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Abstract: During disease or toxin challenges, the behavioral activities of grazing animals alter in
response to adverse situations, potentially providing an indicator of their welfare status. Behavioral
changes such as feeding behavior, rumination and physical behavior as well as expressive behavior,
can serve as indicators of animal health and welfare. Sometimes behavioral changes are subtle
and occur gradually, often missed by infrequent visual monitoring until the condition becomes
acute. There is growing popularity in the use of sensors for monitoring animal health. Acceleration
sensors have been designed to attach to ears, jaws, noses, collars and legs to detect the behavioral
changes of cattle and sheep. So far, some automated acceleration sensors with high accuracies have
been found to have the capacity to remotely monitor the behavioral patterns of cattle and sheep.
These acceleration sensors have the potential to identify behavioral patterns of farm animals for
monitoring changes in behavior which can indicate a deterioration in health. Here, we review the
current automated accelerometer systems and the evidence they can detect behavioral patterns of
animals for the application of potential directions and future solutions for automatically monitoring
and the early detection of health concerns in grazing animals.
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1. Introduction

Automatic accelerometers represent a relatively new and emerging technology to
provide continuous and real-time evaluation of animal activity on-farm to support repro-
duction and health. In grazing ruminant livestock production systems improving animal
efficiency represents large opportunities in improving environmental, animal welfare and
economic outcomes. Implementing sensors and big data into livestock enterprises are
proposed as an effective means for meeting many of these outcomes [1]. Various sensor
technologies have been designed and implemented to provide information on a wide range
of aspects of animal health and behavior. The previous reviews have described many of the
links between animal physiology and different types of sensors which include wearable
sensors which detect sweat, temperature, sound, movement and so on using a range of
technological approaches [1,2]. The most common and widely commercialised of these
technologies is the accelerometer sensor. A systematic review was conducted into the use
of raw accelerometer data based on a 3-step method to predict ruminant behavior through
predictive models [3]. However, those reviews were focused on behavior classification
using accelerometer datasets and did not provide information on how specific behavioral
changes can be for animal sickness characterized in the face of varying challenges, which
remains a gap in our knowledge.

In this context, behavior could be considered an important component of animal
well-being for animal welfare assessment [4]. Grazing cows with a good health status and
productivity had been shown to spend less time lying down/resting and exhibit more feed-
ing and rumination activity [5]. Further, animal behavioral changes, defined as abnormal,
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that are forced by the impact of an adverse environment and help the animals cope with an
adverse environment, are indicators of poor welfare [6]. Animals suffering from diseases
such as mastitis, metritis, metabolic disorders and ketosis, usually exhibit behavioral alter-
ations. Cows with clinical mastitis show a decrease in feed intake and feed rate as well as
fewer feeding bouts or visits to the feeder during peak feeding times [7]. Grazing dairy
cows with metritic infections increased the total daily lying time the first week postpartum
which simultaneously reduced physical activity and reduced feeding in the three weeks
before diagnosis [8]. When cows suffer from hypocalcaemia, their feeding duration and
number of visits to the feeder postpartum were shown to be reduced [9]. Ketotic cows
have shown prolonged standing time and decrease feeding duration over the week before
partum [10]. Behavioral responses of lying and rumination patterns of individuals exposed
to environmental challenges were associated with animal welfare, indicating the balance of
changeable behavioral patterns associated with the environment and similar behavioral
responses on different conditions towards how to cope with health risk at different external
situations at the individual level [11]. As a consequence, animal behavior can serve as an
indicator of their welfare. The potential for accelerometer technology to detect changes in
animal behavior associated with welfare concerns is a promising area that requires further
investigation in order to link measured changes across a range of parameters to a specific
disease and allow targeted individualized treatment. If successful this approach could lead
to the timely diagnosis of sub-clinical disease, leading to improved welfare outcomes for
farmed livestock. However, in order to detect a pattern of behavior that is indicative of a
specific disease challenge, consideration needs to be given to the behavioral traits that are
typically expressed when animals are in a poor welfare state. The ultimate aim may be
use one or more sensors to provide a fingerprint of behavior patterns that are unique and
indicative to a specific disease or welfare state.

Hence, this review aims to provide the behavioral parameters currently measured to
indicate the health status of farm ruminants and their potential to be categorized via acceler-
ation sensors used in precision livestock farming. Furthermore, revisited in this review are
the current application and development of acceleration sensor technologies that have been
validated to be available for accurate detection and classification of behavioral patterns.

2. Behavioral Indicators of Animal Health

Healthy ruminants spend their time in a range of behaviors which include eating,
ruminating, socializing and resting. As indicated above, behavioral response to changes
in health are diverse. Various behavioral changes, such as reduced grazing or ruminating
time, changes in physical activity (lying, standing and posture) and expressive behaviors,
could be observed and measured during the periods of different health challenges. This
section will review the size of the variation in specific behaviors when the health status of
an animal is compromised.

2.1. Eating

Eating behavior is a common behavioral indicator of animal welfare. The loss of
appetite or a reduction in voluntary food intake is the most frequently reported symptom
of infection with pathogens [12]. Although it is not always clear how anorexia provides
a functional advantage to the animals during times when the nutritional demands of an
immune response may be increased, infection-induced anorexia is considered to be an active
behavior of systematical defense and elimination against pathogens, which is a complex
mechanism of acute phase response related to immune, endocrine and central nervous
system [13]. Pro-inflammatory cytokines released as part of the immunological cascade,
act as a central mediator in the brain of infected animals and result in behavioral changes
such as reduced eating time and fewer social activities [14–16]. Feed intake of susceptible
animals can be decreased by the diseases such as metritis, mastitis, parasitism or lameness.
For example, intramammary infusion with Escherichia coli reduced average feeding time by
approximately 20% in the first day following infection compared with two days prior to
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infection [17]. Mastitic dairy cows had a lower feed intake and fewer feeding bouts and
spent less time lying [18], while the dry matter intake (DMI) of dairy cows with mild and
severe metritis was, respectively, decreased by 0.21 and 0.33 kg/d which was associated
with 4.0, and 4.8 min/d reduced feeding times [19]. Further, lame dairy cows with higher
locomotion scores, displaying more visible symptoms of lameness, had fewer, larger meals
with shorter total feeding duration [20], with changes of feed intake and feeding time as
well as feeder visits suggested as indicators to detect health disorders of dairy cows [21].
Similar observations have been reported during infection with multi-cellular organisms. In
young ruminants, the maximum reduced feed intake of calves on pasture for the first season
was observed at day 42, 37 and 25 for groups with low, medium and high infection levels
of Ostertagia ostertagi, respectively [22]. Voluntary feed intake of lambs infected artificially
with Teladorsagia circumcincta and/or Trichostrongylus colubriformis has frequently been
reported to be reduced with the extent directly proportional to larval challenge. Voluntary
feed intake of ewe lambs infected artificially with 1500 or 7000 T. circumcincta larvae in two
doses per week for 6 weeks, was reduced by approximately 10% [23], and voluntary daily
food intake of susceptible lambs dosed with 7000 T. circumcincta larvae 3 times per week
for 12 weeks, was decreased by 13% compared with the control group [24]. Furthermore,
dry matter intake of lambs receiving 3000 T. circumcincta and 3000 T. colubriformis larvae
per day for 18 weeks was reduced by 60% [25]. In general, the changes of voluntary feed
intake of animals confronted with stressful conditions is typically considered an adaptive
behavioral alteration, although the functional advantage that this provides to the animal
is yet to fully elucidated. Nevertheless, alterations to feed intake, feeding frequency and
a general grazing behavior have the potential to provide useful indicators of the status
of animal health and welfare associated with disease. A major obstacle has been the
difficulty in assessing these parameters, particularly assessment of feed intake, of animals
when grazing.

