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Abstract: The linkage between metal nodes and organic linkers has led to the development of new
porous crystalline materials called metal–organic frameworks (MOFs). These have found significant
potential applications in different areas such as gas storage and separation, chemical sensing, het-
erogeneous catalysis, biomedicine, proton conductivity, and others. Overall, MOFs are outstanding
candidates for next-generation energy storage devices, and they have recently attracted the greater
devotion of the scientific community worldwide. MOFs can be used to enhance the ability of a
device to store energy due to their unique morphology, controllable structures, high surface area,
and permanent porosity. MOFs are widely used in super capacitors (SCs), metal (Li, Na, and K) ion
batteries, and lithium–sulfur batteries (LSBs) and act as a promising candidate to store energy in an
environmentally friendly way. MOFs are also used as efficient materials with better recyclability,
efficiency, and capacity retention. In this review, first we summarize the material design, chemical
compositions, and physical structure of MOFs and afterward, we highlight the most recent develop-
ment and understanding in this area, mainly focusing on various practical applications of MOFs in
energy storage devices.

Keywords: metal–organic frameworks; synthesis and design; chemical compositions and physical
structure; super capacitors; rechargeable batteries; energy storage devices

1. Introduction

Nowadays, materials science research is a very fascinating and important interdisci-
plinary field that is concerned with the application of various materials in different areas.
This area is not new, but the great revolution started in 1995 when Yaghi and co-workers
synthesized the first metal–organic framework (MOF) as a special class of porous material
that was composed of inorganic metal ions and organic linkers. The MOFs schematic
design is shown in Figure 1.
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The term MOF for this new class of materials was also coined by Omar Yaghi in 1995
and has found greater interest of the material and chemical community [2]. MOFs are
formed by connecting metal ions or clusters with organic linkers, also called the node-
space arrangement [3].The advantages of MOFs compared to traditional materials are
their well-regulated structural arrangements. At the molecular level, they possess a highly
tunable porosity and surface area by altering metal species and organic linkers, as shown
in Figure 2.
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permission.

MOFs are remarkably porous inorganic–organic hybrid materials [5] and are designed
by the reaction between transition metals and organic ligands with oxygen/nitrogen [6,7].
1D, 2D, and 3D MOFs have been reported by various research groups and have found
potential applications in different areas such as in chemical sensors, catalysis, batteries,
supercapacitors, etc. due to their highly tunable pore size, large surface areas, and surface
functionalization [8]. Some of MOFs reported by different research groups are shown in
Figure 3.

We know that the human survival now a days is hindered by an energy crisis such
as the escalating and unpredictable cost of oil, which results in significant increase in the
energy requirement globally. This has steadily raised serious problems and also hampers
human survival [10]. Highly energy efficient and clean power systems are requirements
of the modern era and are urgently needed. If we take a look into the most promising
technologies in terms of electrical energy storage, electrochemical energy storage devices
such as batteries and supercapacitors came to mind, which have attracted the attention of
society because of their light weight, portability, long life cycle, high energy density, and
compactness [11,12]. These are widely utilized in mobile phones, computers, environmen-
tally friendly electric/hybrid electric vehicles, portable electronic appliances, aerospace
systems, electric vehicles, and many others [12,13]. Overall, the electrode material for an
energy storage system is very important, and hence, different researchers have devoted
significant effort toward the development of various fascinating materials such as electrode
materials for energy storage such as two-dimensional nanomaterial graphene, carbon
nanotubes, conducting polymers, nanostructured carbon–polymer composites as well as
many others. These materials have their own advantages and disadvantages, for example,
polymers are inexpensive and lightweight materials, but due to the lack of their physical
and chemical stability, their use is limited. Additionally, inorganic materials are interesting
because of their robust structure, but again, mechanical stability is the crucial issue, if we
consider their device fabrication [4].

Porosity in materials is very fascinating topic today and hierarchically nanostructured
porous materials are much more demanding and useful for energy storage applications due
to their large surface area, large accessible space, low density, and excellent accommodation
capability [14]. Therefore, various kinds of porous materials are reported in the literature
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including conducting polymers, Fe2O3, Sn/C as anodes, porous metal electrodes, porous
few-layered MoS2/C nanosheets, etc. [15,16]. Different research groups used various types
of porous materials for energy storage applications as shown in Figure 4.
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Overall, metal organic frameworks (MOFs) are widely used as emerging and rapidly
growing crystalline materials for energy storage applications, which can fulfill the needs of
the modern era due to their large surface area, uniform pores with tunability, and the ease
of controlling the morphologies and surface properties [17].

