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Abstract: We develop a new probabilistic forecasting method for global horizontal irradiation (GHI)
by extending our previous bootstrap method to a case of an exponentially decaying heteroscedastic
model for tracking dynamics in solar radiance. Our previous method catered for the global systematic
variation in variance of solar radiation, whereas our new method also caters for the local variation
in variance. We test the performance of our new probabilistic forecasting method against our old
probabilistic forecasting method at three locations: Adelaide, Darwin, and Mildura. These locations
are chosen to represent three distinct climates. The prediction interval coverage probability, prediction
interval normalized averaged width and Winkler score results from our new probabilistic forecasting
method are encouraging. Our new method performs better than our previous method at Adelaide
and Mildura; regions with a higher proportion of clear-sky days, whereas our previous method
performs better than our new method at Darwin; a region with a lower proportion of clear-sky days.
These results suggest that the ideal probabilistic forecasting method might be climate specific.

Keywords: solar radiation; forecasting; probabilistic forecasting; nonparametric; exponential smoothing;
conditional heteroscedastic

1. Introduction

When supplying energy into the electricity grid, it is important to know the expected output
from solar energy systems. While a point forecast of the expected output is valuable, it is only the
expected value, whereas a probabilistic forecast gives a range of the most likely values of the output.
A probabilistic forecast provides information about all expected outputs and allows one to asses a wide
range of uncertainties and that can in turn improve decision making. A probabilistic forecast can be
thought of as the error bounds of the forecast. These error bounds are also known as prediction intervals.

Probabilistic forecasting is becoming more prevalent in the renewable energy forecasting literature.
Note also that one of the priorities of the International Energy Agency Task 16 on “Solar resource
for high penetration and large-scale applications” is developing the best methods for probabilistic
forecasting of solar radiation. For a detailed literature review on probabilistic forecasting, please refer
to our earlier work [1] on probabilistic forecasting of solar irradiation. Since then, several studies have
been reported in the literature. Please note that a glossary describing the symbols used is given at the
end of the paper in Section 6.

Lauret et al. [2] develop three probabilistic forecasts based on nonparametric methods of linear
quantile regression. Scolari et al. [3] develop ultra-short-term (from 500-millisecond to 5-min)
probabilistic forecasts of global horizontal irradiance. They use a nonparametric method based
on k-means clustering of historical data according to certain influential variables; average clear-sky
index and clear-sky index variability. Chu and Coimbra [4] develop very short-term (5-, 10-, 15-
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and 20-min) probabilistic forecasts of direct normal irradiance (DNI) based on a k-nearest neighbor
ensemble (kNNEn) method. An assessment of machine learning techniques for intra-hour point and
probabilistic forecasting is performed by [5].

David et al. [6] develop probabilistic forecasts on time scales of ten minutes to six hours of
global horizontal irradiance. They use a clear-sky model to model the annual and diurnal cycles and
a combination of the auto regressive moving average (ARMA) model to describe the serial correlation
and the parametric generalized auto regressive conditional heteroscedasticity (GARCH) model to
model the volatility.

Trapero [7] develops one-step-ahead hourly uncertainty forecasts of global horizontal irradiation
(GHI) using kernel density estimates, GARCH and Single Exponential Smoothing methods,
and a combination of the before mentioned methods. They find that the combination of methods is
a good compromise between coverage and interval width.

Voyant et al. [8] uses two persistent and four machine learning point forecasting methods for
one-step-ahead hourly GHI. The probabilistic forecast (one to six hours) method is based on the
bootstrap sampling of a training set using the k-fold method, together with the cumulative distribution
function (CDF).

It is important to note that most of the studies in the literature use a clear-sky model to encapsulate
the climatology (de-trending) of GHI. We instead use Fourier series to model the climatology.

In this paper, we develop a new probabilistic forecasting method. Our new probabilistic
forecasting method extends our previous bootstrap method [1,9] to a case of an exponentially decaying
heteroscedastic model for tracking dynamics in solar radiance. For the remainder of this paper we
refer to our old method as unconditional and our new method as conditional. The unconditional method
catered for the global systematic variation in variance of solar radiation, whereas the conditional
method also caters for the local variation in variance—in other words the conditional heteroscedastic
nature. One could say that the unconditional picks up the climate variation in variance, while the
conditional picks up the variation because of the weather. The performance of the unconditional method
was very good, except in one aspect. Since the prediction interval construction was based solely on
bootstrapping errors for the particular time of day and year, the present weather conditions were
not taken into account. Thus, on a systematically clear day, the prediction intervals, although they
exhibited the correct coverage criteria, they were much wider, less sharp, than one would hope.
The conditional method presented here takes into account the conditions on the day as well as the
time of day and year, and thus the intervals are sharper. Please note that even though the analysis
is performed on hourly data similar procedures can be used for shorter time scales. In particular,
they will be adapted to be used for forecasting output on a five-minute time scale for solar farms in
Australia, under an Australian Renewable Energy Agency (ARENA) funded grant.