2.2. Ruminating

Ruminating behavior is a subcategory of feeding behavior pattern, defined as regurgi-
tating a bolus, chewing the cud or moving the head and jaw in a circular motion and then
swallowing the masticated cud. Chewing can reduce dietary particle size, promote the
secretion of saliva as a buffer for lubricating the bolus swallowed and maintaining optimum
rumen pH to enhance microbial digestion of forage, facilitate microbial colonization of the
rumen and the clearance of small forage particles from the rumen into the lower gastroin-
testinal tract [26]. In general, ruminating duration can be increased by poor-quality forage
with high neutral detergent fiber and cell wall content [27,28], and increased forage particle
size [29]. However, reduced ruminating time is often observed during health challenges,
such as heat stress [30] and metritis [31], at least some of which can be expected to be related
to reductions in feed intake. Decreased rumination is usually considered to decrease in
saliva flow and rumen buffering [32], which may affect the function of rumen digestion and
nutrient absorption. Therefore, ruminating can serve as an indicator of the animal health
and welfare. There has been limited research on changes of ruminating behavior caused
by infection. For example, daily ruminating duration of dairy cows was reduced by up
to 15–30% before diagnosis, due to metritis [33], mastitis [34] and lameness [35]. Reduced
rumination time during calving or lactation was used as a measurement to monitor early
endometritis, ketosis, lameness and mastitis disease of dairy cows [36,37]. However, ru-
minating time is frequently combined with other behavioral indicators to assess ruminant
welfare. Cows with increased somatic cells in milk reduced both their rumination and
feeding time, indicating changes in these behaviors could be considered as the indicators
for udder health or a response to inflammation somewhere in the body [5]. Behavioral
indicators related to sheep welfare were considered to be ruminating, feeding (DMI and
water intake), lying as well as the time of standing and locating during seclusion [38],
indicating rumination function is only one of a myriad of activities and behaviors than can
be used in combination to assess welfare.
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2.3. Physical Activity
2.3.1. Active Behavior

The physical activity of on-farm animals is normally described in forms such as lying,
standing, walking and other body movements. Lying and standing can be classified as in-
active behavior, while walking and body movements can be regarded as active behavior.
Behavioral changes in physical activity and fever are usually simultaneous with a reduction
in active behavior and an increase in inactive behavior. The reduced activity is associated
with changes in body temperature when invading pathogens activate a pro-inflammatory
immune reaction [39]. The subsequent reduction in activity is believed to be necessary to
preserve the energetic resources of individual animals to fight infection [15,40]. Various
studies have been carried out to reveal the changes of physical activity caused by infectious
diseases. For instance, metritic infection increased the total daily lying duration of dairy
cows with a simultaneous reduction of active behavior in 3 days before and after diagno-
sis [41]. Daily lying time of cows diagnosed with clinical metritis were increased compared
with cows without clinical metritis (628.9 vs. 591.2 min/d, respectively) [42]. Similarly,
compared with healthy cows, cows diagnosed with metritis had reduced daily physical ac-
tivity (512.5 vs. 539.2 arbitrary units/d, respectively) and postpartum daily ruminating time
(415.9 vs. 441.0 min/d, respectively) [31]. Further, rumination duration (36.8 vs. 39.8 min/2 h,
respectively) and physical activity (27.7 vs. 30.5 units/2 h, respectively) were reduced in
sick cows with ketosis, metritis, lameness and other health problems, compared with healthy
cows [43]. The induced infections of mastitis result in prolonged standing duration and short-
ened total lying duration with increasing step count and decreased overall activity [17,44].
Sheep in pain caused by lameness or mastitis may display licking, rubbing or scratching
painful areas, less movement and changes in posture to avoid contact with the painful
area [45]. Some researchers found sheep infected with the degenerative scrapie disease spent
less than half their time standing compared with the normal sheep and spent more time in
an abnormal recumbent posture and more time in rubbing and self-biting [46]. In studies of
animal with skin parasites, the infestation of mites (Psoroptes ovis) caused rubbing behavior of
sheep, leading to a reduction in lying time and an increase in the number of lying bouts [47].
These changes in movement activity typically relate to one or more parts of the body. The
previous example with mites can provide immediate and short term visual cues to the farmers
through rubbing and self-biting, but over the time other changes in activity such as reduced
lying time is important for welfare but less visible.

2.3.2. Inactive Behavior

Inactivity and recumbency in animals reflect a wide range of health challenges and
welfare status. Mean total daily lying time and mean duration of lying bouts of dairy
cows with hoof lesions were increased as locomotion score was increased, indicating the
increasing severity of hoof lesions in cows [48]. On farms using deep bedded stalls, dairy
cows with severe lameness tended to lie down 1.6 h longer per day, had longer lying bouts
and greater variation in the duration of lying bouts with behavioral thresholds identified
for severe lameness such as lying time >14.5 h/d, log bout duration > 4.5 log(min)/bout
and standard deviation of log bout duration > 4.0 log (min)/bout [49]. When lactating dairy
cows were in a high comfort and health state, average daily total lying time = 8.7 h/d, mean
daily lying bouts = 12.1 and average duration of lying bouts = 46.1 min, showing that any
changes in lying behavior of dairy cows can indicate the occurrence of health and welfare
issues [50]. Activity patterns such as lying time, lying bouts and steps were measured to
identify pain and stress of dairy cows suffering clinical metritis [42]. Some researchers have
reported that lying comfort was a behavioral indicator associated with welfare to assess the
impact of the cubicle on cattle welfare [51]. Lying behavior has also been used in combina-
tion with other behaviors for the assessment of ruminant welfare. Diseased pre-weaned
dairy calves had longer daily lying (17.6 vs. 16.7 h/d, respectively), lying bout duration
(74.8 vs. 56.0 min, respectively), shorter feeding time (19.3 vs. 22.8 min, respectively) and
fewer feeder visits (2.1 vs. 3.2, respectively) compared with healthy calves, indicating
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changes in the number of lying bouts and lying time along with feeding patterns can be
used to predict disease of dairy calves [52]. Moreover, lying and walking activity were
recorded as behavioral indicators under the conditions of on-pasture and indoor housing
to evaluate the influence of these conditions on dairy cows’ well-being for comparison [53].
Behavioral indicators of lying behavior (total time and synchronization) and locomotion
score have been suggested to estimate dairy cow welfare during housing [54] while lying
behavior, gait score, and walking speed could be utilized as behavioral indicators to mon-
itor hoof lesions of dairy cows [55]. In addition, standing behavior of dairy cows before
calving could be considered as a parameter to detect postpartum sub-clinical ketosis [56].
Behavioral changes of dairy cows such as reduced standing (5.52 vs. 6.51 h/12 h, respec-
tively), increased lying (6.48 vs. 5.50 h/12 h, respectively) and shorter feeding at night were
recorded in dairy cows suffering claw horn lesions [57]. Furthermore, behavioral activities
such as voluntary standing posture, weight shifting from one foot to another and uneven
weight bearing as well as standing on the edge of stalls have been suggested to provide an
indicator for lameness of cows [58]. However, not all increase in inactivity are associated
with health per se. Animals respond to climatic extremes through variation in behavior
with increased inactivity in both very hot or very cold conditions [59–63], and these changes
in activity in response to non-disease challenges need to be accounted for.

