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Abstract: Solving nonlinear oscillations is a challenging task due to the mathematical complexity of
the related differential equations. In many cases, determining the oscillation’s period requires the
solution of complicated integrals using numerical methods. To avoid the complexity, there are many
empirical equations in the literature that can be used instead of rigorous mathematical analysis to
provide an acceptable approximation. In this paper, a recently developed method, He’s formulation,
is applied to find the period in many different cases of nonlinear oscillators. The cases are those of the
Duffing equation, the Helmholtz nonlinear oscillator, the simple pendulum and the case of a vertical
oscillation under the influence of a nonlinear elastic force. The results of the method are accurate;
thus, He’s formulation is a strong tool for solving nonlinear oscillations.

Keywords: He’s approximation; vibrations; restoring force; nonlinear differential equations

1. Introduction

Nonlinear oscillations have been extensively studied during the last decades [1–8].
Most of the physical phenomena are nonlinear and are mathematically described using
nonlinear differential equations (NDEs). In contrast to linear differential equations, the
NDEs present significant complexity. In addition, in many cases, analytical solutions
do not exist in the form of elementary functions. There are many analytical techniques
proposed in the literature for solving nonlinear oscillations; the most frequently used are
the perturbation methods [9,10]. However, in many cases these methods have a small
range of validity [11]. A typical example is the cubic–quintic Duffing oscillator [11]. In this
case, the perturbation method, which involves the expansion over a small parameter, is not
suitable [11]. Other analytical methods for solving nonlinear oscillations are the max–min
approach, the rational variational approaches, the amplitude frequency formulation, the
global error minimization method, the global residue rational harmonic balance method
and the energy balance method [11]. However, most of them consider only the lower-order
approximate solutions, and, therefore, their accuracy is low [11].

As already mentioned, a challenging case of nonlinear oscillator is the cubic–quintic
Duffing equation [11]:

d2x
dt2 + ax + bx3 + cx5 = 0 (1)

In Equation (1), a, b and c are constants. This case is used for modeling the free vibra-
tion of a restrained uniform beam carrying an intermediate lumped mass and undergoing
large amplitudes [12]. Due to the fifth power nonlinearity, this case is very difficult to solve.
Approximate solutions have been proposed by many researchers in the literature [11]. The
simplest one has been proposed by He [13]. According to He’s approach, the main idea
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is to find the derivative of the function f (x) = ax + bx3 + cx5 at x = A/2, where A is the
oscillation’s amplitude. In particular:

ω =

√
d f (x)

dx

∣∣∣∣ A
2

(2)

Assuming a = b = c = 1 for simplicity and using Equation (2), the error regarding
the angular frequency calculation is in the range 0.001095% ≤ π(%) ≤ 25.148408% for
0.1 ≤ A ≤ 1000 [13]. A similar equation which minimizes the error for big oscillation
amplitudes is the following [13]:

ω =

√
1
3

(
d f (x)

dx

∣∣∣∣
0.3A

+
d f (x)

dx

∣∣∣∣
0.5A

+
d f (x)

dx

∣∣∣∣
0.7A

)
(3)

Equation (3) results in error margins of 0.1 ≤ A ≤ 1000 in the range 0.0396% ≤
π(%) ≤ 3.6458%.

As already mentioned, He’s approach is the simplest method for approximating
the angular frequency (and as a result the period) of the cubic–quintic Duffing oscillator.
Despite the strong nonlinearity of the cubic–quintic Duffing oscillator, He’s elementary
method provided acceptable results regardless of the oscillation’s amplitude, as explained
above. Since finding solutions of nonlinear oscillations is a challenging procedure, an
interesting question arises: is it valid to apply He’s approach to cases other than the cubic–
quintic Duffing oscillator? To provide an answer, several well-known cases were examined.
In particular, the Duffing oscillator with a restoring force of the form ∑ F = −c1x− c2x3,
the quadratic or Helmholtz nonlinear oscillator with a restoring force of ∑ F = −c3x− c4x2

(where c1, c2, c3 and c4 are constants), the simple pendulum with a restoring force of the
form ∑ F = −wsinθ (where w is the object’s weight and θ is the angular displacement
from the equilibrium position) [14–17] and the vertical oscillation under the influence of
nonlinear elastic forces (∑ F = w− cyn, where w is the object’s weight and c and n are
constants) were chosen [18].

