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Abstract: Factors underlying neighborhood variation in COVID-19 mortality are important to assess
in order to prioritize resourcing and policy intervention. As well as characteristics of area popu-
lations, such as health status and ethnic mix, it is important to assess the role of more specifically
environmental variables (e.g., air quality, green space access). The analysis of this study focuses
on neighborhood mortality variations during the first wave of the COVID-19 epidemic in England
against a range of postulated area risk factors, both socio-demographic and environmental. We
assess mortality gradients across levels of each risk factor and use regression methods to control
for multicollinearity and spatially correlated unobserved risks. An analysis of spatial clustering is
based on relative mortality risks estimated from the regression. We find mortality gradients in most
risk factors showing appreciable differences in COVID mortality risk between English neighbor-
hoods. A regression analysis shows that after allowing for health deprivation, ethnic mix, and ethnic
segregation, environment (especially air quality) is an important influence on COVID mortality.
Hence, environmental influences on COVID mortality risk in the UK first wave are substantial, after
allowing for socio-demographic factors. Spatial clustering of high mortality shows a pronounced
metropolitan-rural contrast, reflecting especially ethnic composition and air quality.
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1. Introduction

Deaths in the UK COVID-19 epidemic first wave were concentrated in March to June
2020; COVID-linked deaths are here defined as in [1]. Commentary [2] has noted individual
risk factors (e.g., ethnic minority status and existing chronic health conditions) for COVID
mortality, and area scale expressions of individual risk factors—such as levels of chronic ill
health in populations, and income differences—have been considered in area studies of
COVID outcomes [3–6]. However, wide geographic differences in COVID outcomes—such
as in the UK first wave—have suggested particular area factors (e.g., poor air quality,
urban status) as also associated with higher incidence and mortality [7,8]. Evaluating
such impacts is important in prioritizing higher risk areas. Here we assess influences on
COVID-19 neighborhood mortality in England during the first wave (March to July 2020
inclusive), considering compositional characteristics of area populations (e.g., ethnic mix,
levels of ill health, income deprivation), and more specifically environmental variables (air
quality, green space access).

A central question is to establish the extent of place impacts per se, or contextual
effects [9,10], as distinct from compositional effects, which can, at least prima facie, be
viewed as aggregate expressions of individual risk factors. Contextual effects might include
impacts of access to healthy environments, air pollution, housing segmentation, residential
segregation, and deprivation amplification [11,12]. Distinctions between compositional
and contextual effects are sometimes blurred. For example, ethnic segregation, as opposed
to simple composition, may better reflect contextually varying labor market opportunities,
and varying housing availability by tenure, cost, and type between areas—these tend to
produce spatial clustering in ethnic settlement [13–15].
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A related question is the relative role of sociodemographic factors and the environment
as influences on adverse COVID outcomes, though there is a well-established interplay
between them: it is well established that sociodemographic status is associated with
adverse environments [16,17], a phenomenon also denoted as environmental injustice.
Regarding environmental impacts per se, American small-area studies [18,19] have found
that worse air quality raises COVID mortality and case fatality in US counties. However,
there have been critical analyses of such studies [20,21]. There is also evidence (as one
aspect of environmental injustice) that impacts of socioeconomic status and race/ethnicity
on health may be mediated by adverse environmental factors [22–24].

The present paper employs an ecological research design, namely an analysis of small
area contrasts in COVID mortality, assessing how far they can be explained by postulated
area risk factors, and which such risk factors are most important using appropriate statisti-
cal methods. Ecological research has the obvious caveat that causal disease associations
cannot be established at individual level. However, establishing variation in small-area dis-
ease risk is an established method assisting in public health prioritization [25]. In adopting
an ecological approach, it is preferable to work with smaller, relatively homogenous, area
units. For example, Pinzari et al. [26] mention that, to avoid attenuating impacts of area
characteristics, “units with greater social homogeneity would be appropriate for studying
the associations between unit characteristics and a given health indicator”. Here, we use
data for 6791 neighborhoods that provide entire coverage of England (see Methods).

On the basis of existing research, we hypothesize that higher COVID mortality risk in
particular neighborhoods is associated with larger or more segregated ethnic communities;
worse air quality; higher income deprivation; worse green space access; and worse popula-
tion health status; cf. [3]. We also hypothesize, based on existing research—for example, the
environmental injustice literature—that effects of some area risk factors may be attenuated
or even nullified, as their effects may be mediated by other area characteristics.

We adopt three methods to address the relative importance of these neighborhood risk
factors and summarize risk variations. First, as an exploratory tool, we express risk factors
in terms of ordered categories (ordered in terms of increased risk) and investigate whether
COVID-19 mortality gradients over those categories show a significant upward trend.