2.3.3. Expressive Behavior

Subtle expressive behaviors, such as tail and ear position, facial expression, panting,
separation from the flock and coughing, can be also regarded as the behavioral indicators to
evaluate animal welfare under different circumstances. For example, behavioral reactions
of dairy cows were used as the possible indicators to assess pain during the period of
mastitis, which included changes of standing/lying, in addition to tail and ear position and
attitude toward surroundings [64]. Sheep suffering pain induced by foot rot or mastitis
can be identified to show abnormal facial expression, such as closing palpebral fissure
by the eyelids, narrowing eye aperture, tightening masseter muscle with a convex shape,
abnormal ear posture with ventral and caudal rotation, a concaved jaw and an abnormal
“V” shape of nostril and philtrum [45]. The behavioral indicators of sheep welfare could
include alertness, separation from the flock, posture, gait, panting, response to stimulation,
shivering, coughing and play [65].

3. Acceleration Sensors for Measurement of Behavioral Patterns

With the many behavior cues, the ability to detect animal health issues and address
them promptly offers an opportunity to improve outcomes and improve production and
wellbeing. However, collection of quantifiable animal activity on pasture based on direct
observation or video monitoring, are both time consuming and labor intensive, and the
presence of an observer can disrupt normal behavioral patterns [66–68]. In extensive pas-
toral system, it is difficult to continuously monitor animal behaviour, especially for large
numbers spread over long distances [69]. The development of sensor and communication
technologies has improved the ability to remotely monitor activities of livestock in a broad
range of environments and on a scale not previously possible. In order to decode the
recorded data, it is essential to develop an analysis system to classify various behaviors and
postures of animals [70]. Currently there are 22 validated accelerometers available to iden-
tify behaviors related to feeding and drinking, and/or movement and resting in cows [71].
In a meta-analysis of sensor technology, there are 129 commercially available sensors iden-
tified with only 18% having validation reports [72]. However, the relationship between the
sensor analysis and the observed behavior needs to be validated to provide confidence in
the technology and subsequent user adoption. 3-Dimensional (x, y and z axis) accelerometer
sensors were used in ninety-seven percent of 66 relevant studies [3], measuring acceleration
values within three orthogonal spatial axes capturing the animal’s motion dynamics, as
the x-axis corresponds to the front-back direction while the y-axis and the z-axis detect
the side-to-side direction and the up-down direction, respectively [73]. Accelerometers
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attached below the neck of cattle measures the 3-axis inertial and gravitational accelerations
with the x-axis detecting the up-down direction, the y-axis detecting the front-back and the
z-axis detecting the right-left direction [74]. However, ear-mounted triaxial accelerometers
in sheep detect the accelerometry datasets from x-axis, y-axis and z-axis corresponding to
the directions of up-down, right-left and front-back, respectively, while the x-axis, y-axis
and z-axis of collar-mounted accelerometers detect the right-left, the front-back and the
up-down direction [75]. Overall, wearable 3-axis acceleration sensors have the capability to
capture the accelerometry data corresponding to animal behaviors which can indicate the
health status of farmed animals. 3-axis acceleration sensors with lightweight, small size,
accuracy and real-time monitoring are a promising system to identify animal behaviors.
Moreover, the research on behavioral changes of animals could also facilitate the diagnosis
of animal diseases and offer significant information to determine treatment decisions given
to animals. Behavioral changes may lead to the occurrence of abnormal statistics from the
collected 3D-accelerometry datasets. Hence, the processing and analysis of accelerometry
data from a wearable 3-Dimensional accelerometer sensors can provide information related
to animal health state. Among previous studies, various acceleration sensors attached to
ears, jaws, collars, legs or noses, have already been validated on characteristics of behav-
ioral activities of animals, shown in Table 1. These acceleration sensors were validated
using a range of statistical parameters including correlation coefficient, coefficient of de-
termination, accuracy, sensitivity, specificity, precision, Kappa, concordance correlation
coefficient or/and F-score during previous studies.

Table 1. The accelerometer systems used for the validation of behavioral activities. r = correla-
tion coefficient (Pearson or Spearman’s rank), Acc = accuracy, Se = sensitivity, Sp = specificity,
Pr = precision, Kappa = κ, F-score, CCC = concordance correlation coefficient, and R2 = coefficient
of determination.

Accelerometer Placement Parameter Measurement of Validity NO. Animals

CowManager SensOor (Agis
Automatisering BV,

Harmelen, The Netherlands)
Ear (cow)

Percentage of eating time in
6 h recording r = 0.88, κ = 0.77 [76] 15

Percentage of eating time in about
20 h recording r = 0.88, CCC = 0.99 [77] 24

Percentage of ruminating time
in 6 h recording r = 0.93, κ = 0.85 [76] 15

Percentage of eating time in about
20 h recording r = 0.72, CCC = 0.99 [77] 24

Percentage of eating/ruminating
time in 40 h recording r = 0.83 [78] 10

Allflex® eSense™ (SCR
Engineers Ltd.,
Netanya, Israel)

Ear (heifer) Minute-level panting for 10 days Se = 0.30–0.33, Sp > 0.70 [79] 99

SMARTBOW (Smartbow
GmbH, Weibern, Austria)

Ear (cow)
Hourly rumination time in

4 h recording r= 0.97, CCC = 0.96 [80] 48

Hourly rumination time in
20 h recording r > 0.99 [81] 10

Ear (calf)
Total ruminating time in

4 h recording
Se = 89.4%, Sp = 94.9%, Acc = 93.9%, Pr = 78.5%,

F1 score = 83.6%, Kappa = 0.80 [82]
15Total time of postures (lying,

standing, locomotion) in
4 h recording

Se = 94.4%, Sp = 94.3%, Pr = 95.8%, Acc = 94.3% [82]