In this paper, it will be shown that in any one of the classic cases above, He’s formula-
tion is a reliable solution for approximating the oscillation’s period. The main idea is to
write the differential equation that describes each oscillation in the form d2x

dt2 + f (x) = 0 and
subsequently find the angular frequency using Equation (2) or Equation (3). The period of
the motion can be then easily calculated using the trivial equation T = 2π/ω. In conclusion,
the basic goal of this paper is to find a simplest method for approximating the period of
nonlinear oscillations. Towards this goal, it will be proved in the following sections that
He’s approach is a method that can be generally applied to strong nonlinear oscillations
and provide acceptable results using elementary mathematical tools.

2. The Duffing Equation

Assume a point mass that is oscillating under the influence of a conservative restoring
force ∑ F = −c1x− c2x3, where x is the displacement from the equilibrium position and
c1 and c2 are positive constants. The differential equation that describes the motion is
presented below:

m
d2x
dt2 + c1x + c2x3 = 0 (4)

Since the restoring force is conservative, the potential energy can be calculated as follows:

U = −
∫ →

F ·d→x = −
∫
−
(

c1x + c2x3
)

dx = c1
x2

2
+ c2

x4

4
(5)
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Using the energy conservation principle between x = 0 and x = +A,

1
2

m
(

dx
dt

)2
+ c1

x2

2
+ c2

x4

4
= c1

A2

2
+ c2

A4

4
(6)

In Equation (6), A is the oscillation’s amplitude. Thus, the oscillation’s period is given
as follows:

Tacc. = 4
∫ A

0

1√
c1
m A2 + c2

m
A4

2 −
c1
m x2 − c2

m
x4

2

dx (7)

Equation (7) was solved numerically (assuming m = 1 kg, c1 = 1 kgs−2 and c2 =
1 kgm−2s−2 for simplicity) and the results for different values of amplitude are presented
in Table 1. The integrals were calculated using Matlab and the error is smaller than 0.0001%.
In addition, we used He’s approach as follows:

f (x) =
c1

m
x +

c2

m
x3 ⇒ f ′(x) =

c1

m
+ 3

c2

m
x2 (8)

Table 1. Accurate and approximate solutions for Duffing equation for m = 1 kg, c1 = 1 kgs−2 and
c2 = 1 kgm−2s−2.

A (m) T(s) (Using Equation (7)) T (s) (Using Equation (9)) Error (%)

0.1 6.2598 6.2597 1.5975 ×10−3

0.3 6.0818 6.0813 8.2213 ×10−3

0.5 5.7689 5.7658 5.3736 ×10−2

1 4.7680 4.7496 3.8591 ×10−1

2 3.1797 3.1416 1.1982
5 1.4419 1.4138 1.9488
10 0.7362 0.72073 2.1013

100 0.07416 0.07254 2.1845
1000 0.007416 0.007255 2.1710

Thus,

Tapp. =
2π√

c1
m + 3 c2

m
A2

4

(9)

The results from Equations (7) and (9) are presented comparatively in Table 1. The
error is small even if A→ ∞.

3. The Helmholtz Nonlinear Oscillator

Assume a point mass that is oscillating under the influence of a conservative restoring
force ∑ F = −c1x− c2x2, where x is the displacement from the equilibrium position and
c1 and c2 are positive constants. The differential equation that describes the motion in this
case is as follows:

m
d2x
dt2 + c1x + c2x2 = 0 (10)

Since the restoring force is conservative, the potential energy can be calculated as
follows:

U = −
∫ →

F ·d→x = −
∫
−
(

c1x + c2x2
)

dx = c1
x2

2
+ c2

x3

3
(11)

In this case, the motion is not an oscillation for any displacement from the equilibrium
position, as can be revealed by the U = f (x) graph. In Figure 1, the U = f (x) graphs for
−2 m ≤ x ≤ 2 m and for −0.5 m ≤ x ≤ 0.5 m are presented. Thus, the period in this case
will be calculated for A ≤ 0.5 m.
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Figure 1. The U = f(x) graph (a) for −2 m ≤ x ≤ 2 m and (b) for −0.5 m ≤ x ≤ 0.5 m. The graphs 
were plotted using Equation (11). 

