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Abstract: Quantum matter (novel phases of matter at zero temperature with exotic properties) is
a growing field with applications in its own domain, and in providing foundational support to
quantum sciences fields more generally. The ability to characterize and manipulate matter at the
smallest scales continues to advance in fundamental ways. This review provides a plain-language,
non-technical description of contemporary activity in quantum matter for a general science audience,
and an example of these methods applied to quantum neuroscience. Quantum matter is the study
of topologically governed phases of matter at absolute zero temperature that exhibit new kinds
of emergent order and exotic properties related to topology and symmetry, entanglement, and
electronic charge and magnetism, which may be orchestrated to create new classes of materials and
computational devices (including in the areas of spintronics, valleytronics, and quantum computing).
The paper is organized to discuss recent developments in quantum matter on the topics of short-
range topologically protected materials (namely, topological semimetals), long-range entangled
materials (quantum spin liquids and fractional quantum Hall states), and codes for characterizing
and controlling quantum systems. A key finding is that a shift in the conceptualization of the field of
quantum matter may be underway to expand the core focus on short-range topologically protected
materials to also include geometry-based approaches and long-range entanglement as additionally
important tools for the understanding, characterization, and manipulation of topological materials.

Keywords: quantum matter; topological materials; topological insulators; topological semimetals;
quantum spin liquids; fractional quantum Hall effects; quasiparticles; anyons; toric code

1. Introduction
1.1. Quantum Matter

Quantum matter (topological materials, topological matter phases, quantum materials
with topological properties) refers to novel phases of matter that arise at absolute zero
temperature (0 kelvin) with emergent order and exotic properties. Traditionally, symmetry
(Landau symmetry breaking) was sufficient for characterizing materials, however, quantum
matter requires a topological description, and hence the name topological materials, or
quantum materials with topological order. Topology and symmetry (symmetry breaking),
and entanglement, are the main tools for describing, creating, and manipulating quantum
matter phases. Other salient attributes of quantum matter systems may include the emer-
gence of quasiparticles (collective excitations) with anyonic exchange statistics (identical
particles swapping places by changing their wavefunction in a process called ‘braiding’),
gauge theory, quantum phase transitions, and low-energy effective theories of topologically
ordered states. Some examples of quantum matter phases include topological insulators,
topological semimetals, fractional quantum Hall states, quantum spin liquids, and strongly
correlated quantum liquid states. Quantum matter provides rigorous ways for treating
many-body systems whose collective behavior triggers quasiparticles (excitations) and
many-body localization (states in which collective interactions cause quantum particles to
be localized and maintained in an out-of-equilibrium state).
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One way of categorizing the quantum matter field is by research efforts that, respec-
tively, treat the short-range protected properties and long-range entangled properties of
topological materials (Table 1). Short-range protected topological order refers to quantum
matter phases that are primarily characterized as having a variety of symmetry protections
in the short-range, but whose entanglement properties are trivial. Long-range entangled
systems, on the other hand, centrally feature entanglement as a non-local order parameter
for describing interactions and correlations in many-body systems [1]. The paper is struc-
tured in sections to discuss quantum matter building blocks, scientific efforts that focus on
the short-range protected and long-range entangled properties of quantum systems, codes
(mathematical encoding models to measure, confirm, and correct quantum matter systems),
and an example of these methods applied to quantum neuroscience.

Table 1. Quantum Matter Building Blocks and Short-range and Long-range Matter Phases.

Building Blocks Short-Range Protection Long-Range Entanglement

Symmetry and topology Topological insulators Quantum spin liquids
Anyons/quasiparticles Topological superconductors Quantum Hall states

Hyperbolic space Topological semimetals Entanglement entropy

The Relation of Quantum Matter and Quantum Information Science

Two of the cornerstone fields in the foundations of quantum science are quantum
matter and quantum information science. Quantum matter works closely with physical
materials, attempting to characterize and exploit the properties of existing and novel matter
phases. Quantum information science establishes information-theoretic formulations of
physics problems, for example, evaluating the information content in quantum states with
entropy calculations. Some of the main topics in the research agendas for the two fields
are set forth in Figure 1, together with their overlap in the use of codes and available
experimental platforms for quantum computation, quantum machine learning, quantum
simulation, and quantum nanoscience material fabrication. The information-theoretic
formulation of codes (quantum system encodings) provides a solvable model of topological
phases, for example, in toric code models, a spin-1/2 system on a square lattice with
stabilizer operators whose boundary conditions are in the shape of a torus [2].
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1.2. Symmetry and Topology

The main ways of characterizing and manipulating quantum matter are with entan-
glement, symmetry, and topology. Entanglement is the quantum property of correlated
physical attributes among particles (position, momentum, spin, polarization). Symmetry
refers to features of particles and spacetime that are unchanged under some transformation,
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seen as the property of a system looking the same from different points of view (e.g., a face,
a cube, or the laws of physics) and its partner, symmetry breaking (phase transition). Topol-
ogy is the property of geometric form being preserved under deformation (e.g., bending,
stretching, twisting, and crumpling, but not cutting or gluing). Physical systems (such as
the universe and quantum mechanical systems) may have global symmetric and topological
properties that remain invariant across system scales.

Symmetry typically describes the matter phases found in classical materials, such as
water progressing through temperature-based transitions between its forms as ice, liquid,
and vapor. In classical materials, the familiar matter phases (liquid, gas, solid) are described
by the different symmetry-based ways that their constituent atoms can be organized (atoms
are randomly distributed with continuous translation symmetry in a liquid, for example,
and structured into a regular array (lattice) with discrete translation symmetry in a crystal).
When matter undergoes a phase transition (e.g., from a liquid to a gas), the symmetry
is broken and the atoms reorganize according to a different paradigm. These kinds of
matter phase transitions can be described by Landau symmetry breaking [3]. Quantum
matter phases, however, defy Landau symmetry breaking and require topological-based
explanations of individual and group behavior.

1.2.1. Quasiparticles (Fermions) and Collective Excitations (Bosons)

Quantum matter opens a new era in the study of many-body systems through the
analysis of emergent collective behavior known as quasiparticles (fermions) or collective
excitations (bosons). Quasiparticles and collective excitations are the quantum analogue
of geometric shapes made by group behavior, for example, in the macroscale context
in formations such as schools of fish and flocks of birds. Quasiparticles and collective
excitations emerge from collective behavior in topological phases, and may serve as artifacts
or constructs for better understanding of the inner workings of these phases. Notable
examples include electron holes (positively charged quasiparticles denoting the lack of
an electron in a state in the valence band of a semiconductor), excitons (an electron and
an electron hole bound together), phonons (vibration of atoms in a rigid crystal structure),
plasmons (plasma oscillations in which electrons simultaneously oscillate with respect to
ions), and magnons (a perfect alignment of magnetic moments or collective spin wave in
a ferromagnet). In practical use, quasiparticles are used to simplify the calculation of the
overall excitation in many-body systems, obtain the ground state and excited states of the
system, and determine the bulk properties of low-energy systems.

1.2.2. Anyons: Third Kind of Particle

Anyons are a third kind of particle that behave like “any” generic particle, with inter-
mediate and less-restricted values than those of the two main kinds of particles, fermions
and bosons. Anyons were proposed in 1982 [4] and detected in 2020 in experimental
setups involving an accelerator [5] and an interferometer [6]. The former project directed
an electron gas through a small particle collider to realize fractional electric charges (the
fractional Hall quantum effect, a physical system predicted to host anyon behavior), and
the latter used an etched chip that screened out interactions interfering with the anyon
behavior. Although anyons cannot exist as fundamental particles in nature, certain kinds
of two-dimensional condensed matter systems are predicted to host exotic quasiparticles
which obey anyonic statistics in which two identical anyons may swap places, changing
their wavefunction in a process called ‘braiding’.