Boland and Soubdhan [10] use Fourier series for the climate variation, and then an autoregressive
model to forecast the residual series after removal of the seasonal component. In that paper prediction
intervals are formed for the forecasts at the three sites studied using an ARCH model technique.
However, they do not take into account the interplay of systematic and conditional changes in variance
that is integral to the treatment here.

This paper is organized as follows. A description of the data is given in Section 2. Section 3
describes both the point forecasting model and its performance. In Section 4 we describe our
conditional probabilistic forecasting method, and report on its performance and compare the results
to the literature in Section 5. The paper is concluded with a discussion of our findings and ideas for
future work in Section 6.

2. Data and Preliminaries

Observed hourly GHI was obtained from the Australian Bureau of Meteorology [11] for three
locations: Adelaide, Darwin, and Mildura. The three locations have three different climate types.
We chose different climate types to determine how sensitive our methods might be to location.
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Each data set consists of ten years of hourly GHI values with units of watt-hours per square
meter, Wh·m−2. The first eight years were used for generating the point forecasting and probabilistic
forecasting models (in-sample). The last two years were used for out-of-sample testing. Observations
on 29 February in leap years were omitted. The Adelaide data set contains 1803 missing hourly GHI
values and these were omitted.

Table 1 provides a summary of the climate types for the three locations. A map showing the three
locations is shown in Figure 1.

Table 1. Data period and climate classification for the three locations.

Location Data Period Köppen-Geiger
Climate Classification

Adelaide 2005 to 2014 Hot Mediterranean
Darwin 1995 to 2004 Tropical
Mildura 1995 to 2004 Semi-arid

Figure 1. Map of Australia showing the three locations used in this paper: Adelaide, Darwin
and Mildura.

3. Point Forecast

We begin with a description of our one-step-ahead point forecasting model. We use Fourier
analysis to account for the seasonality and an autoregressive model to account for the serial correlation.
Our hourly GHI model for Mildura is given by:

It = Ft + At + Zt, (1)

where Ft is a seasonal component, At is an autoregressive component, and Zt is a noise such that
EZt = 0, EZtZl = 0 if t 6= l and EZ2

t = σ2
t . That is, Zt may be heteroscedastic. The autoregressive

component At is a linear combination of previous time steps.
We use power spectrum analysis to identify the significant frequencies in the Fourier component

Ft. We use 11 significant frequencies at cycles 1, 2, 364, 365, 366, 729, 730, 731, 1094, 1095 and 1096 cycles
per year. These correspond to once-a-year (1) and twice-a-year (2) cycles, once-a-day (365), twice-a-day
(730) and three-times-a-day cycles (1095), as well as the beat frequencies for the once-a-day (364, 366),
twice-a-day (739, 731) and three-times-a-day cycles (1094, 1096). As [12] points out, the beat frequencies,
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also known as sidebands, are used to modulate the amplitude to suit the time of year. For our three
locations, Ft explains between 80–85% of the total variance.

We then use an autoregressive model of order 3, AR(3), to model the serial structure in the
residuals after Ft has been removed. The final step was to zero any night time values; solar altitudes
less than zero degrees.

Similar point forecasting models were also developed for Adelaide and Darwin but are not shown
here. For a detailed description of our point forecasting method, the reader is encouraged to read our
previous paper [1].

Point Forecast Performance Evaluation

Table 2 shows the out-of-sample normalized root means square error (NRMSE), mean bias
error (MBE) and mean absolute error (MAE) for the point forecasting method for Adelaide, Darwin,
and Mildura. The NRMSE is normalized using the mean daytime value. With an adequately
performing one-step-ahead point forecast, the next step is to develop a probabilistic forecast. It is not
our intent here to compare our point forecasting model to a smart persistence model, as is commonly
done in the literature, as we did this in our previous paper [1] and showed our method’s superior
performance. In addition, our proposed methodology for generating a probabilistic forecast can be
extended to other point forecasting methods, such as those proposed in, for example, [12–14] and the
references therein.