Using the energy conservation principle between 𝑥 = 0 and 𝑥 = +𝐴, 

1

2
𝑚

𝑑𝑥

𝑑𝑡
+ 𝑐

𝑥

2
+ 𝑐

𝑥

3
= 𝑐

𝐴

2
+ 𝑐

𝐴

3
 (12)

Thus, the oscillation’s period is as follows: 

𝑇 . = 4 ∫ 𝑑𝑥  (13)

Equation (13) was solved numerically for m = 1 kg , c = 1 kgs  and c =

1 kgm s  (the integrals were calculated using Matlab and the error is smaller than 
0.0001%.). On the other hand, we used He’s approach as follows: 

𝑇 . =
2𝜋

𝑐
𝑚

+
𝑐
𝑚

𝐴

 
(14)

The results from Equations (13) and (14) are presented comparatively in Table 2. 
Equation (13) is a good approximation. In any case, the error is smaller than 3%. 
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Figure 1. The U = f(x) graph (a) for −2 m ≤ x ≤ 2 m and (b) for −0.5 m ≤ x ≤ 0.5 m. The graphs
were plotted using Equation (11).

Using the energy conservation principle between x = 0 and x = +A.

1
2

m
(

dx
dt

)2
+ c1

x2

2
+ c2

x3

3
= c1

A2

2
+ c2

A3

3
(12)

Thus, the oscillation’s period is as follows:

Tacc. = 4
∫ A

0

1√
c1
m A2 + 2c2 A3

3m − c1
m x2 − 2c2x3

3m

dx (13)

Equation (13) was solved numerically for m = 1 kg, c1 = 1 kgs−2 and c2 = 1 kgm−1s−2

(the integrals were calculated using Matlab and the error is smaller than 0.0001%.). On the
other hand, we used He’s approach as follows:

Tapp. =
2π√

c1
m + c2

m A
(14)

The results from Equations (13) and (14) are presented comparatively in Table 2.
Equation (13) is a good approximation. In any case, the error is smaller than 3%.

Table 2. Accurate and approximate solutions for oscillators with a quadratic restoring force for
m = 1 kg, c1 = 1 kgs−2 and c2 = 1 kgm−1s−2.

A (m) T(s) (Using Equation (13)) T (s) (Using Equation (14)) Error (%)

0.05 6.1540 6.1318 0.3607
0.10 6.0326 5.9908 0.6929
0.15 5.9183 5.8591 1.0003
0.20 5.8102 5.7357 1.2822
0.25 5.7080 5.6199 1.5434
0.30 5.6111 5.5107 1.7893
0.35 5.5189 5.4077 2.0149
0.40 5.4312 5.3103 2.2260
0.45 5.3476 5.2179 2.4254
0.50 5.2678 5.1302 2.6121
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4. The Simple Pendulum

The differential equation that describes the motion of the simple pendulum is as follows:

d2θ

dt2 +
g
L

sinθ = 0 (15)

In Equation (15), θ is the angular displacement of the pendulum from its equilibrium
position, g is the acceleration due to gravity and L is the pendulum’s string length. Using a
MacLauren series expansion gives the following:

f (θ) =
g
L

sinθ ∼=
g
L

(
θ − θ3

3!
+

θ5

5!

)
(16)

As a result, Equation (15) can be approximately written as follows:

d2θ

dt2 + aθ + bθ3 + cθ5 = 0 (17)

In Equation (17), a = g
L , b = − 1

3!
g
L and c = 1

5!
g
L . Thus, the simple pendulum’s

differential equation can be approximated to a cubic–quintic Duffing oscillator. Under this
perspective, He’s formulation seems a rational solution for finding the pendulum’s period:

ωapp. =

√
g
L

√
d f (θ)

dθ

∣∣∣∣ θ0
2

=

√
g
L

√
cos(θ0/2) (18)

The motion’s period is as follows:

Tapp. =
1√

cos(θ0/2)
2π

√
L
g
=

1√
cos(θ0/2)

T0 (19)

In Equation (19), T0 = 2π
√

L
g is the period of the harmonic motion (for very small

oscillations’ amplitudes). For θ0 = π
6 rad, Tapp. = 1.0175T0; for θ0 = π

4 rad, Tapp. = 1.0404T0;
for θ0 = π

3 rad, Tapp. = 1.0746T0; and for θ0 = π
2 rad, Tapp. = 1.1892T0. The results are

almost identical to the accurate solution. For example, the accurate solution for θ0 = π/2 is
Tacc. = 1.1803T0 [17]. The error is only 0.75%.