Fermions and bosons are the two basic kinds of particles. Fermions are matter particles
(electrons, protons, neutrons, quarks), with half-odd integer (1/2, 3/2, etc.) spin and do
not like to clump together, keeping themselves spread out, for example, in electron shells
in atoms (per the Pauli exclusion principle). Bosons are force particles (photons, gluons,
gravitons) with integer spin, and like to clump together, for example, to form a beam of
light. Whereas fermions and bosons are foundational particles, anyons arise through the
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behavior of other particles, and exhibit statistical signatures in between those of bosonic
bunching and fermionic exclusion.

1.3. Hyperbolic Space (Negative Curvature)

As Landau symmetry models break down as a model for describing topological
materials, so too Euclidean space-based models such as the Bloch theorem prove inadequate.
There are various forms of space. For example, planes in two-dimensional geometries may
exhibit one of three forms based on their curvature: elliptic (positive curvature), Euclidean
(zero curvature), or hyperbolic (negative curvature). Hyperbolic space is of interest for
modeling quantum mechanical systems as more degrees of freedom can be incorporated
that more realistically correspond to the complex values of wavefunctions. In negatively
curved space, the angles of geometric shapes (triangles, squares) sum to less than those
of their Euclidean counterparts. Whereas only four squares can connect at the vertex of
a square lattice in Euclidean space, it is possible for more than four squares to connect at
vertices in a hyperbolic lattice [7]. The connectivity permits a greater density of polygons at
vertices, which means that more degrees of freedom can be modeled and exploited, as has
been demonstrated in quantum error-correction schemes [8]. The AdS/CFT (Anti-de Sitter
space/Conformal Field Theory) correspondence model is one of the first uses of hyperbolic
geometry in condensed matter systems as Anti-de Sitter space is a form of hyperbolic space.
Visually, hyperbolic space is depicted in Escher’s Circle Limits works which have a circle
with images of bats or other figures shrinking in a fractal-like manner as they proceed from
the center to the surface.

1.3.1. Hyperbolic Bloch Theorem and Hyperbolic Band Theory

Given the benefits of hyperbolic space for more accurate wavefunction modeling,
various research programs are underway to establish tools in this area. One advance is
quantum simulators in the form of circuit quantum electrodynamics (cQED) as an exper-
imental platform for modeling and synthesizing quantum matter phases in hyperbolic
space [9]. Hyperbolic lattices are a lattice instantiation in hyperbolic space for the coherent
propagation of wave-like excitations, essentially constituting a new form of synthetic quan-
tum matter in which particles effectively hop on a discrete tessellation of two-dimensional
hyperbolic space [10].

A foundational research effort generalizes the Bloch theorem to hyperbolic space with
algebraic geometry, which entails developing a hyperbolic version of the energy band
theory [11]. The Bloch theorem has been a cornerstone formulation in quantum mechanics
as it casts the generally intractable Schrödinger wave equation as a solvable model of a wave
propagating in a periodic (regular) system. The conventional energy band theory is also
based on periodicity, computing the energy tiers of a system from the wavefunction for an
electron in a periodic lattice of the material’s atoms or molecules (measuring periodicity in
the Brillouin zone, a geometric zone inside a crystal or lattice). Although the Bloch theorem
is well defined for regular crystal structures which correspond to Euclidean geometry, it
does not incorporate the full range of lattice degrees of freedom in wave phenomena, which
are more accurately modeled with hyperbolic space.

The hyperbolic Bloch theorem is generalized in the hyperbolic band theory, and
demonstrated by describing an example of aperiodic Hamiltonians with hyperbolic tiling
symmetry. A hyperbolic version of the Brillouin zone is defined that is topologically
equivalent to a higher-dimensional compact torus. The resulting hyperbolic band structure
is given as a set of functions on the higher-dimensional Brillouin zone and can be computed
exactly. The work is extended by giving proofs for Bloch theorems of hyperbolic lattices,
and by clarifying that the hyperbolic Bloch theorem is generally non-abelian and may
involve infinitely many Brillouin zones for a single lattice [10].
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1.3.2. Magnetics

The hyperbolic band theory is likewise extended to the magnetic context, by applying
an external magnetic field to a hyperbolic lattice. One team studied a hyperbolic lattice
(Riemann surface) in the presence of a magnetic field to identify the energy spectrum of
magnetic hyperbolic Bloch states [12]. The resulting states form Dirac cones on a coordinate
neighborhood (showing the first explicit example of a massless Dirac state on a higher
genus surface). The work is executed with the experimental circuit quantum electrodynam-
ics platform. Further, algebras to support the magnetic hyperbolic band theory have been
developed by proposing the magnetic Fuchsian group (a hyperbolic Riemannian surface
formulation) and the magnetic hyperbolic Bloch state [13]. Another team realized a topo-
logical hyperbolic lattice under a uniform magnetic field to lead to the hyperbolic version
of the quantum spin Hall effect [7]. A Euclidean photonic platform was constructed to
inherit the topological band properties of a hyperbolic lattice with a magnetic field applied.
The work is one of the first examples of a non-Euclidean counterpart to the quantum spin
Hall effect. In the hyperbolic lattices, a high density of edge states indicated topological
protection, which could be useful in photonic device design.

1.3.3. Condensates

The adaptation of condensed matter models to hyperbolic space continues in other do-
mains as well, for example condensates. One project considered the Bose gas in hyperbolic
space, finding that interacting Bose gases on two-dimensional and three-dimensional hyper-
bolic manifolds indicate Bose–Einstein condensation in the infinite-volume limit [14]. Other
projects have taken an AdS/BEC approach by interpreting Bose–Einstein condensates in the
AdS/CFT correspondence model of hyperbolic space. One team proposes an explanation
for dark matter as a gluonic Bose–Einstein condensate in Anti-de Sitter space–time [15].
Another team studied strongly coupled Bose–Einstein condensates with a holographic
model to explain disordered turbulence in the process of fractional vortex generation [16].

Condensates have been of interest since the realization of the Bose–Einstein conden-
sate in 1995, as a quantum state of matter formed by cooling a low-density bosonic gas to
near zero temperatures such that quantum mechanical effects (wavefunction interference)
become visible [17]. The benefit of the Bose–Einstein condensate is amplifying microscopic
quantum effects to visible macroscopic scales. Researchers are now able to condense more
complex particles in the fermionic domain such as lanthanides [18], reactive metals im-
plicated in high-temperature superconducting [19], and also in the bosonic domain, as
quantum droplets comprised of bose–bose mixtures and dipolar quantum gases (super-
solids) [20]. These kinds of condensate methods are used to solve localized wavefunctions
with complex topological structures, and could be deployed more exploratively, for exam-
ple, to study non-von Neumann architectures for information processing tasks, including
to study associative memory in the brain [21].

Under the general rubric of condensates, matter phases stretch along a stratification
that includes solitons (solitary wavepackets), droplets, and supersolids (spatially ordered
material with superfluid properties). Condensates are used to define novel quantum
matter phases resulting from emergent properties in the interactions of bosonic [22] and
fermionic [18] constituent particles, for example, quantum droplets and pre-droplet solitons.
A quantum droplet is a quantum system comprised of bosonic or fermionic constituents
whose particle interactions cause an emergent phase of matter. Quantum droplets have
interesting properties such as self-bound features, collective excitations, soliton-to-droplet
transition, droplet–droplet collision, and supersolid states. One topological matter project
articulates chiral edge solitons, a formulation in which chirality can be induced by adding
a nonlinear term to the model of two chiral edge states with opposite chiralities [23].
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2. Short-Range Protected Topological Materials
2.1. Introduction to Short-Range Protected Topological Order

A central research area in quantum matter is topological materials with short-range
protected properties, studied through energy band topology, symmetry, transport, and
bulk–boundary relationships. Per conventional energy band theory (the range of al-
lowed/prohibited energy levels in a system (bands/band gaps)), solids may be classified
as insulators, semiconductors, semimetals, and metals. Insulators and semiconductors are
characterized by a band gap between the filled valence band and the empty conduction
band. Semimetals, on the other hand, have a small region of overlap between the bottom of
the conduction band and the top of the valence band. Short-range protected topological
materials are thus divided into two main classes related to band gaps (topological insulators
and superconductors) and overlapping bands (topological semimetals) [24].