Table 2. Out-of-sample normalized root means square error (NRMSE), mean bias error (MBE) and
mean absolute error (MAE) for the point forecasting method for Adelaide, Darwin, and Mildura.

Point Forecast NRMSE (%) MBE (%) MAE (%)

Adelaide 19.14 0.72 13.25
Darwin 22.74 0.81 15.83
Mildura 15.29 1.32 10.83

4. Probabilistic Forecasting

We previously developed a computationally efficient and data-driven method for short-term
probabilistic forecasting of solar radiation, using a nonparametric bootstrapping method and a map of
sun positions [1]. The idea behind using this method was to account for the heteroscedasticity of the
white noise in Equation (1).

The hourly daytime errors (noise) Zt from the in-sample forecast are placed into a two-dimensional
array Bi,j according to the sun position (determined by sun elevation and solar hour angle), for a given
hour. The rows i correspond to sun elevations in increments of ten degrees and the columns j
correspond to solar hour angles in increments of fifteen degrees. We did this to take care of the
systematic variation in variance in the GHI time series. That is, the variance in GHI differs throughout
the day (higher in the middle of the day compared to the beginning and end of the day) and throughout
the year (higher in summer compared to winter). The result is a two-dimensional array, where each
element is a bin of errors corresponding to a specific sun position.

We generate prediction intervals using nonparametric resampling (with replacement). To generate
a (1− α)100% prediction interval for a particular hour, the empirical α/2- and (1− α/2)-quantiles
from the bin in the two-dimensional array corresponding to the sun position for the hour are calculated.
The empirical α/2- and (1− α/2)-quantiles are then added to the point forecast Ît, resulting in lower
and upper prediction intervals for the hour. Our method develops prediction intervals without
imposing any parametric assumptions on the underlying distribution of GHI. As an example, suppose
we wish to construct 95% prediction intervals for our forecasts. We first determine, given the time of
day and day of the year, which bin the forecast is referring to, and use the error distribution in that
bin for our calculations. For this error distribution we determine the 2.5% and 97.5% quantiles for
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this empirical distribution. We then add these values to the forecasted value of the solar irradiation
determined by the point forecast method to construct our prediction interval.

For a detailed description of our previous probabilistic forecasting method, the reader is
encouraged to consult our previous paper [1].

The conditional method for generating a probabilistic forecast described in this paper, extends
our unconditional method to a case of an exponentially decaying heteroscedastic model for tracking
dynamics in solar radiance. The unconditional method catered for the global systematic variation
in variance of solar radiation, whereas the conditional method also caters for the local variation
in variance.

The problem with the unconditional method is that while it caters for the variance GHI can exhibit
for a particular time of year/time of day (global), it does not cater for the variance in GHI that is
currently evident at time t (local). The conditional method also takes into the account the current
variance. For example, if the current variance at time t is small, then the conditional method will
generate prediction intervals for time t + 1 that are narrower than otherwise would be generated by
the unconditional method.

The final errors are uncorrelated but dependent. Uncorrelated refers to the fact that the means at
each time step are not connected, but the series can still be dependent since dependence between the
variances remains. This is exemplified by the squared error terms, a proxy for variance, being correlated.
This characteristic is the so-called autoregressive conditional heteroscedastic (ARCH) effect. Usually
when this happens one uses an ARCH or GARCH model for forecasting the variance.

However, we found that instead an exponential smoothing form performed better than an ARCH
or GARCH model:

ψ2
t+1 = βZ2

t + (1− β)ψ2
t , 0 < β < 1, t ≥ 2, (2)

where ψ2
t is the variance at time t.

Since we are forecasting the variance, and then constructing a prediction interval using this
forecast, we must perform the forecast assuming the noise is normally distributed, which is not true.
Therefore, we first had to use a normalizing transformation, then forecast the variance, construct the
prediction intervals, and then transform back. Templeton [15] describes a method for transforming
a non-normal variable to normal. In each bin of errors, we have distributions that are non-normal.
We transform the errors to normal for each bin independently. We first find for each error its percent
rank, in other words how far along the empirical CDF it lies. The result is uniformly distributed
probabilities. We then apply the inverse normal transformation to these probabilities, resulting in
values from the standard normal distribution. We can then use these squared normal errors as proxies
for the variance and proceed to construct a forecast model.

The method for generating the lower and upper prediction intervals is shown in Algorithm 1.
The final step in generating prediction intervals is to impose sensible upper and lower limits.