We then adopt regression methods, adapted to spatially configured area units, to
establish which risk factors are important. Correlations between area risk variables mean
some may be more significant (and some less) when correlations are controlled for via
regression. Distinctions between types of covariates may be relevant in this regression
analysis: Some may measure contextual effects more clearly (e.g., ethnic segregation vs.
ethnic composition); and some may mediate the effects of others, so that the latter becomes
insignificant in a regression. The regression should adjust for spatially correlated area risk
factors. We use a Bayesian disease mapping approach [27], appropriate for the outcome
(often small mortality counts), and able to account for both observed and unobserved
influences on COVID neighborhood mortality.

Finally, an analysis of spatial variation in mortality risk raises the question of which
types of area and which regions have been worst affected by the COVID epidemic—a
relevant question in prioritizing neighborhoods at higher risk. We therefore assess spatial
clustering in mortality rates, the spatial settings (broad region and urbanicity category)
with the most evidence of high-mortality clustering, and the risk factor patterns associated
with such clustering.

We find most postulated area risk factors show appreciable gradients in COVID
mortality between neighborhoods. After allowing for nursing home location, income and
health deprivation, and ethnicity, we find air quality to be an important influence on COVID
mortality in regression analysis. Regarding spatial clustering, high-mortality clusters are
most apparent in metropolitan areas, while low-mortality clusters are concentrated in
rural settings.
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2. Previous Research on Ecological Risk Factors for COVID Mortality

Existing studies on COVID-19 mortality consider both individual risk factors, and
area risk factors, either contextual or area equivalents of individual risk factors.

For example, the study [28] reports around 30% of first wave COVID deaths in England
were to nursing and care home residents. Hence, location of such homes is expected to
influence geographic mortality patterns.

Similarly, pre-existing health conditions have been linked to COVID mortality [29],
possibly translating into area effects from higher spatial concentrations of diseases such as
diabetes, cardiovascular disease, and obesity [30].

Regarding population characteristics, BAME (Black, Asian, and Minority Ethnic) eth-
nicity has been linked to higher mortality [31] and attributed to over-representation in
people-facing occupations [32], higher levels of pre-existing conditions [2], higher house-
hold overcrowding, and concentration in inner cities. Sun et al. [33] consider COVID
mortality at UK local authority level, finding significant association with BAME ethnicity.

Area effects of ethnicity might be simply measured by proportions in BAME groups,
but this may not capture contextual influences producing BAME ethnic segregation [13–15].
So an alternative area measure of ethnicity impacts is the level of BAME segregation.

As to area deprivation, Public Health England [2] report that “mortality rates from
COVID-19 in the most deprived areas were more than double the least deprived areas”.
Area deprivation may be a composite of different types of deprivation, and so conceptually
unclear, whereas it is important to establish which facet of deprivation is most important
for understanding health variations. For example, regarding area income levels (or income
deprivation) as a proxy for area socioeconomic status (SES), some studies [3,34] have
reported significantly increased adverse COVID outcomes in lower income areas.

A number of studies (UK and elsewhere) have considered impacts of environmental
factors, such as air quality. Prozzer et al. [35] find exposure to particulate matter as aggra-
vating “co-morbidities that lead to fatal outcomes” and suggest 14% of UK coronavirus
deaths attributable to air pollution. A US study [3] also found a significant effect of pol-
lution on COVID mortality. Specifically, UK studies are more mixed. Dutton [30] found
that higher long-term exposures to NOx, NO2, and PM2.5 were positively associated with
higher COVID mortality, though effects were not pronounced, and pollution may act as
a proxy for urbanicity. Bray et al. [36] report an insignificant impact of PM2.5 on COVID
mortality (in regressions at English local authority level).

Several studies refer to urban–rural contrasts in COVID outcomes, though urbanicity
can be a proxy for a number of more direct environmental and sociodemographic influences.
Matheson et al. [37] attribute excess urban mortality to higher population density and
association, more people-facing occupations in cities, and greater home overcrowding.
Another possible influence is greenspace access and opportunities for green exercise [38,39].
Exercise may reduce risk of COVID-19 complications [40]. However, impacts of greenspace
may partly reflect other variables: Both deprived areas and ethnically segregated areas
generally have worse green space access [41].

Spatial aspects of COVID UK mortality and incidence have been considered by Har-
ris [42], and Kulu and Dorey [43]; non-UK studies include [44] and [45]. It is important to
control for both multicollinearity and spatial correlation in unobserved risk factors [44,46]
in order to properly assess impacts of area risk factors. As mentioned by Beale [47], spatial
autocorrelation in regression errors violates usual independence assumptions producing a
form of pseudo-replication. Spatial pseudo-replication increases Type I errors so that too
many covariates are classed as significant in regression models.