Topological insulators and topological superconductors have gapped energy tiers in
the bulk and gapless conducting modes on the surface. The surface excitations are triggered
by electrons in topological insulators and by quasiparticles (coherent superpositions of
electron and hole excitations) in topological superconductors [25,26]. The foundational
topological material is topological insulators, which are materials with a conducting surface
and an insulating interior [27]. For gapped phases, the band topology can be well-described
using topological invariants in terms of symmetries [28]. As the conduction and valence
bands cross each other in the Brillouin zone (geometric zone in a lattice or crystal), the
system enters a semimetal phase. The band crossing gives rise to nontrivial topology that
may occur at discrete points (Weyl or Dirac semimetals) or along closed loops (nodal-
line semimetals).

The various forms of solids are used in device design to produce configurations in
which electric currents can be controlled and flow with the lowest possible energy dissi-
pation. Applications of topological insulators, superconductors, and semimetals include
spintronics (using electron spins for information processing), valleytronics (using band
structure valleys for information processing), and quantum computing. As an increasing
number of topological materials continue to be discovered, classificatory systems are an
indispensable tool. The surface of materials is protected by various topologically invariant
properties related to the bulk. In particular, the bulk–boundary relationship is one in which
bulk wavefunctions lead to surface states which can be categorized by symmetry, including
both spatial (reflection, lattice) and nonspatial (time-reversal) symmetries. One project
presents a comprehensive symmetry-based classificatory schema centering on five kinds of
symmetry in non-interacting fermionic systems [25]. The rubric addresses time-reversal
symmetry (an anti-unitary operator acting on the fermion creation and annihilation op-
erators), particle-hole symmetry (a unitary transformation mixes fermion creation and
annihilation operators), chiral symmetry (a combination of time-reversal and particle-hole
symmetry), symmetry in more exotic systems (using Nambu spinors instead of complex
fermion operators), and non-unitary symmetries. The classification system treats non-
interacting (mean-field Hamiltonian) systems, and thus future classifications might be
expanded to include interacting systems.

2.2. Topological Semimetals

Topological semimetals are useful as the overlap region between the conduction band
and the valence band and can be manipulated to produce tunable surface states (manipu-
lated with computable integrals). Properties can be adjusted by varying the thickness of
the materials, introducing defects (impurity doping), and managing state degeneracy.

In the basic formulation of topological semimetals, the energy bands cross in a (zero-
dimensional) point format or a (one-dimensional) line or ring format. Hence, the basic
forms of topological semimetals are point-based Weyl and Dirac semimetals, and nodal-line
semimetals. Bulk wavefunctions lead to surface energy states; for example, bulk Weyl
points may result in surface Fermi arcs, and bulk nodal lines may trigger a flat surface band
or drumhead state on the boundary.
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2.2.1. Weyl and Dirac Topological Semimetals

The most straightforward realization of topological semimetals is two energy bands
that cross at a single node (Weyl node) [29]. Weyl and Dirac semimetals exhibit two-fold
and four-fold degenerate Fermi points, respectively. Whereas Weyl points can occur in the
absence of any symmetry besides translation, Dirac points are only topologically stable
in the presence of time-reversal symmetry together with a crystal lattice symmetry (such
as rotation or reflection symmetry) [30]. Weyl and Dirac semimetals both exhibit arc-like
surface states. In Weyl semimetals, one-dimensional surface Fermi arcs are direct topo-
logical consequences of the bulk three-dimensional Weyl points [31]. In Dirac semimetals,
however, the surface Fermi arcs are not directly related to the bulk Dirac points and a more
complicated topological bulk–boundary correspondence for Dirac semimetals is indicated.

2.2.2. Nodal-Line Topological Semimetals

Nodal-line topological semimetals are materials with energy band-touching manifolds
at one-dimensional nodal lines or rings in the bulk. Such nodal lines in the bulk lead to
different boundary behavior such as flat surface bands and drumhead states. One research
project studied the drumhead surface state in a particular material (Ca3P2) to elaborate
on how the bulk–boundary relationship gives rise to the topological protection of line
nodes [30]. Various forms of symmetry are implicated including reflection, time-reversal
symmetry, SU(2) spin-rotation (special unitary group), and inversion symmetry. A re-
lated projects extends the Dirac semimetal formulation in Dirac nodal-line semimetals
to investigate one-dimensional Dirac nodal rings that are protected by a combination of
inversion and time-reversal symmetry [32]. A small break in the inversion symmetry allows
a Hall-like current to be created in which carriers at opposite sides of the Dirac nodal ring
flow to opposite surfaces when an electric field is applied. The result is the formulation
of a Berry-phase (geometric phase) supported topological transport theory in inversion
and time-reversal invariant nodal-line semimetals. In addition to transport properties,
the team also focuses on topological band degeneracies in nodal-line semimetals and pro-
vides a classification map based on this [33]. A complete taxonomy of nonsymmorphic
(non-comparable by symmetry) band degeneracies in hexagonal materials with strong
spin-orbit coupling is elaborated upon. (Nonsymmorphic symmetries are symmetries that
not comparable by the usual symmetry properties because symmetry operations do not
have a common point on the lattice.)

Floquet engineering (reshaping the band structure) is another interesting experimental
method, treating nodal topological semimetals as linked chains. There is malleability
in periodic systems such that if the nodal rings are driven to Floquet Weyl points, the
drumhead surface states become Fermi arcs [24]. The nodal rings allow the formation of
nodal chains, in a linking structure (nodal-link semimetals). A nodal-link semimetal is
a flexible structure to which an external periodic field can be applied to produce a Floquet
Hopf insulator. As well as being of practical utility, nodal-link semimetals could support
the development of topological field theories in the Brillouin zone.

2.2.3. Magnetic Topological Semimetals

Magnetic transport properties and magnetic phases comprise a growing research area
in topological semimetals. The interacting nature of magnetic materials has been more
challenging to address than dynamics in noninteracting systems. One line of research
investigates topological quantum paramagnets, exotic states of matter whose magnetic
excitations indicate a topological band structure. (A paramagnet is a material that is weakly
attracted by external magnetic fields.) Ongoing work demonstrates that topological spin
excitations can exist in the quantum-disordered paramagnetic phase of a spin ladder [34]
and on a honeycomb lattice [35]. The honeycomb lattice bilayer structure is able to host
a time-reversal symmetry-protected topological quantum paramagnetic phase. Of note
is that the system can be induced to undergo a quantum phase transition in which the
triplet-state edge modes become detached from the bulk excitations and are protected
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by both a chiral and a unitary symmetry. The result might have practical applications
in Mott insulators (devices that insulate rather than conduct at low temperatures per
electron–electron interactions not considered in traditional band theory).

A classificatory schema for magnetic topological materials has also been developed,
attempting to incorporate all magnetic symmetry group representations and topology [36].
The taxonomy treats various semimetal compounds and their synthesis methods, in various
topology types (Weyl, Dirac, and nodal-line semimetals), for different classes of magnetism
(antiferromagnetic, ferromagnetic, and non-collinear).

2.2.4. Chiral Topological Semimetals

Chiral topological semimetals are semimetals in which chirality or chiral anomaly
plays a role [37]. Such chiral topological semimetals (Weyl fermions and multifold fermions)
are interesting because they have crystal symmetries which can protect band crossings
with degeneracies at high-symmetry points (multifold crossings). One project investigated
optical conductivity in the crystal structure of a chiral topological semimetal (CoSi) which
hosts multifold fermions (quasiparticles) [38]. The chiral crystals exhibit nonsymmorphic
symmetries (a lack of inversion and mirror symmetry) that can be used to realize multifold
crossings. These kinds of multifold fermions have been shown to exist in various chiral
semimetals, which adds to the slate of manipulable topological semimetal materials.