We impose a lower bound limit of zero on the lower prediction interval. We restrict the upper prediction
interval using the Bird clear-sky model [16] and then add twenty percent for cloud enhancement [17].

Figures 2–4 compares 95% prediction intervals using the unconditional and conditional
probabilistic forecasting methods, for clear and cloudy days, for Adelaide, Darwin, and Mildura
respectively. A clear-sky day is where there is little evidence of the transient effects of clouds causing
no fluctuations in GHI. A cloudy day is where there is some evidence of the transient effects of clouds
causing fluctuations in GHI.
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Algorithm 1: Algorithm for generating (100-α) prediction intervals using the conditional
method.

Data: Out-of-sample hourly daytime forecasting model Î with length N, and the
two-dimensional array of errors binned according to sun position Bi,j.

1 for t = 1, . . . , N do
2 calculate sun elevation index i according to sun elevation for Ît;
3 calculate sun hour angle index j according to sun hour angle for Ît;
4 find G(Zt, i, j), the cumulative probability of Zt for sun position Bi,j;
5 transform Zt according to γt = G−1(Zt, i, j), with γt ∼ N(0, 1). Please note that this step is

done each time according to the bin currently referenced;
6 find the Exponential Smoothing forecast model ψ2

t = βγ2
t−1 + (1− β)ψ2

t−1, with 0 < β < 1;
7 find H( Ît, i, j), the cumulative probability of Ît for sun position Bi,j;
8 transform Ît according to τ̂t = H−1( Ît, i, j), with τ̂t ∼ N(0, 1);
9 form prediction intervals for τ̂t. For instance, for a 95% PI, use τ̂t ± 1.96ψt;

10 apply the inverse transform to take these limits of the prediction intervals back to the
equivalent values for L100−α

t and U100−α
t , the prediction interval endpoints in the

untransformed variables, respectively. Note once again that one must do this step with
reference to the particular bins according to sun position;

11 end
Result: Out-of-sample hourly daytime (100 − α) upper and lower prediction interval, L100−α

t
and U100−α

t respectively .

For clear-sky days, the observed GHI values fall within the prediction intervals with unconditional
probabilistic forecasting method providing narrower prediction intervals for all three locations.
For cloudy days, most of the observed GHI values fall within the prediction intervals with the
conditional probabilistic forecasting method providing narrower prediction intervals for all three
locations. In the next section we numerically examine the performance of our conditional probabilistic
forecasting method.
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(a) Clear-sky day on 2 January 2013.
Figure 2. Cont.
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(b) Cloudy day on 14 January 2013.
Figure 2. GHI prediction intervals using the unconditional and conditional probabilistic forecasting
methods for Adelaide.
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(a) Clear-sky day on 28 January 2003.
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(b) Cloudy day on 15 January 2003.
Figure 3. GHI prediction intervals using the unconditional and conditional probabilistic forecasting
methods for Darwin.
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(a) Clear-sky day on 6 January 2003.
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(b) Cloudy day on 1 January 2003.
Figure 4. GHI prediction intervals using the unconditional and conditional probabilistic forecasting
methods for Mildura.

5. Probabilistic Forecast Performance Evaluation

In line with the broader probabilistic forecasting and prediction interval literature [3,18–20], we use
three standard performance metrics: prediction interval coverage probability (PICP), prediction interval
normalized averaged width (PINAW) and Winkler score. We do not include performance measurements of
rank histograms or continuous rank probability score because we do not generate an ensemble forecast.
As described in Section 4, we generate prediction intervals by forecasting the variance using empirical
quantiles from each bin in Bi,j. We also do not use the coverage width-based criterion (CWC) because we
share the same concerns as [21]. They suggest that the CWC may give a better score to intervals that
are actually of lower quality.

5.1. Prediction Interval Coverage Probability

The PICP is the percentage of times an observation falls within the prediction intervals for
a nominal 100(1− α)% prediction interval. A probabilistic forecast is considered calibrated if the PICP
is close to the nominal 100(1− α)% value. For example, the ideal PICP for a 95% prediction interval is
95%. The PICP for a nominal 100(1− α)% prediction interval is given by:

PICP =
1
L

L

∑
t=1

Ct, (3)
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where L is the total number of forecasts and