3. Materials and Methods

The units defining neighborhoods in this study are census units called Middle Level
Super Output Area (MSOAs): The study involves 6791 MSOAs, averaging 8300 in popula-
tion, and providing entire coverage of England. Small area subdivisions are preferable for
geographic health analysis, providing greater internal homogeneity in outcomes and area
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characteristics than larger units, such as English local authorities with average populations
approaching 200,000.

We first consider mortality gradients, accumulating COVID actual and expected
deaths within ordered categories of each risk factor, providing standard mortality ratios
(SMRs) within categories. We use Cuzick’s method [48] to test for trends in gradients.

We then apply a negative binomial regression with log link to MSOA deaths, with
expected deaths as the offset. The latter feature corrects for impacts of area age structure
on the mortality outcome (in particular the age gradient in COVID mortality risk), and is
discussed in presentations of Bayesian disease mapping, see [49] p. 445, [50] p. 3, and [27].
We use the Leroux et al. method [51] to represent spatially clustered but unobserved area
risk factors. The regression produces predicted relative risks by area [52], and regression
coefficients, which can be exponentiated to provide relative mortality risks according to
covariate levels. We may be interested in relative risks comparing areas with high pollution
(say) against areas with low pollution.

3.1. Sources of Data on Mortality and Predictors

Data on COVID-19 related mortality are available as MSOA totals disaggregated by
month from March 2020 onwards. No further disaggregation is provided. The data are
associated with the online article by the UK Office of National Statistics entitled “Deaths in-
volving COVID-19 by local area and socioeconomic deprivation: deaths occurring between
1 March and 31 July 2020”. This is also available as a Statistical Bulletin [53].

Regarding predictors, we focus on area variables with a clear interpretation as potential
risk factors. Some studies have used the Index of Multiple Deprivation [54] to explain
COVID-19 mortality, but this is a composite measure using seven domains of deprivation.
It includes income deprivation, housing deprivation, employment deprivation, and so on,
and so is potentially conceptually blurred, and interpreting its effect on mortality may
be problematic. Here we consider impacts on mortality of the Income Deprivation (ID)
and Health Deprivation and Disability (HDD) domains [55]. These have unambiguous
interpretations, have been identified as potentially important in literature on COVID
mortality variations, and are conceptually distinct. The former is based on observed
indicators of welfare dependence and income supplementation and is taken as a proxy for
area socioeconomic status. The HDD domain serves as a proxy for area population health
status. It includes a measure of years of life lost through premature mortality, a measure of
work-limiting morbidity and disability, a measure of emergency hospitalizations, and a
measure of mood disorders.

Nursing home location is a measure of the excess risk faced by frail elderly populations
in nursing homes. The indicator is based on over 65s in care or nursing homes as a
proportion of all over 65s, using data from the 2011 UK Census.

For ethnicity, we use the BAME proportion in MSOA populations, and a segregation
index, with the 2011 Census as source data for both. To measure segregation, the Lieberson
isolation index is used [56]. This measures the probability that a BAME group member
meets another group member at random within an area. In the regressions, we compare a
model where ethnicity’s impact is represented by BAME proportions against one using
BAME isolation instead; a segregation measure may better reflect contextual influences.

Regarding environmental variables, we draw on work by the Consumer Data Research
Centre (CDRC). Air quality is measured by the composite index included in the “Access
to Healthy Assets and Hazards” indicator profile at https://www.cdrc.ac.uk, accessed
2 October 2020). This is based on modelled levels of nitrogen dioxide, PM10, and sulphur
dioxide [57], using work [58] for the UK Department for Environment, Food, and Rural
Affairs, drawing on 1500 monitoring sites and locational data (for houses, industry, road net-
works). Annual average estimates for various pollutants are at a 1 × 1 square km gridded
resolution across Britain, with the CDRC providing estimates for around 33,000 area units
(Lower Super Output Areas, LSOAs), smaller than MSOAs but nested within them. We use
here MSOA air quality averages over LSOAs. Other pollutants were not included in the

https://www.cdrc.ac.uk
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CDRC index due to collinearity with the three included. Web discussion [59] of the CDRC
pollution measure in London has showed how it is closely tied to inner city location.

To represent greenspace access, we use two indicators, one provided by CDRC, and
the other by the UK Office of National Statistics (ONS) [60,61]. These measure access to
public green space and private gardens in Britain. These are also at LSOA level, and we
form a principal component of MSOA scores on two indicators: Access to active public
green space (parks, play spaces, etc., conducive to physical activity) that are within 900 m
of home (from CDRC); and percentage of addresses with private outdoor space (from ONS).
The principal component score is higher for MSOAs, which have lower active greenspace
access and lower private garden space.

3.2. Scaling of Predictors in Regression

All variables in the regression are coded to be positive risk factors (e.g., air quality
scores are higher for worse air quality; greenspace scores are higher for worse access).
Coded in this way, all risk factors are posited to increase COVID mortality. In the regression,
we convert risk factor scores to a [0, 1] scale (0 for minimum, 1 for maximum). With the
independent variables coded in this way, regression coefficients can be compared as directly
measuring the relative importance of risk factors.