HOBO Pendant G data
loggers (Onset

Computer Corporation,
Pocasset, MA, USA)

Ear (cow) Grazing time in 30 min recording Se = 85.47%, Sp = 82.08%, Pr = 77.63% for the
intervals of 5 min [67] 20

Jaw (cow) Grazing time in 30 min recording R2 = 0.96 [83]
7Rumination time in 30 min recording R2 = 0.91 [83]

Neck (cow) Feeding time in 3 h recording Se = 0.789, Sp = 0.937, R2 = 0.90 [84] 12

Leg
(ewe and ram)

Walking, trotting and galloping
duration in 15 min recording Overall Acc = 87% [85]

13
Standing and lying duration in

15 min recording Acc = 99.95% and 99.50%, respectively [85]

GCDC X16-mini MEMS
accelerometers (Gulf Coast
Data Concepts, Waveland,

MS, USA)

Ear (ewe) Total grazing, standing and walking
number in 10 s epochs sampling

Acc = 94%, 96% and 99%, respectively [86]
Se, Sp, Acc and Pr from 92% to 100% [86] 10

DairyCheck system (BITSz
engineering GmbH, Zwickau,

Germany)

Jaw (cow)
Total feeding time in

311–422 min recording r = 0.86, R2 = 0.74 [87]
14

Total rumination time in
311–422 min recording r = 0.87, R2 = 0.75 [87]
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Accelerometer Placement Parameter Measurement of Validity NO. Animals

AML prototype V1.0
(AerobTec, Bratislava,

Slovakia)

Lower jaw
(sheep)

Total grazing, lying, running,
standing and walking at 3, 5, 10 s

epochs sampling
Acc = 81.5–85.5% [88] 10

ADXL335 (Analog Devices,
One Technology Way,
Norwood, MA, USA)

Lower jaw
(ewe)

Total grazing duration in
675 min recording Se = 96%, Sp = 97%, Pr = 95%, Acc = 96% [89]

3Total ruminating duration in
675 min recording Se = 89%, Sp = 97%, Pr = 89%, Acc = 95% [89]

Total resting duration in
675 min recording Se = 93%, Sp = 95%, Pr = 94%, Acc = 94% [89]

BEHARUM device (Analog
Devices, One Technology

Way, Wilmington, MA, USA)
Lower jaw

(ewe)

Grazing acceleration values per min
for 20-25 min in the 30 s

epoch sampling

Se = 94.8%, Sp = 93.0%, Pr = 94.1%, Acc = 94.0%,
κ = 0.9 [90] 48

Ruminating acceleration values per
min for 20-25 min in the 30 s

epoch sampling

Se = 80.4%, Sp = 94.7%, Pr = 88.1%, Acc = 90.0%,
κ = 0.8 [90]

Hr-Tag (Allflex SCR
Engineers Ltd.,
Netanya, Israel)

Neck (cow) Rumination times per 2 h recording r = 0.93, R2 = 0.87 [91] 27

Actiwatch Mini® (CamNtech,
Cambridge, UK) Neck (ewe)

Total counts of high, medium and
low activity per min in

20 min sampling

Overall Acc = 79.98% for high/medium activity and
74.56% for low activity [92] 9

Bosch BMI160
(Bosch-sensortec,

Reutlingen, Germany)
Neck (sheep)

Grazing behavior points in 2 h
recording with a

window discretization
Sp = 98%, Pr = 96%, F-score = 95% [75]

6

Ruminating behavior points in 2 h
recording with a

window discretization
Sp = 97%, Pr = 92%, F-score = 89% [75]

MooMonitor+ (Dairymaster,
Co. Kerry, Ireland) Neck (cow)

Total feeding time in 4 h recording r = 0.93, R2 = 0.85, CCC = 0.80 [93]
24Total ruminating time in

4 h recording r = 0.99, R2 = 0.97, CCC = 0.95 [93]

Total resting time in 4 h recording r = 0.94, R2 = 0.88, CCC = 0.82 [93]
Hourly grazing time in daily

4 h recording r = 0.94, CCC = 0.97 [94]
12

Hourly ruminating time in daily
4 h recording r = 0.97, CCC = 0.98 [94]

Omnisense Series 500 Cluster
Geolocation System

(Omnisense
Ltd., Elsworth, UK)

Neck (cow)

Feeding bouts, feeding bout
duration, and total feeding time

(daily, morning/afternoon/night)
Sp = 93.0%, Pr = 83.5%, Acc = 83.2% [95] 19

Total feeding duration in
36 h recording Se = 98.78%, Pr = 93.10% [96] 6

ADXL330 (Analog Devices,
Norwood, MA 02062, USA) Neck (cow)

Total feeding duration during 30 d Se = 75%, Pr = 81%, Acc = 96% [97]
30Total ruminating duration

during 30 d Se = 75%, Pr = 86%, Acc = 92% [97]

Axivity AX3 (Axivity Ltd.,
Newcastle, UK)

Neck (cow) Minute-level feeding/rumination in
6 h recording Overall Acc = 93% [98] 10

Ear (ewe)

Total number of grazing behavior at
10 s epoch Support Vector

Machine test

Acc = 76.9%, Se = 90.3%, Sp = 98.1%, Pr = 96.8%,
κ = 0.6 [99] 12

Total number of active or inactive
behaviors at 30 s epoch Classification

and Regression Tree test

Acc = 98.1%, Se, Sp, Pr from 96.9% to 98.6%,
κ = 1.0 [99]

H30CD (Hitachi Metals, Ltd.,
Tokyo, Japan) Neck (cow) Minute-level eating, ruminating,

lying in 6 h recording
Pr = 99.2% by a 10-fold cross-validation, Se = 100%,

Sp = 100% [100] 38

Kenz Lifecorder Plus device
(LCP, Suzuken Co., Ltd.,

Nagoya, Japan)
Neck (cow) Minute-level grazing in daily 4 h

recording for 12 d R2 = from 0.97 to 0.99 [101] 6

GENEActiv (Activinsights
Ltd., Kimbolton,

Cambridgeshire, UK)

Neck
(ewe and lamb)

Data points of standing and lying in
ewes for 39 d Average Acc = 83.7% [102]

116

Data points of standing and lying in
lambs for 39 d Average Acc = 85.9% [102]

Data points of activities in ewes
for 39 d Average Acc = 70.9% [102]

Data points of activities in lambs
for 39 d Average Acc = 80.8% [102]

ActiGraph wGT3X-BT®

(ActiGraph, LLC, Pensacola,
FL, USA)

Neck (lamb)

5s epoch counts of grazing during
4 d recording Acc = 91%, Se = 94%, Sp = 88%, Pr = 86% [103]

65s epoch counts of resting during
4 d recording Acc = 93%, Se = 89%, Sp = 96%, Pr = 96% [103]

