows the surface states of the Ir-termination layer with 21 layers of atoms. Similarly, (

**d-i**) shows the arrangement of atoms for the Zn1 layer, and (

**d-ii**) shows the surface states of the B-termination layer with 23 layers of atoms. The arrangement of atoms for each layer (Zn1, X1, and B1) is noted in Figure 1. Surface bands are denoted by red solid lines and bulk bands are shown in blue solid lines as a comparison. All surface and bulk band calculations were performed including the SOC effect. The solid black horizontal line at zero indicates the Fermi level.

**Figure 5.**(Color online) The change in band energy gap around the Fermi level of the B${}_{2}$Ir${}_{2}$Zn sample with SOC effect by changing the volume of the lattice. Top panel (

**a**–

**d**): shows the effect of gap changes due to the compression and stretch of the lattice for two crossings in X-$\Gamma $ and X-Z paths for −10%, −5%, 0%, and 5% shown from left to right, respectively. Bottom panel (

**e**–

**i**): The plots on the left show two crossings in the Z-P-$\Gamma $ k-path with their related stretch percentages in volume. The graph on the right compares both crossings’ energy gap to the percentage of lattice parameters in P-Z and P-$\Gamma $ paths on the left. The dotted back vertical line at 0% represents the optimized lattice. The solid black horizontal line at zero indicates the Fermi level in all plots.

**Figure 6.**(Color online) Calculated band structure of B${}_{2}{X}_{2}$Zn (X = Rh, Co) without SOC, and DOS of B${}_{2}{X}_{2}$Zn (X = Ir, Rh, Co) with and without the SOC effect. (

**a**,

**b**) Display of the band structure of Rh and Co samples respectively. (

**c**) Shows total DOS for all three samples with solid and dotted lines representing calculations with and without the SOC effect, respectively. The solid black line at zero indicates the Fermi level in all plots.

**Table 1.**The calculated lattice constants a, c, and formation energies, E, of B${}_{2}{X}_{2}$Zn compounds.

a (Å) | c (Å) | E (eV/atom) | |
---|---|---|---|

${B}_{2}I{r}_{2}Zn$ | 2.9912 | 12.7118 | −0.3005 |

${B}_{2}R{h}_{2}Zn$ | 2.9377 | 12.9377 | −0.3245 |

${B}_{2}C{o}_{2}Zn$ | 2.7634 | 12.1513 | −0.2279 |

**Table 2.**The calculated elastic constants (${C}_{ij}$), bulk modulus (B), shear modulus (G), Young’s modulus (E) in units of GPa, and Poisson’s ratio ($\nu $) for the B${}_{2}{X}_{2}$Zn compounds.

${\mathit{C}}_{11}$ | ${\mathit{C}}_{12}$ | ${\mathit{C}}_{13}$ | ${\mathit{C}}_{33}$ | ${\mathit{C}}_{44}$ | ${\mathit{C}}_{66}$ | B | G | E | $\mathit{\nu}$ | |
---|---|---|---|---|---|---|---|---|---|---|

${B}_{2}I{r}_{2}Zn$ | 354.4 | 142.2 | 199.8 | 496.5 | 183.3 | 100.0 | 247.92 | 132.07 | 336.47 | 0.27 |

${B}_{2}R{h}_{2}Zn$ | 338.4 | 102.6 | 169.2 | 420.1 | 157.9 | 80.4 | 215.81 | 118.47 | 300.43 | 0.27 |

${B}_{2}C{o}_{2}Zn$ | 342.1 | 133.8 | 160.7 | 432.3 | 205.8 | 120.3 | 223.03 | 143.92 | 355.32 | 0.23 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Howard, J.; Rodriguez, A.; Haldolaarachchige, N.; Hettiarachchilage, K.
First Principles Computation of New Topological B_{2}*X*_{2}Zn (*X* = Ir, Rh, Co) Compounds. *J* **2023**, *6*, 152-163.
https://doi.org/10.3390/j6010011

**AMA Style**

Howard J, Rodriguez A, Haldolaarachchige N, Hettiarachchilage K.
First Principles Computation of New Topological B_{2}*X*_{2}Zn (*X* = Ir, Rh, Co) Compounds. *J*. 2023; 6(1):152-163.
https://doi.org/10.3390/j6010011

**Chicago/Turabian Style**

Howard, Jack, Alexander Rodriguez, Neel Haldolaarachchige, and Kalani Hettiarachchilage.
2023. "First Principles Computation of New Topological B_{2}*X*_{2}Zn (*X* = Ir, Rh, Co) Compounds" *J* 6, no. 1: 152-163.
https://doi.org/10.3390/j6010011