Ct =

{
1, L100−α

t ≤ Gt ≤ U100−α
t ,

0, otherwise,
(4)

and Gt is the observed GHI value.
Figure 5 shows the reliability of the prediction intervals in the form of quantile–quantile

plots [22,23] over the out-of-sample period, using the conditional and unconditional probabilistic
forecasting methods, for Adelaide, Darwin, and Mildura. That is, each subfigure shows the PICP vs.
the expected nominal coverage. These diagrams are known in the literature as reliability diagrams.
For a calibrated probabilistic forecasting method, the PICP should follow a strong linear relationship
with the nominal coverage rates by falling within the 95% consistency bars [24–26] along the 45-degree
black reference line. For Adelaide and Mildura, the PICP for both probabilistic forecasting methods
fall within or just outside the consistency bars, with the conditional probabilistic forecasting method
performing slightly better. For Darwin, the PICP for the unconditional forecasting method falls
outside the consistency bars but inside for the conditional method. Overall, the results show that our
conditional probabilistic forecasting method is calibrated.
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(b) Darwin.
Figure 5. Cont.
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(c) Mildura
Figure 5. Reliability of prediction intervals in the form of quantile–quantile plots over the out-of-sample
period with 95% consistency bars using the unconditional and conditional probabilistic forecasting
methods, for Adelaide, Darwin, and Mildura. The black line represents is the 45-degree reference line.

5.2. Prediction Interval Normalized Averaged Width

While we want a calibrated probabilistic forecast, we also want a sharp probabilistic forecast with
narrow prediction intervals. To measure prediction interval width, we use PINAW:

PINAW =
1

LImax

L

∑
t=1

(U100−α
t − L100−α

t ), (5)

where Imax = 1000 Wh·m−2.
Figure 6 shows the PINAW for all nominal prediction intervals, over the out-of-sample period,

for the unconditional and conditional probabilistic forecasting methods, for Adelaide, Darwin,
and Mildura. The results are mixed. The prediction intervals are only sharper using the conditional
forecasting method for Adelaide and Mildura.
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Figure 6. Cont.
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(b) Darwin.
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(c) Mildura.
Figure 6. Prediction interval normalized averaged width (PINAW) over the out-of-sample period
using the unconditional and conditional probabilistic forecasting methods, for Adelaide, Darwin
and Mildura.

5.3. Winkler Score

Coverage and prediction interval widths are isomorphic. Because coverage is easily obtained by
having wider prediction interval widths over the out-of-sample period 2013–2014, we examine the
trade-off between coverage and prediction interval width using the Winkler score [20], proposed by [27].
The Winkler score is defined as:

Winklert =


δt, f or Gt ∈ bL100−α

t , U100−α
t c,

δt +
2
α (L100−α

t − Gt), f or Gt < L100−α
t ,

δt +
2
α (Gt −U100−α

t ), f or Gt > U100−α
t .

(6)

We normalize the Winkler score by dividing it by the total GHI value. A better performing
prediction interval is characterized by a lower Winkler score.
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Figure 7 shows the normalized Winkler score for all nominal prediction intervals over the
out-of-sample period, for the unconditional and conditional probabilistic forecasts, for Adelaide,
Darwin, and Mildura, respectively.

75 80 85 90 95 100
Nominal coverage (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

is
ed

 W
in

kl
er

 s
co

re

unconditional
conditional

(a) Adelaide.
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(b) Darwin.
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(c) Mildura.
Figure 7. Normalized Winkler score over the out-of-sample period using the unconditional and
conditional probabilistic forecasting methods, for Adelaide, Darwin, and Mildura.
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These figures show the conditional probabilistic forecasting method performs better than
the unconditional probabilistic forecasting method for Adelaide and Mildura. Interestingly,
this observation is not the case for Darwin. We examine Darwin more closely in Section 5.4.

5.4. A Closer Look at Darwin

According to the Köppen-Geiger climate classification system, Darwin’s climate is classified as
Tropical, with distinct dry and wet seasons. Perhaps the performance of the probabilistic forecasting
methods is dependent upon the season. Figure 8 shows the daily clearness index for Adelaide and
Figure 9 for Darwin, for one year. We can see that the variability of clearness index for Adelaide appears
to be constant over the year. A similar case for Mildura (not shown here). However, for Darwin,
there appears to be a greater variability of clearness index during the summer months (wet season)
compared to the winter months (dry season). Therefore, we break our analysis down into these two
seasons. We define summer as the months November to May and winter months as June to October.
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Figure 8. Daily clearness index for one year for Adelaide.
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Figure 9. Daily clearness index for one year for Darwin.