5s epoch counts of walking during
4 d recording Acc = 95%, Se = 72%, Sp = 97%, Pr = 76% [103]

InvenSense MPU-9250 (no
mentioned provider) Neck (lamb)

Confusion matrix for grazing
activity in 22.5 h recording at the 5 s,

10 s and 15s epoch
Pr, Sp, Se, Acc between 92.6% to 98.9% [104] 3
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Accelerometer Placement Parameter Measurement of Validity NO. Animals

Track A Cow (ENGS,
Rosh Pina, Israel)

Leg (cow)

Minute-level feeding time in 4 h
recording per day r = 0.93; CCC = 0.79 [80]

48Minute-level lying time in daily
4 h recording r > 0.99; CCC > 0.99 [80]

ADXL345 (Analog Devices,
Norwood, MA 02062, USA) Leg (cow)

Feeding duration at
second-level window Se = 52%, Pr = 55%, Acc = 80% [105]

5

Active walking duration at
second-level window Se = 94%; Pr = 89%; Acc = 99% [105]

Lying duration at
second-level window Se = 93%; Pr = 82%; Acc = 92% [105]

Standing up duration at
second-level window Se = 74%; Pr = 85%; Acc = 99% [105]

AfiAct Pedometer Plus
(Afimilk, Kibbutz

Afikim, Israel)
Leg (cow) Hourly lying time in 4 h recording r > 0.99; CCC > 0.99 [80] 48

IceQube (IceRobotics Ltd.,
Edinburgh, Scotland)

Leg (cow) Hourly lying time in 4 h recording r > 0.99; CCC > 0.99 [80] 48

Leg (lamb) Second-level durations of standing,
lying in daily 1 h recording for 40 h

Positive predictive value > 92%,
sensitivity > 88% [106] 10

IceTag3D-accelerometer
(IceRobotics Ltd.,
Edinburgh, UK)

Leg (lamb)
Second-level durations of standing,
lying in daily 1 h recording for 40 h Sensitivity and specificity > 91.5% [106]

10
Second-level lying bouts in daily 1 h

recording for 40 h
Positive predictive value > 44%,

sensitivity > 91% [106]

FEDO (ENGS,
Rosh Pina, Israel) Leg (calf)

Daily step counts, the number of
lying bouts, lying time, the visits to

feed bunk

Se = 68.8%, Sp = 72.4%, Acc = 71.5%
[107] 325

RumiWatch system (ITIN +
HOCH GmbH,

Liestal, Switzerland)

Noseband
(beef cattle)

Hourly feeding time at 10 min
interval sampling in daily 6 h

recording for 6 d
Pr = 88%, Acc = 89%, r = 0.81 [108]

8Hourly rumination time at 10 min
interval sampling in daily 6 h

recording for 6 d
Pr = 76%, Acc = 91%, r = 0.75 [108]

Leg (cow) Lying duration over 24 h recording r = 1 [109] 18
Standing and walking time over 10

min recording r = 0.96 [109] 21

3.1. Ear-Attached Accelerometers

As presented in Table 1, ear- attached accelerometers are a category of acceleration
sensors that are generally small in size and lightweight. The Cowmanager SensOor is an
example of an ear-attached accelerometer that has been used to simultaneously identify
the animals’ behaviors of eating, rumination, resting and active behavior for which vali-
dation data exists. It has been concluded that there are moderate correlations for eating
(r = 0.88) and high correlations for rumination (r = 0.93) between the sensors and observa-
tions [76]. However, some researchers found moderate correlations for eating/ruminating
time (r = 0.83) between the sensors and observations [78]. There were good correlations
of rumination (r = 0.72) and eating (r = 0.88) between sensor data and direct visual ob-
servations [77]. As for illness monitoring, ear-mounted accelerometers have been used to
identify the behavioral changes of beef steers induced by the challenge of lipopolysaccha-
ride injection, with the results showing that steers infected with lipopolysaccharide spent
less time on highly active behaviors, eating and ruminating than the control [110]. From
this perspective, this technology has the promising advantages of simultaneously detecting
a range of animal activities and conditions. In addition, other ear-attached accelerometers
have been validated to accurately identify specific behaviors. The ear-attached sensor
FDX-ISO 11784/11785 demonstrated Se = 99.9%, Sp = 99.6% for feeding in cattle [111].
The SMARTBOW has been tested to record the ruminating behavior and posture of cows
and there were high correlations with observations for rumination time (r = 0.97, concor-
dance correlation coefficient, CCC = 0.96) [80], and high correlations for rumination time
(r > 0.99) [81], and high correlations for rumination (89% sensitivity, 95% specificity and
94% accuracy) and posture (lying, standing and locomotion) (94% sensitivity, 94% speci-
ficity, 95% precision and 94% accuracy) [82]. The GCDC X16-mini MEMS accelerometers
attached to the ear of ewes were used to remotely classify behavioral activities of grazing,
standing and walking with high prediction accuracies (94%, 96% and 99%, respectively)
and sensitivity, specificity, accuracy and precision all being from 92% to 100% for all the
observed activities in comparison with the collar deployed accelerometer and the front
leg mounted accelerometer [86]. While the aforementioned examples may not be a com-
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plete list of the validation work that has been undertaken, regardless of the technology
platform, reliable estimates of various animal behaviors can be obtained through the use of
ear-mounted accelerometers.

3.2. Jaw-Mounted Accelerometers

Jaw-mounted accelerometers are acceleration sensors that can provide valuable in-
formation for research on grazing behavior patterns, although these may be limited for
commercial applications on-farm. These accelerometers have already been validated to
detect grazing behavior with a high degree of accuracy. The HOBO Pendant G data log-
ger is an acceleration sensor that can be attached to the jaws of cows to monitor grazing
time, rumination time and feeding time as well as lying time. It has been reported the
HOBO Pendant G data loggers fixed to the medial-lateral jaws of dairy cows could identify
grazing time and rumination time with the variance of the prediction R2 = 0.961 and 0.945,
respectively, compared with visual observations [83]. Dairy Check is another jaw-attached
acceleration sensor that has a high accuracy when used in dairy cows; r = 0.86 for feed-
ing duration and r = 0.87 for rumination duration between the sensor system and visual
observations [87]. Differentiating feeding behavior of free-ranging ruminants have been
shown to improve production efficiency, with the logger AML prototype V1.0 tri-axial
accelerometer attached onto the under-jaw of the ewe to identify and classify the grazing,
lying, running, standing and walking activities of sheep at pasture with the results showing
the 81.5–85.5% accuracy for all five behaviors [88]. Some researchers even suggested a
tri-axial accelerometer sensor of the ADXL335 placed under the lower jaw, to automati-
cally classify grazing, ruminating, and resting activities of dairy sheep [89], reporting 96%
sensitivity, 97% specificity, 95% precision and 96% accuracy for grazing, a 89% sensitivity,
97% specificity, 89% precision and 95% accuracy for ruminating and a 93% sensitivity, 95%
specificity, 94% precision and 94% accuracy for resting with a 93% overall accuracy for the
three behaviors. The BEHARUM device (ADXL335 MEMS) attached under the lower jaw
of sheep, including a three-axial accelerometer sensor and a force sensor, has been used
to accurately validate and identify behavior of grazing, rumination and other activities of
lambs at pasture, and the results demonstrated were the optimized accuracies of 94.0% for
grazing, 90.0% for ruminating and 95.5% for other activities with the peak overall accuracy
of 89.7% in the 30s epoch [90].