Discussion of such transformations is provided at [62,63]; the discussion [62] men-
tions that “if the independent variables are not standardized, comparing their coefficients
becomes meaningless”, while [63] refers to the method used here as min-max scaling.
This scaling has the advantage in log-link regression that the exponential of the coeffi-
cient is the relative mortality risk comparing the neighborhood with the highest risk score
(namely 1, after scaling) with the neighborhood having the lowest risk score. An alternative
transformation of independent variables to the unit interval is mentioned in [64].

As well as regression coefficients, we consider their interplay with predictor values,
namely relative risks comparing neighborhoods at 95th and 5th percentile scores on each
risk factor variable. In this way, one can see how the impacts of the risk factor vary between
neighborhoods with the highest (worst) levels of risk, against those with the lowest levels.

3.3. Estimation and Goodness of Fit

The regression uses Markov chain Monte Carlo (MCMC) estimation, via the BUGS
program [65], with inferences from the second halves of two chain runs of 20,000 iterations,
and convergence checks [66]. Goodness of fit measures are provided by the Deviance Infor-
mation Criterion (DIC) [67,68] and the widely applicable information criterion (WAIC) [69].
These are both lower for better fitting models.

3.4. Spatial Clustering of High and Low Risk

To assess spatial clustering in high risk, we use the Local Indicator of Spatial Associa-
tion (LISA) method [70,71]. Let ρi be modelled as relative mortality risks in MSOAs i, and
wij measure spatial interaction between MSOAs i and j. Then the LISA for area i is

Li = ρi∑jwijρj.

Here, wij = 1 for adjacent areas (i,j), 0 otherwise. When both the area’s relative risk ρi, and
the average in surrounding areas, ∑jwijρj, are significantly elevated, an area is considered a
cluster core. High-mortality clusters are here defined by MSOAs with over 0.99 probability
that relative risks in both the area, and surrounding areas, exceed 1. One may also identify
low-low clusters, when a low-risk area is surrounded by similarly low-risk areas.

4. Results
4.1. Mortality Gradients

Table 1 shows distributional characteristics (unscaled) of the variables used in assess-
ing mortality gradients and in the regression analysis, before scaling. The deprivation,
greenspace, and air quality scores are averages over a lower spatial scale—the lower super
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output area (LSOA)—within each MSOA. For the pollution and greenspace variables,
details on constituent variables are shown.

Table 1. Distributional Characteristics of Area Risk Variables.

Risk Variable Mean Median 95th
Percentile

5th
Percentile Maximum Minimum InterQuartile

Range

Income Deprivation 0.128 0.106 0.289 0.04 0.490 0.010 0.103
Health Deprivation and

Disability −0.008 −0.0306 1.268 −1.22 2.868 −3.045 1.084

BAME, % in MSOA
population 13.7 5.3 56.8 1.2 94.4 0.4 14.6

BAME Isolation Index 0.148 0.061 0.584 0.014 0.946 0.005 0.160
Nursing Home Location, % 3.49 2.70 9.61 0.00 41.07 0.00 3.47
Active Green Space Index

(CDRC) 0.60 0.50 1.28 0.27 6.91 0.10 0.28

% Private Outdoor Space 89 92 98 72 100 2 8
Overall Greenspace Access 0.0 −0.1 1.7 −1.4 6.7 −11.8 0.8

NO2 12.6 12.0 21.5 6.1 28.5 3.3 4.8
PM10 13.5 13.8 16.8 10.1 17.5 7.6 3.7
SO2 1.22 1.2 1.8 0.8 2.7 0.4 0.4

Overall Air Quality (Higher
for Worse) 26.1 20.5 67.9 4.5 99.7 0.4 24.3

Table 2 shows SMRs by decile category for these variables.

Table 2. Gradients in COVID-19 Mortality (SMRs, March–July 2020) over English Neighbourhoods.

Socio-Demographic

Income
Deprivation

Health
Deprivation and

Disability

BAME, % in
MSOA

Population

BAME Isolation
Index

Nursing Home
Location

Decile 1 0.60 0.81 0.65 0.66 0.87
Decile 2 0.76 0.83 0.72 0.74 0.88
Decile 3 0.84 0.83 0.79 0.80 0.94
Decile 4 0.83 0.88 0.92 0.89 0.93
Decile 5 0.90 0.90 0.88 0.90 0.94
Decile 6 1.03 0.99 0.99 0.97 0.91
Decile 7 1.18 1.04 1.11 1.09 1.09
Decile 8 1.28 1.14 1.19 1.21 1.04
Decile 9 1.42 1.33 1.41 1.40 1.14