Another project investigated topological semimetals in crystals in more detail [39].
Chiral crystals have handedness due to a lack of mirror and inversion symmetries and
are expected to exhibit exotic phenomena such as long Fermi arc surface states, fermionic
excitations, and unusual magneto-transport and lattice dynamics properties. However, the
initially confirmed topological semimetals are in crystals that have mirror operations, thus
prohibiting the exotic properties. A different material, however, AlPt, is demonstrated as
an example of a chiral topological semimetal that does host multifold fermions (new forms
of fourfold and sixfold fermions), which can be seen as a higher-spin generalization of Weyl
fermions that does not appear in elementary particle physics. The multifold fermions are
located at high-symmetry points and have Chern numbers (topological invariant metric)
larger than those in Weyl semimetals, producing multiple Fermi arcs that span the diagonal
of the Brillouin zone. The long Fermi arcs are experimentally imaged to determine the
magnitude and sign of the Chern number.

3. Long-Range Entangled Topological Materials
3.1. Quantum Hall States

Quantum Hall states are a form of topological order that falls outside Landau symme-
try breaking. In particular, the “fractional quantum Hall effect” is of interest to fault-tolerant
quantum computing, and is obtained by applying a strong magnetic field perpendicular to
a two-dimensional electron system at low temperature. In fractional quantum Hall states,
electrons create quasiparticles (collective states) that have a fraction of the charge of a single
electron and obey anyonic statistics [40].

The Hall effect is the production of a voltage difference (Hall voltage) across an
electrical conductor that is transverse (perpendicular) to an electric current in the conductor
and to an applied magnetic field perpendicular to the current (per Edwin Hall 1879).
The idea is that a current of electrons in a thin conducting strip (two-dimensional plane)
is subject to a constant magnetic field in the normal direction, while the Lorentz force
perpendicular to the current causes a buildup of charge on the edge of the strip that induces
a voltage across the width of the strip. The quantum Hall effect is the quantum version
of the Hall effect, observed in two-dimensional electron systems at low temperature as
magnetic fields are applied and the Hall conductance takes on quantized values.

The “fractional quantum Hall effect” indicates quantized plateaus at fractional values
of charge, giving rise to quasiparticles (collective states) in which electrons bind magnetic
flux lines to make new quasiparticles that have a fractional charge and obey anyonic
statistics [5,6]. (The 1998 Nobel prize was awarded for the discovery of a new form of
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quantum fluid with fractionally charged excitations.) The integer quantum Hall effect
indicates quantized plateaus at integer values of charge. The result is quantized tiers
(“Hall plateaus”) that persist when electron density is varied; there is a finite density
of states that are localized (pinned, as in the Anderson localization), which is useful in
computational devices as electrons can be pinned (localized). A further advance is quantum
spin Hall states, instantiating the quantum Hall effect based on the flow of spin currents
(as opposed to charge currents), for potential application to next-generation quantum
computing methods. A matrix mechanics formalism (allowing the ability to diagonalize
multiple matrices to aid in solving many-body problems) has been extended to quantum
Hall states, to characterize entanglement and emergent structure [41].

3.2. Quantum Spin Liquids

The main way that long-range entanglement is engaged in quantum matter systems is
with quantum spin liquids. Quantum spin liquids are quantum matter phases in which the
elementary degrees of freedom are magnetic spins (which can be instantiated as qubits in
a quantum computational system) [42]. In general, magnetic systems are ordered in one
of three ways: with all spins pointing in the same direction (ferromagnet, as a refrigerator
magnet), disordered with neighboring spins (on different sublattices) pointing in opposite
directions (antiferromagnet), or a frustrated order that is a combination of both (spin liquid
or spin glass). Quantum spin liquids are the quantum version of a spin liquid, a “liquid”
of disordered spins, that, is a phase of matter formed by quantum spins interacting in
magnetic materials. Specifically, a quantum spin liquid is a magnetic system that does
not settle into a large-scale ordered configuration, even at zero temperature, and resides
in a nontrivial quasi-disordered ground state, which can be manipulated. Quantum spin
liquids are typically characterized by topological order, long-range entanglement, and
fractionalized (anyon) excitations.

In the usual situation of regular magnets at low temperature, electrons stabilize and
form large-scale patterns (such as domains, stripes, or checkerboards) with magnetic
properties. However, in a quantum spin liquid, the electrons do not stabilize when cooled
and preserve their disorder much in the way liquid water exists in a disordered state.
The electrons are constantly changing and fluctuating (like a liquid) in a highly entangled
quantum state. Hence, the quantum spin liquid is called a liquid because, like a liquid, the
fluctuating elements (electrons) do not settle into in a regular lattice as in a solid. Quantum
spin liquids are attractive in quantum computing for the possibility of creating topological
qubits made with quantum spin liquid matter phases (by instantiating the quantum spin
liquids in a geometrical array).

3.2.1. Initial Discovery of Quantum Spin Liquids

Several different physical models have a disordered ground state that can be described
as a quantum spin liquid. The real-life mineral, Herbertsmithite (named after mineral-
ogist Herbert Smith), was discovered in Chile in 1972, and subsequently in many other
locations (Iran, Chile, Arizona, and Greece). Herbertsmithite is a mineral with quantum
spin liquid magnetic properties (neither ferromagnet nor antiferromagnet). The magnetic
particles of the material have constantly fluctuating, scattered orientations in a kagome
(triangle–hexagon) lattice. The mineral is comprised of Zinc, Copper, Oxygen, Hydro-
gen, and Carbon. In the laboratory setting, a specific kind of proposed quantum spin
liquid formulation, the Kitaev honeycomb, was measured experimentally in 2015 with
the excitation of a spin liquid on a honeycomb lattice with neutrons in a graphene-like
material (ruthenium) (Oak Ridge National Laboratory [43]). Measurements confirmed the
expected properties of the quantum spin liquid, namely, strong spin orbit coupling and
low-temperature magnetic order.
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3.2.2. Creating Quantum Spin Liquids from Scratch

In 2021, two projects created quantum spin liquids from scratch, specifically demon-
strating the long-range entanglement property, by using a coupled superconducting circuit
and an optical atom array [44]. The former team (from Google Quantum AI) used a 32-qubit
quantum processor to study the ground state and excitations of the toric code [45]. The
latter team (from the Lukin laboratory at Harvard) detected signatures of a toric code-type
quantum spin liquid in a two-dimensional array of Rydberg atoms held in optical tweezers
(lasers) [46]. The central achievement for both projects was engineering the topological
order known as the toric code, an archetypical two-dimensional lattice model that ex-
hibits the exotic properties of topologically ordered states and is proposed for quantum
error correction [2].

In more detail, the first team realized topologically ordered states using a 32-qubit
superconducting quantum processor (Sycamore). The ground state of the toric code Hamil-
tonian was prepared using an efficient quantum circuit on the Sycamore processor. The
topological nature of the state was experimentally established by measuring the topological
entanglement entropy (topology-based measure of quantum entanglement entropy) and by
simulating anyon interferometry to extract the braiding statistics of the emergent excitations.
The second team used a 219-atom programmable quantum simulator to probe quantum
spin liquid states. Arrays of atoms were placed on the links of a kagome lattice (lattice
comprised of equilateral triangles and hexagons). The onset of the toric-type quantum spin
liquid phase was detected using topological string operators (which indicate the signatures
of topological order and quantum correlations). A class of dimer models (molecules with
identical molecules linked together) was implemented as a promising candidate to host
quantum spin liquid states.