3.3. Collar-Mounted Accelerometers

Neck-mounted accelerometers are common sensors which can simultaneously identify
activities related to feeding, ruminating and physical behaviors. Some neck-mounted
sensors have been proposed for validation in cattle and sheep. For instance, It’s been found
that the ruminating times recorded by the neck-mounted Hr-Tag loggers, provided by
Allflex SCR Engineers Ltd. (Rahway, NJ, USA), had a high correlation with that recorded
through visual observations (r = 0.93, R2 = 0.87) [91]. Furthermore, Hr-Tag was used to
detect the differences of feeding and ruminating between sick and healthy dairy cows [112].
They found pre-calving cows with subclinical ketosis or subclinical ketosis and metritis
spent less feeding and ruminating. Hr-Tags have been validated to monitor rumination
and activity of dairy cows for identifying health disorders such as displaced abomasum,
ketosis, indigestion, mastitis and metritis [33,34,113]. Other researchers have used Hr-tags
to categorize patterns of activity and ruminating of beef cattle for the early detection of
cattle respiratory disease and lameness which facilitates targeted treatment [114]. As a
consequence, Hr-Tag is regarded as a reliable sensor to remotely monitor animal health.

Some other accelerometers have also been validated in cattle. For example, the MooMoni-
tor+ had been validated with an r = 93% of feeding time, an r = 0.94 of resting time for cows [93]
and an r = 0.94 and CCC = 0.97 of grazing time for cows [94]. The Xtrinsic MMA8451Q 3-Axis
was able to detect cattle’s feeding activity that was highly correlated with observations with a
98.78% sensitivity and 93.10% precision [96] and a 93.0% specificity, 83% precision and 83%
accuracy [95]. The ADXL330 had a moderate correlation between sensors and observations
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for feeding (75% sensitivity, 81% precision and 96% accuracy) and for lying (80% sensitivity,
83% precision and 84% accuracy) in cows [97]. There were a 85% sensitivity, 95% specificity
and 92% precision of feeding and a 92% sensitivity, 96% specificity and 88% precision of rumi-
nation for support vector machine approach by using Axivity AX3 to record the behavioral
activities of cows’ feeding and ruminating [98].

Collar-mounted sensors can also identify sheep behaviors, such as Actiwatch Mini®,
GENEActiv, ActiGraph wGT3X-BT®, AXY-3, and InvenSense MPU-9250, Gulf Coast X-16-4
Accelerometer. The sensors of Actiwatch Mini® activity monitor attached to the necks
of the ewes when used in combination with the activity scores to record behaviors with
an overall accuracy of 79.98% and 74.56% for active and inactive, respectively [92]. The
accelerometer GENEActiv has a 83.7% average accuracy of standing and lying and a 80.8%
average accuracy of grazing, rumination, inactive and walking in ewes, a 85.9% average
accuracy of standing and lying and a 85.9% average accuracy of inactive, suckling, walking
in lambs by random forest decision tree [102], while the accelerometer ActiGraph can
detect the grazing, walking and resting behaviors of lambs on pasture with a classification
accuracy of 89.6% [103]. The neck-mounted devices of AXY-3 accelerometer were used
along with fractal methods to record temporal sequences of behavioral activity patterns
of parasitized sheep which spent 66.03% ± 24.49% of the day and 18.30% ± 8.58% of the
night active during the experimental periods, indicating an accurate description of the
activity/inactivity patterns of sheep although the activity/inactivity patterns of parasitized
sheep rely on long-term activity events and gastrointestinal parasite infection [115]. As the
neck-mounted accelerometers, InvenSense MPU-9250 has a precision, specificity, sensitivity,
accuracy between 92.6% to 98.9% for grazing activity and non-grazing behaviors [104], and
Gulf Coast X-16-4 Accelerometer can be used to remotely detect perennial ryegrass staggers
of sheep grazing on endophyte-infected grass [116].

3.4. Leg-Mounted Accelerometers

Leg-attached accelerometers are typically used to identify lying, standing and walking
patterns of animals. The IceTag and IceQube 3D-accelerometers commercially available for
identifying the behavioral activities are validated to accurately record standing and lying
time of growing lambs, with all sensitivity and specificity > 91.5% of the IceTag for standing
and lying, and sensitivity > 91% and >88% of IceTag and IceQube for lying bouts [106].
Further, IceTag and/or IceQube have been used to remotely identify activity patterns of
cattle and/or lambs exposed to nematode parasitism [117–119], opioid involvement [120]
and neuronal ceroid lipofuscinosis [121]. As a result, IceTag and IceQube are promising
tools to monitor animal health problems.

There are other validated acceleration sensors proposed with high accuracy used in
cattle and sheep, including Track A Cow, ADXL345, AfiAct Pedometer Plus and The HOBO
Pendant G accelerometer. Track A Cow and AfiAct Pedometer Plus were simultaneously
examined to determine feeding and lying and all of them had been validated with the high
correlations of recorded data for feeding time (r = 0.93; CCC = 0.79) and lying time (r > 0.99;
CCC > 0.99), respectively, compared with observations [80]. The ADXL345 accelerometer
was reported to have 92% accuracy, 93% sensitivity, 82% precision for lying, 99% accuracy,
82% sensitivity, 86% precision for lying down, 99% accuracy, 74% sensitivity, 85% precision
for standing up, and 99% accuracy, 94% sensitivity, 89% precision for active walking, but
poor accuracy, sensitivity and precision for feeding and standing [105]. The HOBO Pendant
G acceleration data logger, mounted on the left lateral side of the hind leg of sheep, had the
highest accuracy for walking and running and showed the highest discriminatory values
of 99.95% for standing and 99.50% for lying [85].

3.5. Noseband-Mounted Accelerometers

Though noseband-attached accelerometers may have limited practical use and are not
widely used, they can provide scientific solutions and valuable information for research
purposes. A nose-attached accelerometer RumiWatch system has been validated to identify
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the eating behavior patterns of cows. There were moderate correlations for feeding time
with 88% precision, 89% accuracy and r = 0.81, and rumination time with 76% precision,
91% accuracy and r = 0.75 between the RumiWatch system and visual observations [108],
whereas the RumiWatch system mounted to the leg had an r = 1 of lying time, an r = 0.96
of standing, an r = 0.96 of walking time and an r = 0.98 of stride number with r = 0.75 for
stride duration and r = 0.81 for stride length [109], indicating that it has the capability of
monitoring animal health and welfare on farms.