Decile 10 1.71 1.51 2.02 2.02 1.23
All Neighborhoods 1.00 1.00 1.00 1.00 1.00

Environmental

Active Green
Space Access *

% Private
Outdoor Space *

Overall
Greenspace

Access *
NO2 PM10 SO2

Overall Air Quality
(Higher for Worse)

Decile 1 0.64 0.96 0.67 0.55 0.97 0.55 0.60
Decile 2 0.84 0.96 0.83 0.74 1.08 0.76 0.76
Decile 3 0.94 0.98 0.87 0.74 1.00 0.83 0.84
Decile 4 0.97 0.94 0.97 0.93 0.75 0.91 0.83
Decile 5 0.98 0.91 0.96 0.97 0.92 1.02 0.90
Decile 6 1.08 0.92 1.08 1.04 0.97 1.09 1.03
Decile 7 1.13 0.89 1.10 1.20 0.84 1.24 1.18
Decile 8 1.15 1.01 1.13 1.26 0.90 1.32 1.28
Decile 9 1.18 1.13 1.22 1.47 1.17 1.27 1.42

Decile 10 1.37 1.41 1.43 1.70 1.67 1.41 1.70
All Neighborhoods 1.00 1.00 1.00 1.00 1.00 1.00 1.00

* Higher deciles for worse access and lower % private outdoor space.

All but one of the increasing gradients in Table 2 are significant at 5% under a Cuzick
one tail test. Notable features include high mortality for areas with high proportions in
BAME groups, and for areas with high BAME segregation—a two-fold excess relative risk.
Mortality is also elevated in neighborhoods with high income deprivation and high health
deprivation. As to environmental variables, both overall poor air quality and poor green
space access are associated with increased mortality. The gradient with regard to NO2 is the
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steepest among the pollution constituent variables, whereas the overall gradient associated
with PM10 is not significant—though the highest decile for PM10 has elevated risk.

4.2. Regression Analysis.

We consider two regressions (models 1 and 2), one with ethnicity represented by %
BAME in MSOA populations, the other using a measure of BAME segregation. The latter
form is arguably more in line with a contextual interpretation. Table 3 shows coefficient
estimates per se, and when translated into implications for relative risk when comparing
areas with widely contrasting predictor values. Significant impacts—regression coefficients
with 95% credible intervals entirely positive, and relative risks with 95% intervals entirely
above 1—are bolded.

Table 3. Regression Coefficients, Associated Relative Risks and Fit. Two Models Compared.

Model 1 Model 2

Regression Coefficient 1 Implied Relative Risk 2,3 Regression Coefficient 1 Implied Relative Risk 2,3

Income Deprivation (ID) 0.153 1.085 0.140 1.077
BAME 0.856 1.616

BAME Isolation 0.828 1.604
Nursing Homes 1.143 1.301 1.142 1.301

Health Deprivation (HDD Domain) 1.150 1.625 1.164 1.635
Poor Green Space Access 0.134 1.119 0.075 1.072

Poor Air Quality 0.841 1.714 0.860 1.735
Fit Measures

DIC 38139 37945
WAIC 38140 37950

1 Significant coefficients (with 95% intervals confined to positive values) in bold. 2 Significant relative risks (with 95% intervals confined to
values over 1) in bold. 3 Relative risks compare mortality at 95th and 5th percentile of risk factor scores.

Of the alternative specifications regarding ethnicity (models 1 and 2), using ethnic
isolation has better fit measures.

Most effects apparent in mortality gradients are preserved in the regression analyses.
However, green space access is not significant, possibly reflecting correlations with poor air
quality (0.47), BAME concentration (0.43), and BAME isolation (0.43). Income deprivation
has a small positive effect in both models, but neither is significant.

The nursing home coefficient is relatively high, but implications for relative risk are
affected by score patterns for individual areas: Only a few MSOAs have extreme values on
this indicator, and the 95th percentile score is only a quarter of the maximum. Hence, the
relative risk comparing areas with contrasting nursing home values, around 1.30, is lower
than analogous relative risks for health deprivation, air quality, BAME concentration, and
BAME segregation.

The highest relative risk in models 1 and 2 is for poor air quality. The relative mortality
risk for poor air quality—comparing areas with the poorest air quality as against those
with the best quality—is estimated in model 2 as 1.74. The area morbidity effect is second
to that, with a relative risk of 1.64 in model 2.

The low impact of income deprivation in both models is counter to preliminary
hypothesized expectations, suggesting its effect may be mediated by other predictors [24].
To assess this, we estimate reduced versions of the better fitting model 2, one without air
pollution, and the other without the area morbidity index. Results from these regressions
are not reproduced in detail, since of importance here (in assessing mediation) are the
effects of income deprivation in the reduced models. We expect the impacts of ethnicity
may also be changed as ethnic groups are also affected by environmental injustice and
health inequities.