5. Vertical Oscillations under the Influence of Nonlinear Elastic Forces

Another interesting case of nonlinear oscillator is the case of a vertical oscillation of an
object with mass m at a constant gravitational field

→
g combined with a nonlinear elastic

force described by a power law equation F = cyn (where c and n are positive constants).
The range of the object’s displacements is 0 ≤ y ≤ y0. At the moment t = 0, it is assumed
that y = 0 and dy

dt = 0. In addition, assuming that the positive direction is the weight’s
direction, the differential equation of the motion is as in [18]:

m
d2→y
dt2 =

→
w +

→
F ⇒ m

d2y
dt2 = w− cyn ⇒ d2y

dt2 +
c
m

yn − g = 0 (20)

The oscillation’s period in this case is as in [18]:

T = 2

√
2πm(n + 1)y1−n

0
c

Γ
(

1 + 1
2n

)
Γ
(

n+1
2n

) (21)
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In Equation (21), Γ is the gamma function. For n = 1, the result is the well-known
equation for the harmonic motion’s period:

T = 2π

√
m
c

(22)

An approximate equation that can be used instead of Equation (21) is based on calcu-
lating the ‘average stiffness’ [18]:

S =
∆F
∆y

=
cyn

0
y0

= cyn−1
0 (23)

In this case:

T = 2π

√
m
S

= 2π

√
my1−n

0
c

(24)

Equation (24) is an acceptable solution for the range 0.7 ≤ n ≤ 2 [18]. The error
compared to the accurate solution (21) is 1.965% for n = 0.7 and 2.272% for n = 2. However,
for other values, e.g., in the case that n = 0.6, the error is significantly bigger (i.e., 6.21%). In
this paper, the approach proposed by He [13] as per Equations (2) and (3), will be applied
in the differential Equation (20). The basic goal is to find out whether He’s approach can
provide a simple equation that can be applied for a bigger range of the exponential factor
n compared to Equation (24). In the case of Equation (20), f (y) = c

m yn − g. Thus, using
Equation (2),

ωapp.(1) =

√
d f (y)

dy

∣∣∣∣ y0
2

=

√
nc
m

yn−1
∣∣∣ y0

2

=

√
c
m

√
n

2n−1

√
yn−1

0 (25)

Thus, the oscillation’s period should be as follows:

Tapp.(1) = 2π

√
m
c

√
2n−1

n

√
y1−n

0 (26)

A second more accurate approach is to use Equation (3):

ωapp.(2) =

√
1
3

(
d f (y)

dy

∣∣∣
0.3y0

+ d f (y)
dy

∣∣∣
0.5y0

+ d f (y)
dy

∣∣∣
0.7y0

)
⇒

ωapp.(2) =
√

c
m
√

n
√

1
3 (0.3n−1 + 0.5n−1 + 0.7n−1)

√
yn−1

0

(27)

and

Tapp.(2) = 2π

√
m
c

√
3

n(0.3n−1 + 0.5n−1 + 0.7n−1)

√
y1−n

0 (28)

Another idea is to use also a more ‘symmetric’ approach:

ωapp.(3) =

√
1
3

(
d f (y)

dy

∣∣∣
0.25y0

+ d f (y)
dy

∣∣∣
0.5y0

+ d f (y)
dy

∣∣∣
0.75y0

)
⇒

ωapp.(3) =
√

c
m
√

n
√

1
3 (0.25n−1 + 0.5n−1 + 0.75n−1)

√
yn−1

0

(29)

and

Tapp.(3) = 2π

√
m
c

√
3

n(0.25n−1 + 0.5n−1 + 0.75n−1)

√
y1−n

0 (30)

The T = f (n) functions using the accurate solution (Equation (21)) and the approxi-
mate Equations (26), (28) and (30) are presented in Figure 2.
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Figure 2. (a) The T = f (n) functions using the accurate solution (Equation (21)) and the approximate
Equations (26), (28) and (30). (b) The T = f (n) functions using Equation (21) (black curve) and (30)
(red curve). Equation (30) is the more accurate approach in this case.