3.6. Other Accelerometers-Related Sensors

In order to accurately classify animal activity, some other 3-axis acceleration-related
sensors that may not be included in Table 1, have been also used or developed, such as
Silent Herdsman [122,123], ProMove-mini [124], iFarmTec [125], MPU9250 9-axis micro-
electromechanical system [73], MinIMU-9V2 IMU [126], Digitanimal Livestock GPS [127],
GPS collar [128], Bosch BMI160 [75,129] and Bosch BMA400 micro electromechanical
system [130]. Further, these sensors are utilized in combination with additional sensors
or/and approaches of data processing and analysis for predicting animal behaviors.

Neck-mounted Afimilk Silent Herdsman collar and tail-mounted AX3 3-axis logging
accelerometer were simultaneously attached to beef and cows, together with machine
learning random forest algorithms developed for predicting calving based on single-sensor
variables and multiple sensor-data [123]. Convolutional Neural Network was developed
to classify ruminating, eating and other behaviors of cattle using the motion-related data
captured by Silent Herdsman collars and Rumiwatch halters, achieving an overall F1 score,
precision and recall of 82%, 83% and 82%, respectively for validation performance [122].
The ProMove-mini containing a 3-axis accelerometer and 3-axis gyroscope, was attached to
the neck of goats within independent different orientations to collect real-world datasets
and had a 94%accuracy for all the data through a simple Naive Bayes classifier based on a
single feature [124]. An existing monitoring platform iFarmTec composed of A Wireless
Sensor Network, a Computational Platform and a User Interface, was used to fetch the data
from sheep motions together with a video camera used for recording sheep behaviors and
machine learning Decision Trees algorithms applied within multiple features to achieve an
overall accuracy over 91% [125].

In addition, a MinIMU-9V2 IMU integrated with a LSM303DLHC 3-axis accelerom-
eter, a L3GD20 3-axis gyroscope, and a 3-axis magnetometer, was used as a collar sensor
together with a GPS to measure the movement dynamics of horse gaits with achieving
up to 97.96 ± 1.42% accuracy and an efficient energy consumption under Artificial Neural
Network model using cross validation [126], and MPU9250 9-axis micro-electromechanical
system was integrated with battery pack and solar panels into a collar tags to collect 3D-
accelerometry data corresponding to grazing, ruminating, resting and other behaviors of
cattle using several different machine-learning algorithms via cross-validation, with results
showing the algorithms multilayer perceptron (MLP) with a single hidden layer, logistic
regression (LR) with an one-versus-one reduction scheme and support vector machine
(SVM) with an one-versus-one reduction scheme, yielded the highest overall accuracies
of approximately 93% [73]. Moreover, the same MPU9250 9-axis micro-electromechanical
system, mounted to the neck of cattle to fetch the 3D-accelerometry data related to cattle be-
haviors using an end-to-end deep learning algorithm, had an overall Matthews correlation
coefficient values between 80.34–95.68%.

GPS sensors have also been also combined with 3-axis acceleration sensors to capture
the 3D-accelerometry datasets corresponding to animal behaviors. The Digitanimal Live-
stock GPS device is integrated with a 3-D micro-electromechanical-system accelerometer
and a GPS sensor, which was attached to the neck of cattle to obtain the accelerometer raw
data at a sampling frequency of 10 Hz together with video recording on the durations of
grazing, ruminating, laying and steady standing, and a random forest machine learning
algorithm was used to classify cattle behaviors matched to accelerometer records with
good accuracies of 0.93, 0.907. 0.881, and 0.922 for grazing, ruminating, laying and steady
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standing, respectively [127]. A lab-constructed GPS collar, which is comprised of an iGotU
GT-120 GPS logger and a 3-axis X16 mini accelerometer, was mounted to the bottom of
the cattle’s neck to classify grazing and non-grazing behaviors using random forest (RF),
linear discriminant analysis (LDA), quadratic discriminate analysis (QDA), and support
vector machines (SVM) for comparison [128]. Moreover, a CSIRO collar sensor containing a
3-axis accelerometer and a 3-axis magnetometer in its piezoelectric micro-electromechanical
system (MEMS) chip, was attached below cattle’s neck in combination with a GPS sensor
on top of cattle’s neck to classify the foraging, ruminating, resting, travelling and other
active behaviors of grazing cattle by mixture models and decision tree [74]. The results of
these trials showed good classification accuracy of identifying behaviors of grazing cattle.

Both Bosch BMI160 and Bosch BMA400 are integrated with a 16 bit triaxial gyroscope
and a 16 bit triaxial accelerometer. Machine learning random forest algorithm for classifying
grazing and ruminating behavior of sheep yielded the highest overall accuracies of 92%
and 91% for collar and ear sensors, respectively, using the raw data collected by Bosch
BMI at 16 Hz sampling frequency [75]. Similarly, using Bosch BMI160 together with the
random forest approach to identify lying, standing and walking in sheep yielded the best
performance with 95% accuracy and 91–97% F1 score at 32 Hz frequency, 7 s window and
32 Hz frequency, 5 s window for collar and ear sensors compared with 91–93% accuracy
and F-score 88–95% at 16 Hz frequency, 7 s window [129]. The recurrent neural network
(RNN) models within gated recurrent unit (GRU) architecture was utilized to analyze 3D-
accelerometry data associated with cattle behavior captured by Bosch BMA400, showing
better classification accuracy and less complexity than the ones with long short-time
memory (LSTM) architecture [130].

4. Considerations around Sensor Choice

Acceleration sensors provide a means to accurately record and classify the behavioral
patterns of on-farm animals and have the potential to provide valuable behavioral indi-
cators to measure animal welfare and health status from which management decisions
under different infection challenges can be made. As outlined above, there already exists a
multitude of different sensor technologies, and it can be expected that more will be devel-
oped in the future. However, it needs to be considered how a farmer may make a suitable
choice over the right acceleration sensor systems for it to be implemented commercially
on a large scale. The real time monitoring systems of acceleration sensors should fulfill
some requirements to reach the level of practical applications on-farm and would be con-
sidered a necessary function of any accelerometer. The accelerometer devices should also
have the attribute of being cost-effective, light weight and tolerant of different conditions
during practical application without impacting animal behavior. For many farmers the
adoption of a new digital technology depends on how easily it can be integrated with
current digital platforms [131]. The application site of acceleration sensors over an animal
body should also be taken into consideration as an important factor affecting accuracy of
remote detection and should be considered, especially in the context of what information is
captured and for what purpose. As mentioned in Section 3, 3-Dimensional accelerometer
sensors can be mounted to different positions over animals, which may influence their
predictive performance. It has been suggested that ear, neck and jaw-mounted sensors had
better capability for monitoring feeding behavior, while leg-mounted sensors exhibited
better results on behavioral activities such as walking and resting than collar-mounted
sensors [71]. Accurate detection of animal behavior may depend on the categories of be-
havioral patterns on the condition of infection challenges, though behavioral changes can
be used as the indicators of animal health. For instance, lameness can lead to abnormality
of active behaviors such as walking and posture while parasitic infection induces anorexia,
detected through a decrease in eating time. The behavioral alterations of an animal wearing
a triaxial accelerometer sensor lead to changes of 3-axis accelerometry directions where
the accelerometry datasets with abnormality are then generated. Accelerometer sensors
transform static or dynamic acceleration due to gravity or animal motions into the voltage
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outputs as the measurements of animal activities [2]. As a consequence, accelerometry
data captured via a wearable 3D accelerometer sensor can indicate the health status of
an animal.