In a model excluding area health deprivation (the HDD score), we find the effect of
income deprivation much increased—with a coefficient of 0.95, and implied relative risk
(comparing areas with high and low income deprivation) is raised from 1.08 to 1.64, namely
64% higher mortality risk in the areas with the highest income deprivation. The effect of
ethnicity is not enhanced in this model.
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By contrast, in a model excluding air quality, the effect of BAME isolation is consid-
erably enhanced. The coefficient is increased from 0.83 (when air quality is included as a
predictor) to 1.30, with an implied relative risk of 2.09. Hence pollution partly mediates
the effect of ethnic concentration and segregation. The income deprivation effect is also
slightly increased in this reduced model, with the coefficient increasing from 0.14 to 0.30,
with a significant relative risk of 1.17. Additionally, of note is a considerably increased
(and significant) effect of poor greenspace access when air quality is omitted as a predictor;
the coefficient and relative risk are now 0.87 and 2.01, respectively. So, air quality entirely
mediates the impact of greenspace.

4.3. Spatial Clustering

Table 4 shows total high and low-mortality cluster cores by urban category and English
standard region. Rural-urban category (RUC11) is defined as in [72]. Spatial clustering
of high mortality shows a pronounced metropolitan–rural contrast. There are 824 high-
mortality cluster centers (12% of all MSOAs), of which 676 are in urban major conurbations.
Proportions of MSOAs in major conurbations forming high-mortality cluster centers are
highest in London (37%), the North West (28%), and the West Midlands (26%).

Metropolitan concentration of high-mortality risk is likely to be associated with vary-
ing risk factor profiles by urban category. Table 5 shows the average air quality, ethnicity,
and HDD profiles according to the eight fold RUC11 category—these being the most im-
portant area risk factors according to regression. Steep gradients are apparent, especially in
poor air quality, ethnicity, and ethnic isolation, according to urban type, with metropolitan
areas showing the worst air quality and highest BAME population shares.

Within metropolitan regions, the extent of clustering is variable according to such
characteristics. For example, in London boroughs with large ethnic populations, and often
high deprivation, (e.g., Brent, Newham, Harrow), most neighborhoods are high-mortality
clusters (see Figure 1a), whereas affluent suburban boroughs (Richmond, Havering), with
relatively small BAME communities, have under 10% of neighborhoods constituting high-
risk clusters.
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J 2021, 4 139

Table 4. COVID Mortality Clusters by Area Type.

Numbers of MSOAs by Region and Urban Level

Region Rural & Dispersed
(Sparse Setting) Rural & Dispersed Rural Town/Fringe

(Sparse Setting)
Rural Town &

Fringe
Urban City & Town

(Sparse Setting) Urban City & Town Urban Minor
Conurbation

Urban Major
Conurbation Total

East Midlands 2 66 1 78 2 318 102 4 573
East of England 2 104 5 113 433 79 736

London 1 2 980 983
North East 7 5 2 43 2 131 150 340
North West 6 35 4 47 2 313 517 924
South East 108 116 785 99 1108
South West 14 125 5 81 4 471 700

West Midlands 7 58 41 1 290 338 735
Yorkshire/Humber 7 38 3 68 2 195 147 232 692

Total 45 539 20 588 13 2938 249 2399 6791

High Mortality Clusters by Region and Urban Level

Region Rural/Dispersed
(Sparse Setting) Rural & Dispersed Rural Town/Fringe

(Sparse Setting)
Rural Town &

Fringe
Urban City & Town

(Sparse Setting) Urban City & Town Urban Minor
Conurbation

Urban Major
Conurbation Total

East Midlands 0 0 0 0 0 25 5 0 30
East of England 0 1 0 1 20 17 39

London 1 0 362 363
North East 0 0 0 1 0 23 18 42
North West 0 1 0 1 0 14 146 162
South East 0 0 18 4 22
South West 0 0 0 0 0 4 4

West Midlands 0 0 0 0 12 88 100
Yorkshire/Humber 0 0 0 0 0 7 14 41 62

Total 0 2 0 4 0 123 19 676 824

Low mortality clusters by Region and Urban Level

Region Rural/Dispersed
(Sparse Setting) Rural & Dispersed Rural Town/Fringe

(Sparse Setting)
Rural Town &

Fringe
Urban City & Town

(Sparse Setting) Urban City & Town Urban Minor
Conurbation

Urban Major
Conurbation Total

East Midlands 2 43 1 23 1 59 5 0 134
East of England 2 66 5 49 101 1 224

London 0 0 6 6
North East 6 3 1 2 2 6 9 29
North West 5 9 1 10 1 18 0 44
South East 43 50 160 3 256
South West 13 104 5 69 4 280 475

West Midlands 7 30 13 1 31 1 83
Yorkshire/Humber 6 23 1 27 2 36 7 14 116

Total 41 321 14 243 11 691 12 34 1367
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Table 5. Risk Factor Profiles by Urban Type.