One result of the quantum spin liquid demonstrations is new understandings of the
bulk–boundary relationship in condensed matter physics. The bulk–boundary relationship
usually entails some range of unrestricted boundary behavior, within the context of bound-
ary symmetries that are linked to and protected by bulk invariants. However, having an
experimental platform for the more rigorous creation and manipulation of quantum spin
liquids is revealing new things such as that, strikingly, under certain open boundary condi-
tions, the boundary itself undergoes a second-order quantum phase transition, independent
of the bulk [47]. Future work could tackle creating even more precise atomic quantum spin
liquids, assembled from scratch by building lattices of magnetic atoms from the bottom up,
literally atom-by-atom, with the probe tip of a scanning tunneling microscope positioning
the atoms on the surface [48].

3.2.3. Topological Qubits, Non-Locality, and Quantum Error Correction

The reason quantum matter phases with long-range entanglement are attractive as
potential topological qubits in quantum computing is due to the error-correction possibility
afforded by non-locality. Working with quantum spin liquid phases entails accessing non-
local observables, through, for example, topological string operators. The non-local nature
of quantum spin liquid states makes them attractive platforms for fault-tolerant quantum
computation, as quantum information encoded in locally indistinguishable ground states is
robust to local perturbation. The principle underlying topological quantum error-correcting
codes is that, in the quantum spin liquid model, the logical codespace corresponds to the
degenerate ground state subspace of a lattice model. The key benefit of long-range entangle-
ment is being able to perform quantum error correction (through non-local measurements).

3.3. Entanglement Entropy and Quantum Phase Transition

Entanglement is an important aspect of being able to manage system criticality and
phase transition. A phase transition between different quantum phases can be triggered by
a change in physical parameters such as magnetic field or pressure [49]. Whereas classical
phase transition is triggered by varying a macroscopic physical parameter such as tem-
perature or density, quantum phase transition is caused by changing a quantum physical
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parameter at zero temperature, tuning a non-temperature variable such as magnetic field,
pressure, or chemical composition (via a Hamiltonian term). Although a classical phase
transition is often temperature-based (often called thermal phase transition), a quantum
phase transition is not carried out by varying the temperature, because the system remains
at zero temperature throughout; the quantum system is at zero temperature before and
after the phase transition.

3.3.1. Topological Entanglement Entropy

Topological entanglement entropy is a topology-based measure of entanglement
entropy specific to quantum matter and quantum phase transition. The phases on either
side of a quantum critical point may be characterized by different kinds of topological order.
The quasiparticle excitations or quantum correlations among the microscopic degrees of
freedom might have qualitatively different properties in the two phases. Since it may not be
possible to distinguish the phases based on a local order parameter, a non-local parameter
is needed such as a topology-based measure of the long-range system entanglement.

Topological entanglement entropy incorporates aspects that the usual quantum en-
tropy measures (e.g., von Neumann entropy and Rényi entropy) do not, that are specific to
measuring entanglement entropy in quantum many-body states with topological order [50].
The topological entanglement entropy is calculated either from the quasiparticle excitations
of the many-body state or in a comparison between the system and the von Neumann
entropy. (Specifically, topological entanglement entropy is computed as the logarithm of
the total quantum dimension of the quasiparticle excitations of the state, or by comparing
the von Neumann entropy between a spatial block and the rest of the system).

3.3.2. Topological Quantum Field Theory

In fact, since it treats topological invariance, topological entanglement entropy con-
stitutes a topological quantum field theory, in three dimensions (two space and one time),
in the general formulation. A topological quantum field theory is a quantum field theory
that emphasizes topological invariants and in which the correlation functions do not de-
pend on the metric of spacetime. This means that the theory is not sensitive to changes in
the shape of spacetime; if spacetime warps or contracts, the correlation functions do not
change, and they are topologically invariant. Just as any topological object which can bend
and be deformed but not cut and the invariant properties persist, so too in a topological
quantum field theory, spacetime can warp or contract but the correlation functions do
not change and remain topologically invariant. This topological entanglement entropy
formulation is operationalized as tripartite information (equations involving two space and
one time dimension) [51].

4. Codes (Toric, etc.)

A code is a mathematical model for encoding a quantum system. In the quantum
matter context, codes have various purposes. First is for the general characterization and
solvable modeling of quantum systems. Second is to confirm well-formedness conditions
in the realization of synthetic quantum matter (as demonstrated by the quantum spin liquid
projects [45,46]). Third is to error-correct the position of atoms and other quantum objects
in the realization of quantum computation.

4.1. Stabilizer Codes
4.1.1. The Toric Code

A central formulation developed by Kitaev is the toric code, which is a solvable model
for studying highly entangled quantum phases (of which topological matter phases are the
primary example) [2]. The toric code model considers spin-1/2 spins in a square lattice,
with operators (plaquette and star) calculated as products over the spins on the bonds [52].
The operators commute, which allows the ground state and other energy eigenvalues to be
computed. The Kitaev honeycomb lattice model extends the toric code model to lattices
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and provides a simple Hamiltonian with nearest-neighbor interactions between spin-1/2
spins with an exact solution (and a stable gapless quantum spin liquid phase) [53]. The
toric code is an example of the class of stabilizer codes based on commuting operators.
Other codes such as subsystem codes are based on non-commuting operators (Bacon–Shor
code and free-fermion codes [54]).

4.1.2. Quantum Error Correction

An important use of codes is for error correction in quantum computing. Quantum
systems are much more sensitive to environmental noise than classical systems, and partic-
ularly as they evolve through operations, errors arise which need to be corrected. Quantum
systems are therefore designed with both the physical elements (atoms, molecules, spins)
that conduct the processes, and a much larger set of elements (ancilla) to correct the errors.
Known classical error-correction methods such as making redundant copies or checking
information integrity before transmission are not possible in quantum systems since infor-
mation cannot be copied or inspected (per the no-cloning and no-measurement principles
of quantum mechanics). Quantum error correction therefore often relies on entanglement
instead of redundancy. The quantum state to be protected is entangled with a larger
group of states (the ancilla) from which it can be corrected indirectly. Various quantum
error-correction codes are listed in Table 2.

Table 2. Codes for Quantum Matter Characterization, Creation, and Manipulation.

Code Description

1 Code (general) Allowed values (or value structure) for data or other parameters
2 QEC code Logical codespace corresponding to a physical lattice model space
3 Stabilizer code Topology-based Pauli operators (X, Y, Z) to restore bit/spin flip
4 Toric code Stabilizer codes defined on a 2D torus-shaped spin lattice
5 Surface code Stabilizer codes defined on a 2D spin lattice in any shape
6 Bosonic code Self-contained photon-based oscillator system with bosonic modes
7 GKP code Bosonic code: squeezed states protect position-amplitude shifts
8 Molecular code GKP codes extended to asymmetric bodies (molecules) in free space
9 Cat code Superpositioned states (Schrödinger) used as error-correction codes

The standard errors are a bit flip, a sign flip (the sign of the phase), or both. Basic codes
diagnose the error, which correspond to Pauli matrices for controlling the qubit (or spin) in
the X, Y, and Z dimensions. The error is expressed as a superposition of basis operations
given by the Pauli matrices. If there is an error, the same Pauli operator is applied to act
again on the corrupt qubit to reverse the error effect. The unitary correction returns the
state to the initial state without measuring the qubit directly. The physical state of the qubit
(spin, atom, photon, molecule) is literally controlled by using its physical properties such
as rotational state to realign it [55].