6. Discussion

Many methods for solving the cubic–quintic Duffing oscillator have been proposed in
the literature. For example, Lai et al. [19] used the Newton–harmonic balancing method
and Guo et al. applied an iterative homotopy harmonic balance method [20]. Khan
et al. [21] used a method that combines the features of the homotopy concept with the
variational approach. Ganji et al. applied He’s energy balance method and iteration
perturbation method [22,23]. Akbarzade and Farshidianfar used the improved energy
balance method and the global residue harmonic balance method [12]. Pirbodaghi et al.
explored the homotopy analysis method and homotopy pade technique [24], while Razzak
considered an analytical method that combines the homotopy perturbation method and a
variational approach [25]. Accurate solutions of the cubic–quintic Duffing oscillator were
recently derived by Zuniga [26], Zakeri [27] and Beléndez et al. [28,29]. However, the
procedure is complex since it contains a set of complex nonlinear algebraic equations with
Jacobian elliptic functions. Chowdhury et al. presented an analytical technique based on
the harmonic balance method to determine higher-order approximate solutions [11]. In
addition, recently, He provided the simplest approach for finding the angular frequency of
the cubic–quintic Duffing oscillator [13]. Thus, since He’s approach is extremely simple, it
is important to find whether it can be also used in other cases. In this paper, it was shown
that it provides accurate results for the calculation of the oscillation’s period for many
well-known cases. However, a significant question remains: why is He’s approach a reliable
approach? The main idea behind He’s formulation is based on an engineering point of
view. In fact, assume an oscillation of a point mass m described by the following equation:

m
d2x
dt2 + F(x) = 0 (31)

In Equation (31), F(x) is the applied force on the mass. We can assume that the force is
applied by a linear or a nonlinear spring. Under this perspective, the spring’s constant will
be equal to the following:

k =
dF(x)

dx
(32)

In the case that the spring is linear, k=constant and the motion’s period is described
by the trivial equation T = 2π

√
m/k. In this case, the period is independent from the

oscillation’s amplitude. On the other hand, if the spring is not linear, then the oscillation’s
period depends on the amplitude. However, we can assume an ‘equivalent linear problem’
(i.e., a harmonic case with the same period) for any given amplitude. Therefore, we need
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to determine the exact value of the spring constant of the abovementioned ‘equivalent
linear problem’. For example, for the case of the simple pendulum, the force magnitude is
provided below:

F(θ) = mgsinθ (33)

Thus, the ‘spring’s constant’ is as follows:

k =
dF
dx

=
mg

l
cosθ (34)

Using Equation (34), it can be concluded that k is bigger for small amplitudes. Thus,
as the oscillation’s amplitude increases, the spring’s constant decreases and as a result the
period increases. Hence, we need to find a ‘representative spring’s constant’ of a linear
spring that approximately leads to correct results. The simplest idea is to consider that the
spring’s constant of the equivalent linear problem is keq., which is given as follows:

keq. =
mg

l
cos(θ0/2) (35)

For a small range of amplitudes, this is an acceptable approach (for example, for the
simple pendulum 0 ≤ θ ≤ π/2). For other problems in which bigger amplitude’s range
applies (e.g., the Duffing equation or the cubic–quintic Duffing oscillator), the method
needs to be modified. However, in any case the main idea remains the same. We consider
an ‘equivalent linear problem’ for a given amplitude. He’s approach is used to find the
average value of the spring constant for x = 0.3 A, x = 0.5 A and x = 0.7 A, as in the following:

keq. =
1
3

(
dF(x)

dx

∣∣∣∣
0.3A

+
dF(x)

dx

∣∣∣∣
0.5A

+
dF(x)

dx

∣∣∣∣
0.7A

)
(36)

This approach provides good approximations for the case of the Duffing equation, the
cubic–quintic Duffing oscillator and the Helmholtz nonlinear oscillator. For the general
case of the vertical oscillations at a constant gravitational field under the influence of a
nonlinear elastic force, the same equation can be applied; however, to achieve the biggest
possible accuracy, the equivalent spring’s constant is as follows:

keq. =
1
3

(
dF(x)

dx

∣∣∣∣
0.25A

+
dF(x)

dx

∣∣∣∣
0.5A

+
dF(x)

dx

∣∣∣∣
0.75A

)
(37)

In conclusion, He’s approach can be summarized as follows: ‘in many cases of strong
nonlinear oscillations we can consider an equivalent linear problem with the same period as the
actual one’. Thus, the appropriate value of the spring constant should be determined in each
case by following the methodology above (i.e., Equation (2), Equation (3) or Equation (29)).