HDD Score Air Pollution % BAME BAME Isolation Index

Rural & Dispersed
(Sparse Setting) 0.42 2.7 1.2 0.014

Rural & Dispersed 0.38 10.3 2.2 0.030
Rural Town & Fringe

(Sparse Setting) 0.47 4.5 1.8 0.022

Rural Town & Fringe 0.43 13.2 2.8 0.034
Urban City & Town

(Sparse Setting) 0.53 4.0 1.6 0.018

Urban City & Town 0.49 18.8 8.6 0.096
Urban Minor
Conurbation 0.56 29.9 11.4 0.124

Urban Major
Conurbation 0.52 42.1 25.8 0.272

There are 1367 low-mortality cluster centers, concentrated in more rural settings and
smaller towns. Sixty-two percent of MSOAs in the two most rural categories (“rural and
dispersed”) are low-mortality cluster centers. Figure 1b shows the location of low-mortality
clusters, mainly in rural areas across England.

The metropolitan–rural contrast in mortality clustering is paramount but there are
also regional contrasts. Thus 68% of MSOAs in South West England are classed as low-risk
clusters. Even in more urban settings in the South West (such as “Urban City & Town”),
the South West is under-represented in the proportion of high-mortality clusters.

5. Discussion

Reviews of differential COVID mortality (e.g., [2]) mention both individual demo-
graphic risk factors (e.g., ethnicity) and area contexts. There may be a gain in establishing
contextual impacts to consider spatially contextual expressions of demographic risk fac-
tors [13].

Regarding area contexts, environmental factors have also been proposed, including
debate regarding pollution’s influence on COVID-19 outcomes. An international study [35]
found relatively large contributions to attributable mortality from air pollution. However,
a UK review [30] was more skeptical, suggesting correlation between pollution and mor-
tality was related to the epidemic’s original urban concentration, saying “correlation is
smaller than measured or perhaps non-existent, and [ . . . ] an early association between
air pollution and COVID-19 mortality was linked to an initial outbreak of disease in large
urban centres.” This review also found confounding between ethnicity and pollution, and
between urbanicity and pollution, suggesting that high pollution levels are “proxies for
increasingly urban areas”.

Analysis of mortality gradients in this study (see Table 2) shows significant increasing
gradients for all sociodemographic indices, and for overall measures of the two environ-
mental factors considered. Of note are relatively steep gradients associated with ethnicity
and particular pollutants, especially NO2 [73–75]. However, this analysis does not control
for multicollinearity or allow for mediated effects.

The regression analysis shows significant impacts of socio-demographic factors,
namely health deprivation and ethnic mix, on COVID mortality. Slightly better predictions
are obtained using a BAME segregation measure rather than simple BAME proportions.
This may represent impacts of spatial variations in housing and labor market opportunities,
which affect BAME residential location, and can be considered more specifically contextual
measures [13].

Impacts of population mix and ethnic segregation are important in terms of a “sus-
tainable COVID-19 public health strategy” [76]. Arguably, such a strategy should allow for
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different local risks to impact future epidemic containment plans, prioritizing higher risk
areas in terms of mitigation measures and resources.

However, after accounting for socio-demographic factors, there are strong associations
between air quality and COVID mortality, which demonstrates an impact of a purely
contextual risk factor. Under the better fitting model, there is a virtually two-fold (1.74)
relative mortality risk between neighborhoods with poor air quality as against those with
good air quality. This finding regarding the impact of pollution is obtained despite mortality
data covering a five month period, namely the full extent of the UK epidemic’s first wave,
during which there was some diffusion in epidemic mortality from urban centers. Similar
UK specific findings have been reported elsewhere but at a spatially aggregated rather than
neighborhood scale [77].

This result highlights the policy importance of longer term environmental measures
in addition to epidemic mitigation. It suggests that if pollution in certain neighborhoods
remains high, then COVID mortality in these areas in any future epidemic is likely to also
be elevated.

Further research is needed on issues such as which pollutants are most implicated. As
a US study [3] mentions, “Although we found a strong positive association between air
pollution and the risk of COVID-19-related death, the role of long-term exposure to poor
air quality on COVID-19-related deaths [ . . . ] is still not well understood”.

The regression shows some unexpected findings. Thus, the deprivation effect is more
clearly related to health than material factors. In both regressions (models 1 and 2), the
HDD domain shows a strong positive impact in raising mortality, while there is only
a small positive effect of income deprivation. Table 6 shows a steep gradient in health
deprivation as income deprivation increases, and a mediating effect of health deprivation
in the impact of area income levels is plausible. This is confirmed using reduced regressions
(see Section 4.2). The effect of income deprivation is almost nullified when area morbidity
is also a predictor, whereas its impact is considerable when area morbidity is excluded
from the regression—suggesting its effect is almost entirely mediated.