4.1.3. Stabilizer Codes in Quantum Error Correction

The basic quantum error-correcting code is the stabilizer code, as the quantum version
of linear codes used classically. The stabilizer code (mainly applied through the toric
code and the surface code) is a topology-based method that interprets particle movement
and its correction in the structure of lattice topologies. The toric code is instantiated as
a stabilizer code defined on a two-dimensional lattice with periodic boundary conditions
(thus giving the shape of a torus), with stabilizer operators on the spins around each vertex
and plaquette (face). Surface codes are a more generic formulation of stabilizer codes, also
defined on two-dimensional spin lattices, and take various shapes but are not necessarily
toroidal. Lattice surgery is a method of switching between codes on the fly.
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4.2. Bosonic Codes

Stabilizer codes as the traditional approach to quantum error correction is a mechanism
that requires multiple qubits in two-tier registers, which is cumbersome and, as systems
scale, can give rise to even more errors. A more compact method is encoding the qubits
in a self-contained (continuous variable) system such as bosonic modes (photon states),
in the form of a harmonic oscillator [56]. A generalized form of bosonic codes is GKP
codes (Gottesman, Kitaev, Preskill) which conduct error-corrected qubit encoding in an
oscillator using superpositions of squeezed states (quantum noise-reduced oscillatory
states) to protect against shifts in position and amplitude, applied based on the grid states
of an oscillator [57]. Superpositioned qubits for error correction are generally known as
(Schrödinger) cat codes or cat states [58].

GKP codes correct errors (seen as molecular displacement) by controlling the position
and momentum of an oscillator with known symmetric rotations. Molecular codes extend
GKP codes by allowing rotations to be performed on asymmetric rigid bodies in free space,
in quantum systems ranging from oscillators to diatomic and polyatomic molecules [59].
Error-corrected molecular control is an important capability in quantum circuit design and
quantum nanoscience.

5. Application Example: Quantum Neuroscience

This section provides an example of how the quantum matter concepts and methods
discussed in this review may be applied to other fields, in particular, quantum neuroscience
as a complex and emerging quantum studies field. Quantum matter, studying the founda-
tions of matter, is uncovering some of the most fundamental physical formulations possible,
and these articulations might be widely applicable to the modeling of complex phenomena
in quantum computational environments such as neuroscience.

5.1. Quantum Neuroscience

Quantum neuroscience is an emerging field in quantum biology which studies po-
tential quantum effects in the brain and applies quantum information science methods
to problems in neurobiology. The field is proceeding along three lines of activity in the
analysis of wavefunctions, neural dynamics, and neuroscience physics (neuroscience inter-
pretations of foundational physics findings). In quantum neuroscience, neural behavior
is modeled based on the quantum-mechanical properties of superposition, entanglement,
and interference, which could be extended with quantum matter findings. Neuroscience
physics approaches in quantum neuroscience already incorporate the hyperbolic space of
the AdS/CFT correspondence and the notion of successive bulk–boundary tiers. These
methods might be further enhanced with the formulations of quantum matter systems
which analyze short-range symmetry protection and long-range entangled systems in
which non-local measurements are possible.

5.1.1. Neural Signaling Phase Transitions

The complexity of the human brain (operating at nine orders of magnitude scale tiers
ranging from the central nervous system to ion channels [60]) suggests the application of
physical models that allow system manipulation across scales through the foundational
properties of topology, symmetry, and geometry. Neural signaling is often cast as a phase
transition problem, for which topological entanglement entropy might be applied to model
the different sides of the phase transition. Quantum models are needed to incorporate
synaptic integration (aggregating thousands of incoming spikes from dendrites and other
neurons) and the electrical–chemical signaling of neuron–glia interactions at the molecular
scale. These kinds of neural signaling integration problems require a higher level of
sophistication than has been available classically, including, for example, the ability to solve
partial differential equations [61].
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5.1.2. AdS/Brain Theory (Anti-de Sitter Space)

The AdS/Brain theory has been proposed as a multiscalar theory of neural signaling
based on the AdS/CFT correspondence that incorporates the four scale tiers of network,
neuron, synapse, and molecule [62,63]. The AdS/CFT correspondence (Anti-de Sitter
space/Conformal Field Theory) is a theory positing that a physical system with a bulk
volume can be described by a boundary theory in one fewer dimensions [64]. Multi-tier
bulk–boundary pairings are implicated in the neural signaling operation, each a bulk to
the other’s boundary (network–neuron, neuron, synapse, and synapse–ion). Entanglement
is measured and renormalized across the system with bMERA (brain) random tensor
networks evolved with Floquet periodicity-based neural dynamics. A matrix quantum
mechanics formulation is suggested to diagonalize multiple matrices, and the neural signal
can more expediently search through the signaling space with quantum walks.

The quantum matter program enables a number of enhancements to the AdS/Brain
theory as follows (Table 3). The bulk–boundary relationship elucidations in topological
semimetals formalizing how bulk wavefunctions lead to various manipulable symmetry-
protected surface states can be incorporated [25], in both an electronic spin and magnetic
models [35]. An integration of the hyperbolic Bloch theorem, hyperbolic band theory, and
hyperbolic lattices is indicated [11], as well as the long-range entanglement handling in
quantum spin liquid systems [45,46]. Quantum matter–quantum information science mod-
els offer new possibilities for realizing the quantum circuits for modeling neural signaling
with MERA-based wavefunctions using classical platforms (TPUs) [65]. (MERA, the multi-
scale entanglement renormalization ansatz, is a tensor network representation for ground
states of critical quantum spin chains.) The Floquet periodicity in neural signaling could be
modeled with the advance in Floquet engineering techniques available on existing quantum
computational platforms [66]. A new quantum matter-based matrix mechanics model that
incorporates the quantum Hall effect could allow the multi-dimensional scalability required
by the AdS/Brain theory [41]. The real-life behavior of neural signaling could be further
instantiated per molecular code rotational control in quantum matter systems [59]. Finally,
a research program applying Chern–Simons theory to the biological context (topological
curvature indicates max–min points) [67] could be integrated with the chiral topological
semimetal formulations in which high Chern numbers quantify topological invariance [39].

Table 3. Apply Quantum Matter Concepts and Methods to Extend the AdS/Brain Theory.

Model Parameter Quantum Information Quantum Matter

1 Multiscalar model AdS/CFT
correspondence Condensed matter bulk–boundary

2 Phase transition Neural signal integration Topological entanglement entropy
3 Symmetry Symmetry rebalancing Short-range: topological semimetal
4 Entanglement Non-local measurement Long-range: quantum spin liquid
5 Renormalization bMERA tensor network MERA (wavefunction) TPUs
6 Floquet dynamics Neural signal periodicity Floquet circuits with NISQ QC
7 Matrix mechanics Diagonalize matrices Quantum Hall matrix mechanics
8 Quantum walks Faster lattice search Molecular code rotation
9 Optimization Chern–Simons curvature High Chern numbers (invariance)

5.2. Quantum Biology of Deformable Soft Solids

Another way that quantum matter approaches may be relevant in the study of biology
is related to the topological aspects of soft deformable materials. Amorphous solids such
as tissues, foams, and emulsions are composed of deformable particles that act together
in cooperative behaviors such as cell motility. The impact of single-particle deformability
on the collective behavior of soft solids is not well-understood. Research finds that the
packing mechanism is different for soft deformable particles than for rigid-shape particles,
involving more degrees of freedom (parameters), and appears to be influenced by collective
vibrational and mechanical properties [68].
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6. Discussion

This paper provides an overview of activity in the quantum matter field (quantum
materials with topological order or topological matter phases). Research is described in the
areas of short-range protected topological materials (particularly topological semimetals),
long-range entanglement in quantum Hall states and quantum spin liquids (which allow
quantum error correction through non-local measurements), and codes (quantum system
encodings for the characterization and control of quantum matter systems). An applied
example in quantum neuroscience is considered. The fast pace of research is leading to a
larger conceptualization of the field of quantum matter in two important ways. First is an
appreciation that not only are topology and symmetry important for characterizing materi-
als, but also geometry [69]. Second, the initial focus on short-range topologically protected
materials is expanding to also include the analysis of long-range entangled materials [70].