Another interesting method for approximating the period of strong nonlinear oscilla-
tions was presented in [30]. The case that was considered is the following:

d2x
dt2

(
1 +

∞

∑
n=1

b2n−1x2n

)
+

∞

∑
m=1

a2m−1x2m−1 +
∞

∑
n=1

nb2n−1x2n−1
(

dx
dt

)2
= 0 (38)

In the special case that b2n−1 = 0, the differential equation above is simplified as follows:

d2x
dt2 +

∞

∑
m=1

a2m−1x2m−1 = 0 (39)
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This is the case examined in this paper. An example presented in [30] is the free
vibration of a restrained uniform beam carrying an intermediate lumped mass (this case
was first introduced by Hamdan and Shabaneh [31]):

d2x
dt2 + λx + ε1x2 d2x

dt2 + ε1x
(

dx
dt

)2
+ ε2x4 d2x

dt2 + 2ε2x3
(

dx
dt

)2
+ ε3x3 + ε4x5 = 0 (40)

The initial conditions that were chosen were x(0) = A, dx(0)/dt = 0. By introducing a
new variable τ = ωt, it can be concluded as follows:

ω2 d2x
dt2 + λx + ε1ω2x2 d2x

dt2 + ε1ω2x
(

dx
dt

)2
+ ε2ω2x4 d2x

dt2 + 2ε2ω2x3
(

dx
dt

)2

+ε3x3 + ε4x5 = 0
(41)

A first approximation of the angular frequency is provided below:

ω =

√
8λ + 6A2ε3 + 5A2ε4

8 + 4A2ε1 + 3A4ε2
(42)

In the special case that ε1 = ε2 = 0 and λ = ε3 = ε4 = 1, it can be concluded as
follows:

d2x
dt2 + x + x3 + x5 = 0 (43)

Thus,

ω =

√
8 + 6A2 + 5A4

8
=

√
1 +

3
4

A2 +
5
8

A4 (44)

This is a similar equation to the one provided by He’s approach:

ωHe =

√
1
3

(
d f (x)

dx

∣∣∣
x=0.3A

+ d f (x)
dx

∣∣∣
x=0.5A

+ d f (x)
dx

∣∣∣
x=0.7A

)
=
√

1 + 0.83A2 + 0.51783A4
(45)

The results are compared in Figure 3.
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Similar results can be also found using the methods presented by El-Dib [32].

7. Conclusions

In this paper, it was shown that He’s formulation can be used in many different cases
of nonlinear oscillators. Equation (2) can provide a perfect approximation for the case of
the Duffing equation, the Helmholtz nonlinear oscillator and the simple pendulum. For the
Duffing equation, He’s formulation provides accurate results even for very big oscillation
amplitudes (A → ∞). In addition, for the simple pendulum the error is negligible for
0 ≤ θ ≤ π

2 . For the Helmholtz nonlinear oscillator, the error when using He’s approach is
always smaller than 3%. Furthermore, He’s method is an accurate approach for the case of
the vertical oscillations under the influence of nonlinear elastic forces. In this case, He’s
approach is slightly modified to include a very wide range of elastic forces with exponents
in the range 0.5 ≤ n ≤ 6.3 (Equations (29) and (30)).

The criterion for an acceptable approximation is that the error compared to the actual
solution should be smaller than 4% as presented in He’s original paper [13]. Equations (21)
and (30) provide similar results for 0.5 ≤ n ≤ 6.3. In this case, the error is below 4%, as
shown in Figure 4. Equation (26) is an acceptable solution for a small range of the exponent
n. In particular, for 0.7 ≤ n ≤ 2.8, the error is smaller than 4%. Equation (28) is also
an acceptable solution for 0.7 ≤ n ≤ 3.7 (error smaller than 4%). It is also interesting to
note that the error provided by the Equations (26), (28) and (30) is independent of the
oscillation’s amplitude. These equations depend on the amplitude in the same way as

the accurate solution (21) (∼
√

y1−n
0 ). In conclusion, He’s formulation is a strong tool for

finding approximate solutions regarding the period of nonlinear oscillations.
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Figure 4. The error in period’s calculation if using Equation (30) with respect to the exponent n of the
power law elastic force.

8. Future Work

An interesting question that may arise from the analysis above is whether He’s ap-
proach can be used for two or more degrees of freedom system. The reason is that in many
cases, systems of two coupled second-order nonlinear differential equations are used to
describe several physical phenomena [33]. For example, in plasma physics, the following
system of equations applies [33]:

d2x
dt2 + mx3 − y = −εx4y (46)

d2y
dt2 + px5 − ax = 0 (47)
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In Equations (46) and (47), p, m and a are constants and ε is a small parameter. There-
fore, it would be interesting to examine whether He’s linearization method can be used in
the abovementioned equations to provide a simplified method for solving the aforemen-
tioned system or other systems with many degrees of freedom.
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