Table 6. Gradients in Health Deprivation (HDD) and Air Quality by Neighborhood Income Deprivation and % BAME.

Neighbourhoods by Income
Deprivation Decile Average HDD Neighbourhoods by % BAME Decile Average HDD

1 −0.99 1 −0.05
2 −0.72 2 −0.01
3 −0.52 3 0.00
4 −0.31 4 −0.07
5 −0.14 5 −0.06
6 0.00 6 −0.05
7 0.23 7 −0.08
8 0.46 8 0.00
9 0.71 9 0.06
10 1.20 10 0.19

All Neighborhoods −0.01 All Neighborhoods −0.01

Neighbourhoods by Income
Deprivation Decile

Average Air Quality (Higher Scores
for Worse Air Quality) Neighbourhoods by % BAME Decile Average Air Quality (Higher Scores

for Worse Air Quality)

1 20.7 1 9.8
2 19.0 2 13.3
3 20.2 3 16.0
4 21.6 4 17.1
5 22.6 5 19.3
6 27.1 6 22.6
7 30.0 7 27.2
8 33.5 8 33.3
9 34.0 9 46.5
10 32.4 10 55.8

All Neighborhoods 26.1 All Neighborhoods 26.1

As [4] states, with regard to male COVID mortality, “people in disadvantaged groups,
and men in particular, have higher rates of almost all of the known underlying clinical risk
factors that increase the severity and mortality of COVID-19”. The policy relevance of the
morbidity–SES nexus is discussed in [78].
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The regression analysis also shows that the impact of ethnicity in increasing mortality
is partly mediated by poor air quality: The impact of ethnicity is much increased when air
quality is excluded as a predictor. In other words, air quality is a contextual mediator. This
reflects differential ethnic exposures to poor air quality. For example, Table 6 shows that
poor air quality is more strongly associated with ethnic mix than with income deprivation
(a proxy for area socio-economic status).

Similar themes are raised by US research, such as [79,80]. Thus, [80] mentions “racial
disparities in exposure to environmental pollutants are greater factors [influencing COVID
outcomes] that remain even after controlling for income”. In the UK, a previous study [81]
mentions pollution as an intervening variable in impacts of ethnicity on adverse COVID
outcomes, while a review of COVID risk factors by Public Health England (PHE) has
been criticized for omitting pollution. The commentary [82] mentions that “the [PHE]
review therefore wrongly projects the idea that [minority ethnic] communities may be
more susceptible to coronavirus, when it should instead say they are put into harm’s way
by living in more polluted areas.”

In both the US and UK, ethnic minorities are more concentrated than the rest of the
population in highly urbanized environments where air pollution is worse. The study [30]
notes the strong association between ethnic concentration and air quality.

The greenspace effect also appears to be mediated by air quality. The environmental
pathways that might explain this have been explored in other studies [83]. Again, air
quality is acting as a contextual mediator in explaining variation in COVID-19 mortality.

The main feature from analyzing mortality high-risk clustering is a pronounced
metropolitan–rural contrast, rather than (say) a North–South contrast. By contrast, all-
cause mortality in England, albeit in years preceding the COVID epidemic, evinces a
North–South divide [84]. The regression analysis suggests that concentration of high-
risk clusters in the most metropolitan category reflects higher health deprivation, BAME
concentration/segregation, and worse air quality.

Certain limitations to the work here may be mentioned. The analysis here concerns the
UK COVID-19 first wave. Any conclusions may not extend to later epidemic waves or other
nations—though there is evidence that some risk factor patterns, such as ethnicity-related
risk, have continuity between the waves [85]. The analysis also has to acknowledge that
ecological studies cannot establish impacts of individual risk factors, merely how they are
indirectly reflected in “compositional” effects [86]. However, neighborhood COVID-19
mortality data are able to provide a comprehensive population level perspective for one of
the UK nations, one relevant to setting public health priorities [25].

6. Conclusions

The analysis here benefits from covering the full time extent of the first wave in
England, by using a small area scale (average population under 10,000 in each area), and
by using regression allowing for spatial aspects of risk, including unobserved spatially
clustered influences.

The results support a multifactorial explanation of varying neighborhood COVID
mortality, involving both environmental and sociodemographic influences, and both com-
positional and contextual factors. Leading variables associated with varying mortality
are air quality, health deprivation, and ethnicity. This is apparent both from mortality
gradients, and from regression analysis controlling for multicollinearity and unobserved
spatially clustered risk factors. Translating regression results into implications for mortality
clusters we find a metropolitan-rural contrast across English neighborhoods as paramount.
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