There are many potential risks and limitations to this work. The review is intended to
highlight representative projects in quantum matter science and necessarily omits others.
A subsequent level of detail is available in other reviews of quantum matter [71–73] and
quantum spin liquids [52,74]. The topological matter industry experienced a minor setback
in the 2021 retraction of a high-profile Nature paper [75]. The paper (from researchers at
Delft University of Technology in the Netherlands, later associated with Microsoft) claimed
to have found the definitive signature of Majorana zero-mode quasiparticles, but results
could not be replicated. The incident appears isolated and has not diminished the brisk
pace and variety of approaches in topological matter.

6.1. Quantum Matter and Quantum Information Science Integration
6.1.1. Universal Quantum Computing

The potential importance of quantum matter is that the field is establishing foun-
dational developments that could lead to universal fault-tolerant quantum computing.
Existing quantum computing methods are early demonstrations of the platform, but sub-
stantial technical breakthroughs in quantum error correction are needed to progress from
NISQ (noisy intermediate-scale quantum) devices to fully FTQC (fault-tolerant quantum
computing) [76]. Topological formulations offer potential solutions for a new class of fault-
tolerant universal quantum computation, thus integrating the fields of quantum matter
and quantum information science (Figure 1).

6.1.2. Quantum Machine Learning

Digital methods such as quantum machine learning are proving indispensable to
many fields. Quantum matter provides a rich environment for the implementation of
machine learning techniques, including innovations specific to the quantum matter context.
Artificial neural networks are used to simulate strongly correlated systems, overcoming
limitations inherent in the usual classical and quantum Monte Carlo methods [77]. The
methods are extended in a probabilistic model to simulate quantum many-body dynamics
(using factorized generalized measurements to map quantum states to probability distri-
butions to obtain an exact formulation of quantum dynamics) using a transformer neural
network (state-of-the-art natural language-processing model) [78]. Other teams apply
variational methods to quantum many-body systems [79], and use quantum matter itself
as a computational technology in symmetry-protected topological phases in a quantum
cellular automata model [80].

6.1.3. Quantum Simulation Platforms

Tabletop platforms for the realization of quantum phenomena have been an impor-
tant step in advancing their scientific study. In quantum matter, circuit quantum elec-
trodynamics (cQED) provides a means of analyzing and synthesizing quantum matter
phases in hyperbolic space [9]. Circuit quantum electrodynamics joins other experimental
tabletop platforms such as chip-based particle accelerators [81], black hole on a supercon-
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ducting chip [82], and quantum gravity in the lab setups (via Rydberg atom arrays and
trapped ions) [83].

6.1.4. Quantum Nanoscience

Quantum matter may be synthesized with quantum simulation platforms, and more
formally in the area of quantum nanoscience, which is concerned with fabricated nanos-
tructures that exploit quantum properties. Quantum nanoscience actively incorporates
quantum properties in device design rather than managing around them, as progress in
nanoscience has enabled precision control in the fabrication and synthesis of matter [84].
A quantum nanoscience roadmap is set forth in the areas of quantum computing, sensing,
and communications [85]. Key areas include quantum dots (semiconductor nanoparticles
with quantum-mechanical optical and electrical properties), plasmonics (concentrated
optical energy), single-molecule and single-electron transistors, levitated nanoparticles
(controlled with optical tweezers), as well as the topological insulators and quantum spin
liquids discussed in this review.

6.2. Future Outlook for Quantum Matter Science

Quantum matter is a foundational science supporting the development of other quan-
tum sciences fields (ranging from quantum chemistry to quantum astronomy [86]), as
well as in the application of quantum methods to humanities studies, as the quantum
humanities may extend the digital humanities [87,88]. More speculatively in the further
future, quantum matter-inspired Floquet engineered pocket devices might not be out of
the question, for example, if near-field optics were to replace lasers as a more efficient field
generator, in a new era of consumer electronics based on “metamaterial plasmonics” [89].
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Abbreviations

Abelian Commuting (order of terms does not matter)
AdS/Brain Multi-tier holographic theory of neural signaling

based on the AdS/CFT correspondence
AdS/CFT correspondence (Anti-de Sitter space/Conformal Field Theory)

Theory positing that a physical system with a bulk
volumecan be described by a boundary theory
in one fewer dimensions

Angular momentum Measure of a body’s tendency to roll, spin, or orbit;
measured by amount (magnitude), direction (projection),
and intrinsic angular momentum (spin)

Anyon Third type of particle between a fermion and a boson, not
fundamental but emerges in many-body systems

Anyonic exchange statistics Computable measure of particles changing places, exchanging
wavefunctions by ‘braiding’

Artificial lattice Atomic-scale structure designed to confine electrons or spins
on a chosen lattice (made with scanning tunneling microscopy
or electron beam)

Band gap Prohibited range of energy in a system
Berry curvature Gauge-invariant geometrical property of a band; invariant

under changes in the phase of the wavefunction
Bloch theorem Solution to the Schrödinger equation for periodic systems
Boson Force particle (photon, gluon, graviton) with integer spin
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Bosonic code Photon-based system in which physical and protective
logical qubits can be encoded in a self-contained continuous
value system in a single bosonic mode (state)

Bosonic mode Photon state controllable with standard Gaussian operations
such as squeezing, displacement, phase rotation, and
beam splitting

Brillouin zone Geometric zone inside a reciprocal lattice or crystal
Cat code (Schrödinger’s cat) error correction based on superpositioned

coherent states
Charge Electrical valence of a particle (particle properties: spin,

charge, angular momentum)
Chern number Topological invariant of the Berry curvature flux over

a closed momentum surface (global system property)
Chern–Simons theory Mathematical model of topological invariance
Chiral topological semimetals Topological semimetals in crystals with a chiral structure

(handedness due to lack of mirror and inversion symmetries)
cQED Circuit quantum Experimental platform for modeling and
electrodynamics synthesizing quantum matter phases in hyperbolic space
Code (error correction) Allowed values (or structure of values) for data in a system,

may include parameters re: how many ancilla (extra) bits
protect one logical bit over what distance

Codespace Error-correction domain; possibly denoted by lattice grid
states or graph states

Coherent state Oscillatory quantum state (the quantum state of the
harmonic oscillator)

Correlation function The average (expectation value) of field operators at
different positions; the amplitude for propagation of
a particle or excitation between two points

Crystal Atoms organized in a regular array (lattice); has discrete
translation symmetry

Crystal lattice Symmetrical three-dimensional arrangement of atoms inside
a crystal

Dimer Molecule of two identical molecules linked together
Discrete time crystal Non-equilibrium state of matter that breaks time translation

symmetry (repeating time structure)
Eigenvalues Values at allowable scale tiers in a system, levels; characteristic

system values
Electron holes Positively charged quasiparticles denoting the lack of

an electron in a state in the valence band of a semiconductor
Energy band theory Allowed/prohibited energy bands/band gaps in systems
Entanglement Quantum property of correlated physical attributes among

particles (position, momentum, spin, polarization)
Fermion Matter particle (electron, quark) with half-odd integer

(1/2, 3/2, etc.) spin
Fractional quantum Hall effect Quantized plateaus at fractional values of charge, giving rise

to quasiparticles (collective states) in which electrons bind
magnetic flux lines to make new quasiparticles that have
a fractional charge and obey anyonic statistics

Floquet engineering Control of periodically driven time cycles in quantum
matter systems

Floquet theorem Periodic system (Bloch) transform to solvable linear
differential equations

Frontier orbitals Highest occupied/lowest unoccupied orbitals of a molecule
Fuchsian model Hyperbolic Riemannian surface model
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Gapless No band gap in spacing between energy levels in
a system

Gapped Gaps in energy bands in a system
GKP codes (Gottesman, Kitaev, Preskill) Error-corrected qubit encoding in an oscillator with

superpositions of squeezed states, protected against
shifts in position and amplitude damping

Hall effect (Hall conductance) Production of a voltage difference (the Hall voltage)
across an electrical conductor that is transverse
(perpendicular) to an electric current in the conductor
and to an applied magnetic field perpendicular to the
current (Hall 1879)