Sensor technologies have the potential to perform early detection of behavioral
changes due to animal diseases. There has been multiple biosensors such mechanical
sensors, acoustic sensors, electromyography sensors and acceleration sensors as pro-
posed to quantify physiological and behavioral responses of animals exposed to different
diseases and real-time monitoring animal behaviors using wireless sensors to acquire
data can provide detailed and precise information on animals’ activity and wellbeing [2].
Further, among the motion-detection sensors, acceleration sensors are capable of moni-
toring any changes in an animal’ behavioral patterns for predicting the sickness induced
by infection. However, appropriate accelerometer sensors need to be chosen to detect
the information from the behavioral changes of sick animals with sub-clinical signs. In
general, the symptoms of sick animals with sub-clinical infection are subtle, making it
more difficult to monitor changes in animal behavior by direct observation. For instance,
grazing time can be affected by different factors, such as animal age, breed, physiological
status, health/disease, vegetation, weather, season and environment [132]. Although the
occurrence of abnormal behavioral patterns may indicate a decrease in animal health or
wellbeing, most behavioral indicators cannot be specific for a particular issue of animal
health. Some signs of different sub-clinical infections in cattle and sheep may be similar
and subtle, but with detailed investigations into the extent and pattern of changes in
behaviors this approach of utilizing sensors can potentially provide sufficient evidence
that animal health is impaired leading to diagnosis and appropriate treatment. The be-
haviors such as expressive activities mentioned in Section 2.3.3 may be hardly detected
using a single sensor. Therefore, additional sensors or/and monitoring approaches are
suggested for implementation, including a GPS and video recording. Moreover, two or
more sensors, such as ProMove-mini [124] and MinIMU-9V2 IMU [126], can be integrated
into a whole monitoring system to facilitate the collection of accelerometry data. The
value of real time data from acceleration sensor recordings can be considered as an early
diagnostic signal to timely detect changes in particular behaviors that relate to health.
However, the designed infrastructure of a 3D-acceleration sensor is an important aspect
that needs to be considered for enabling the transmission, transformation and acquisition
of real time data. The eGrazor collar tags [133] is an example that consists of an artificial
intelligence device, battery pack, and solar panels. Further, the sampling frequency of an
acceleration sensor associated with energy consumption should be appropriately selected
to capture the accelerometer data for predicting behaviors. The results of validation per-
formance varied based on the sampling frequencies [129]. The balance between sampling
rate and an efficiency of energy consumption also needs to be obtained for validation
performance to prolong the battery life. The sufficient Wi-Fi connection or direct line of
site to the transmitter for an acceleration sensor, which may facilitate the applications in
certain environments, should be taken into consideration as well as a long battery life
with sustainable supply of electrical power and a data storage and management system
that enables viewing, storing and downloading real time data. Already a smart ear tag
containing a microcontroller, a triaxial accelerometer, satellite communication interface,
an on-board memory, a solar panel and a battery has been developed [130], which can
provide new perspectives for future research. In current studies related to the detection of
behavioral patterns, the total time spent on specific behavior during a day or a period is of-
ten measured for evaluating the impact of some diseases or adverse conditions. However,
diurnal patterns of activities may be more sensitive and useful for early identification of
animal welfare concerns, particularly when seeking to identify which challenge the animal
may be facing. The diurnal duration of lying, diurnal lying bouts and diurnal steps as
well as diurnal motion index of grazing cattle have been evaluated under the parasitic
infection using the collected 3D-accelerometry data [119]. This approach of developing
a behavioral fingerprint which of diurnal patterns of animal behaviors that are unique
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to a specific challenge is a promising area for future studies and applications, although
there has been limited research on this area. However, a major consideration may be
the processing and analysis of accelerometry data for predictive performance and how
much this needs to rely on the comparison with visual observations, which themselves
may contain error. Nevertheless, the raw accelerometer data need to be preprocessed by
cleaning noise in the raw time-series, calculating additional time-series, segmenting the
time-series into time-windows, calculating features from each time-window and split-
ting datasets, and then machine learning algorithms are carried out to classify different
behaviors [3]. Predicting sickness behaviors of animals using 3D-accelerometer data is
promising for early diagnosis of animal diseases, although there are still limitations for
practical utilization. In order to strengthen the potential of acceleration sensor technology,
different behavioral parameters should be integrated for analysis at the same time, and
the sensor system needs to be added with different functions and has the capability of
comparing and recognizing simultaneous changes of behavioral patterns [71].

5. Future Considerations

Acceleration sensor systems are an efficient and reliable way that can make it much
easier to record the activity status of an animal at pasture and have the potential to provide
valuable insights as to their welfare state. However, acceleration sensor technologies cannot
replace people and good management, due to that there may be similar behavioral changes
under a number of different conditions, just helping identify individual animals who are
suffering from infections and need appropriate targeted treatments. Therefore, specific
behavioral changes can be considered as indicators for animal health and welfare. As the
early diagnostic tools for animal diseases, sensor technologies can measure characteristic
variables related to those behavioral indicators. A number of commercial acceleration
sensors have been increasingly available for livestock management and many of these
have been shown to have high accuracies and sensitivities for detecting animal behaviors
such as feeding, ruminating and physical activities. The acceleration sensor technology
selected according to the purposes which it is being intended and how the information
provided may contribute to the development of precision livestock farming. As the sensor
technologies are being developed, new detection technologies are constantly emerging,
providing alternatives to identify the status of animals health under the impaired infection
challenges. It is also important to improve the detection capability of behaviors and
expand the current application of sensor technologies and integrate these into existing
farm management. The integrated application of different sensor technologies can have
the potential of to better monitor animal diseases, allowing for more timely diagnosis and
treatment and facilitate animal performance. However, further research on the ability of
sensors to assess animal welfare, including the diurnal patterns of activity, is necessary.
Sensors can rapidly provide data, but there is still a gap in our understanding of how this
data can best be managed and utilized to provide optimum benefit. The notion put forward
here of utilizing changes in animals behavior to identify subclinical disease is an exciting
prospect, where not only gross changes but the pattern of change may allow behavioral
fingerprinting to be a means of optimizing animal productivity and wellness.
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