Figure 10 shows the reliability of the prediction intervals in the form of quantile–quantile
plots [22,23] over the out-of-sample period, using the unconditional and conditional probabilistic
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forecasting methods, for Darwin, for summer and winter. The reliability of conditional probabilistic
forecasting method performs well for both summer and winter months. However, the unconditional
probabilistic forecasting method markedly under covers during the summer months and over covers
during the winter months, particularly for lower nominal coverage rates.
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Figure 10. Reliability of prediction intervals in the form of quantile–quantile plots over the
out-of-sample period with 95% consistency bars for the unconditional and conditional probabilistic
forecasting methods, for Darwin, for summer and winter seasons. The black line represents is the
45-degree reference line.
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Figure 11 shows the normalized Winkler score for all nominal prediction intervals over the
out-of-sample period 2013–2014, for the unconditional and conditional combinations probabilistic
forecasts, for Darwin, for summer and winter.
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Figure 11. Normalized Winkler score over the out-of-sample period for unconditional and conditional
probabilistic forecasting methods for Darwin, for summer and winter seasons. The black line represents
is the 45-degree reference line.

Based on the lower normalized Winkler scores, one might suggest using the unconditional
probabilistic forecasting method for summer months and the conditional probabilistic forecasting
method during the winter months. However, as Figure 10 shows, it would come at the cost of coverage
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during winter which is not a desired result. That is, there is no point in having narrow prediction
intervals if there is no coverage.

5.5. Results in the Literature

In this section, we compare our method to similar methods in the literature. Where applicable,
we believe our conditional probabilistic forecasting method performs well compared to other methods.

Unfortunately, it is not clear what the nominal prediction intervals are in [8]. Therefore, we do
not make a comparison.

David et al. [6] do not report on prediction interval widths but do provide reliability diagrams
that shows the PICP. However, as they acknowledge, the coverage of their probabilistic forecasts do
not match the nominal prediction intervals for all coverage probabilities—with deviations away from
the ideal line.

Pedro et al. [5] reports on the PICP and PINAW metrics for time scales up to thirty minutes.
The results from their reliability diagrams are mixed with deviations from the ideal line for some
methods. They provide PINAW results for 80% prediction intervals with the best performing method
scoring 9.9%. Our best performing location, Mildura, scored 16.4%. It is important to note that our
time scale is hourly, not thirty minutes, so a higher percentage is expected.

Trapero [7] have well calibrated prediction intervals for their combined method with the PICPs
matching the nominal coverages. To measure how sharp their probabilistic forecast is, they do not use
the PINAW metric. Instead they use the average interval width metric which is calculated by dividing the
interval range by its midpoint. For their combined method for a nominal coverage of 95%, the average
width is 1.32. For a nominal coverage of 95% for Mildura, we used their average interval width metric
and our conditional method scored 0.79.

6. Conclusions

In the paper we have described our new conditional probabilistic forecasting method which
extends our old unconditional method to a case where we cater for the heteroscedastic nature of
the series by constructing an exponentially weighted smoothing average model for forecasting the
variance. The conditional method caters for both the global systematic variation in variance of solar
radiation and the local variation in variance. Results show that the conditional method performs better
than the unconditional method for locations exhibiting more clear-sky days, while results are mixed
for the location with less clear-sky days. It could be that this would be improved if the point forecast
model were to be developed separately for the different seasons for locations such as Darwin with
pronounced differences in cloud cover in different seasons. Results also show our method compares
well to the literature.

Future work will examine if there is an optimal way of combining the two probabilistic forecasting
methods, perhaps using gradient boosting. We would also like to incorporate a numerical weather
prediction (NWP) forecast into our point forecast to see if this improves performance of both the point
forecast as well as the probabilistic forecast.
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Glossary

It hourly solar irradiation
Ft seasonal component of the solar irradiation
At autoregressive component of the solar irradiation
Zt noise term for the solar forecast model
Bi,j two-dimensional array for binning the noise, according to the sun position

i corresponds to the sun elevation and j to the sun hour angle
ψ2

t variance of the noise term at time t
β exponential smoothing parameter
Ît forecast of It at time t− 1
γt transformation of Zt to the corresponding value in probability in N(0, 1)
τ̂t transformation of Ît to the corresponding value in probability in N(0, 1)
G(Zt, i, j) empirical cumulative distribution function of the noise term Zt

H(Zt, i, j) empirical cumulative distribution function of the solar forecast Ît

L100−α
t lower bound of the prediction interval

U100−α
t upper bound of the prediction interval

α probability level for determining the prediction interval. For example, for a 95% prediction interval,
α = 2.5%

δt the width of the prediction interval at time t
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