Hamiltonian Operator (function) used to calculate the energy levels
of a quantum system

Herbertsmithite Mineral with quantum spin liquid magnetic properties
(neither ferromagnet nor antiferromagnet); magnetic
particles with constantly fluctuating, scattered
orientations on a kagome lattice; (Zinc, Copper,
Oxygen, Hydrogen, Chlorine); (Iran, Chile,
Arizona, Greece)

Hilbert space Infinite-dimensional space of quantum mechanics
(vs 3D Euclidean space)

Honeycomb lattice Standard hexagonal/triangular lattice (e.g.,
graphene) (generally looks the same from
any direction)

Hyperbolic band theory Energy band theory in hyperbolic space
Hyperbolic lattice Synthetic quantum matter in which particles hop

on a discrete tessellation of two-dimensional
hyperbolic space

Hyperbolic space Geometric space with negative curvature (vs
Euclidean space (zero curvature) and elliptic space
(positive curvature)

Josephson junction Quantum tunneling superconducting device used
in quantum computing

Josephson junction-based Superconducting qubits controlled with
superconducting circuits microwave photons (quantized electromagnetic fields

stored in the superconducting circuits)
K-space Wave vector space of possible values of momentum

for a particle (also the spatial frequency domain of
a Fourier transform or a compactly generated
topological space)

Kagome lattice Uniform tiling of equilateral triangles and hexagons
Kitaev honeycomb lattice Exactly solvable spin model in two dimensions; spins

are on the vertices of a honeycomb lattice with
nearest-neighbor interactions

Lattice Regular array geometric arrangement of matter in
a space (e.g., crystal); scaffolding

Lattice surgery Switching between error-correcting codes on the fly
Magnon Collective excitation of electron spins in a crystal lattice
Many-body problem Physical systems with many interacting particles

(three/more)
Majorana fermions Exotic fermions that are their own antiparticles
Many-body localization (MBL) Many-body interactions causing quantum particles

to be localized and maintained in
an out-of-equilibrium state
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Multi-scale entanglement Tensor network representation for ground states of critical
renormalization ansatz (MERA) quantum spin chains (with a network that extends in

an additional dimension corresponding to scale)
Mode Characteristic state, normal frequency, allowable value
Molecular code GKP codes for asymmetric bodies (molecules) in free space
Nodal-line semimetals Topological semimetals with energy band-touching

manifolds in the shape of closed loops
Non-abelian Non-commuting (order of terms matters) (v. abelian)
Nonsymmorphic Not comparable on a symmetry basis (symmetry

operations do not have a common point on the lattice)
Paramagnet Material weakly attracted by an external magnetic field
Particle properties Spin, charge, angular momentum, polarization
Phonon Collective excitation of atoms in a rigid crystal structure
Plasmon Collective excitation of electrons simultaneously

oscillating with respect to ions
Quantum droplet Quantum matter phase defined by properties emerging

from the interactions of bosonic or fermionic constituents
Quantum error-correcting code Logical codespace corresponding to the physical subspace

of a lattice
Quantum Hall effect Quantum version of the Hall effect; obtained by applying

a strong magnetic field perpendicular to a two-dimensional
electron system

Quantum matter Novel phases of matter at zero temperature with emergent
order and exotic properties, possibly including the
emergence of quasiparticles (collective excitations) with
anyonic exchange statistics, gauge theory, quantum phase
transitions, and low-energy effective theories of
topologically ordered states

Quantum nanoscience Nanostructure fabrication that exploits quantum effects
Quantum phase transition Phase transition between different quantum phases

via parameter change such as magnetic field or pressure
Quantum spin Hall states Quantum Hall effect based on the flow of spin currents

(as opposed to charge currents)
Quantum spin liquid Quantum matter phase with magnetic spins (qubits)

degrees of freedom; a magnetic system that does not
settle into a long-range ordered configuration, even at
zero temperature, residing in a nontrivial
quasi-disordered ground state

Quantum topology Novel properties of topological shapes in quantum systems
Quasiparticle Long-lived, low-energy excitation of a many-body state

in fermions (collective excitations in bosons); examples:
electron holes, phonons, plasmons, magnons

Rényi entropy Composite of Shannon, Hartley, collision, and
minimum entropy

“Schrödinger cat” states Superpositioned quantum states
Soliton Stable solitary wavepacket in nonlinear systems
Spin Intrinsic form of angular momentum carried by

elementary particles (depicted as an axis of rotation, but
actual particles do not rotate); particles with spin may
possess a magnetic dipole moment (exploited in
electronic devices)

Spin chain Linear collection of magnetic moments with spin–spin
coupling interactions
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Spin engineering Control of spin systems in devices and materials, including the
precise arrangement of magnetic atoms as a probe

Spinors More complicated version of vectors and tensors needed to
describe the rotations of particle spin

Spintronics (spin electronics) Using electron spins as the internal degree of freedom to store
0 s/1 s for information processing

Squeezed (coherent) state Pinched oscillatory quantum state (to reduce the quantum noise
(environmental interference))

Stabilizer code Quantum error-correction code (quantum version of linear
codes), based on X-, Y-, Z-axis Pauli operators to measure
entangled states and correct (bit flip, spin flip)
a corrupt quantum state to its original state;
commuting operators

Subsystem code Quantum error code with non-commuting operators
Surface code Stabilizer code, topology-based, defined on a two-dimensional

spin lattice, taking various shapes
Symmetry Features of particles and spacetime which are unchanged

under some transformation; property of looking the same from
different points of view (face, cube, laws of physics)

Symmetry breaking Phase transition, rupturing a system’s symmetry (e.g.,
time-reversal, particle-hole, chiral)

Symmetry-protected Quantum matter phases with trivial topological order
topological (SPT) order (short-range entanglement), symmetry, and a finite energy

gap (e.g., topological insulator)
Tessellation Tiling of a plane using geometric shapes (tiles)
Time-reversal System property: the dynamics of a process remain
symmetry breaking well-defined when the sequence of time-states is reversed
Topological Topology-based measure of entanglement entropy specific
entanglement entropy to quantum matter and quantum phase transition calculated

from the quasiparticle excitations of the many-body state or
in a comparison between the system and the von Neumann
entropy (tripartite information; two time, one space dimension)

Topological insulator Material with a conducting surface and an insulating interior;
surface states are symmetry-protected (e.g., time-reversal,
particle-hole, chiral symmetry)

Topological quantum Quantum field theory emphasizing topological invariants
field theory and impervious to spacetime contraction; explains quantum

matter phases
Topological qubits Computational qubits made with quantum matter phases (e.g.,

by putting quantum spin liquids into a geometrical array)
Topological semimetals Material with energy band-touching manifolds (at

zero-dimensional points or one-dimensional nodal
lines/rings)

Topological strings Strings linking atoms entangled in a quantum spin liquid
Topology The property of geometric form being preserved under

deformation (such as bending, stretching, twisting, and
crumpling, but not cutting or gluing)

Toric code Stabilizer code defined on a two-dimensional lattice with
periodic boundary conditions (torus-shaped); stabilizer
operators on the spins around vertex and plaquette (face)

Trotterization Operation to simulate the evolution of a Hamiltonian
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Valleytronics Using valleys in the electronic band structure of the first
(valley electronics) Brillouin zone of a crystal as the internal degree of freedom

to store 0 s/1 s for information processing
von Neumann entropy (Quantum mechanical entropy) minimum over all

measurement bases of Shannon entropy
Wavefunction Quantum system state description (positions or speeds

(momenta) of entire system configurations);
generally intractable Schrödinger equation applied
(complex-valued probability amplitudes with real and
imaginary wave-shaped components)

Weyl and Dirac Topological semimetals created by two energy bands
topological semimetals crossing at a single node (Weyl node), with two-fold (Weyl) and

four-fold (Dirac) degenerate Fermi points
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