2. Different Methods for Synthesis of MOFs

The synthesis of MOFs has attracted immense attention during the last several decades
because of their large variety of attractive and exciting structures of great interest for a vari-
ety of applications in several fields related to porous materials. These include microwave
assisted methods, sonochemical methods, electrochemical methods, mechanochemical
methods, the hydrothermal method, solvothermal method, etc. In addition, structure
directing solvents and structure directing agents are also used to synthesize the desired
MOFs.

2.1. Microwave Assisted Methods

Chang et al. revealed the efficient synthesis of a porous organic–inorganic hybrid
material, chromium trimesate, for the first time in 2005 under aqueous conditions [18]. This
method is about 20 times faster than conventional methods. Chang’s group further demon-
strated the rapid synthesis of cubic chromium terephthalate MIL-101 under microwave
irradiation in 2007. The synthesized material obtained with giant pores, very large surface
areas, and very small nano scale dimensions [19]. The synthesized porous MIL-101 material
obtained using this method exhibited a high adsorption of benzene, which makes it a
great material for the sorptive removal of harmful organic compounds. Lin et al. demon-
strated a similar microwave strategy by using post-synthetic modifications of highly porous
NMOFs, with pay loads of imaging contrast agents and anticancer drugs [20]. Jhung’s
group revealed the synthesis of the most widely studied MOF materials (i.e., chromium-
benzenedicarboxylate (Cr-BDC)), named MIL-101. A wide range of reaction conditions
such as various water concentrations, pH, and synthetic methods (electric heating and
microwave irradiation) have been used to obtain nano-sized crystals [21].The crystal size
of the MOFs decreases with an increase in the concentration of water and pH. This de-
crease in size with dilution can be explained because of its smaller rate of crystal growth
compared to the nucleation rate. Instead of using harmful organic solvents, Horcajada
et al. also reported the synthesis of porous iron carboxylate nano MOFs in aqueous or
alcoholic solutions [22]. In the biomedical sense, these MOF materials can act as molecular
sponges, encapsulating drugs with different polarities and different pore sizes with various
functional groups. This modest method has been applied to previously challenging anti
tumoral and antiviral drugs, and has also been used as cosmetic agents.

2.2. Sonochemical Method

The synthesis of four well-known MOFs at room temperature was developed by
Yaghi et al. in 2008 [23]. Applying the sonochemical method, Yaghi et al. synthesized
an isoreticular metal framework (IRMOF) with the cubic topology from acetylenedicar-
boxylic acid. This kind of MOF has been synthesized by using a special type of reversible
fluorescent sensor for size-selective sensing of organoamines by using nanocrystals, as
revealed by Qiuet al. in 2008 [24]. The preliminary results as revealed by Qiu’s group
showed that by the reaction of cupric acetate and H3BTC, it was possible to synthesize
several metal-based MOFs (e.g., [Cu3(BTC)2(H2O)3]n, a 3-D MOF with 3-Dn channels).
Mehringet al. also reported several synthetic procedures to synthesize either [Cu3(btc)2] or
[Cu2(btc)(OH)(H2O)], either starting from Cu(OAc)2 or Cu(NO3)2 [25].

2.3. Electrochemical Method

A novel electrochemical method for transition metal-based MOFs was revealed for
the first time by Mueller et al. in 2005 [26]. The patterned growth of MOFs by applying
an anodic voltage to the copper electrode and CuII ions were introduced by Vos et al. in
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2010 [27]. The synthetic solution contained BTC and methyltributylammonium methyl
sulfate (MTBS) as a conduction salt. It was established that the densely packed films
of [Cu3(BTC)2] crystals were easily prepared using electrochemical methods, which also
agreed with the thin film X-ray diffractogram. These samples were also in agreement with
those of the conventionally prepared reference sample and the literature data. Vos’s group
further showed a combined method for patterned metallization and galvanic displacement
to deposit patterned thin films of MOFs for Cu3(BTC)2 [28]. Their study also showed that
the combination of these methods could advance the processing of MOFs in an easy manner
for application in sensors and other thin film applications. The electrochemical method
for the synthesis of microporous MOFs was exemplified by the competitive formation of
[Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)], as revealed by Mehring et al. in 2010 [25].
The electrochemical method for MOF synthesis is shown in Figure 5.
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2.4. Mechanochemical Method

For the first time, Friscic and Fabian reported the construction of metal–organic poly-
mers from a metal oxide via the liquid assisted grinding approach [30]. This mechanochem-
ical method for the most studied MOFs is shown in Figure 6.

James et al. developed a synthesis of MOFs under grinding conditions by inter con-
versions between MOF structures induced by liquid-assisted grinding [32]. Furthermore,
the solvent-free approach for the synthesis of mixed-ligand materials by grinding MOFs
with additional ligands was also revealed by James et al. (Figure 7).

Friscic et al. reported on the ion and liquid-assisted grinding approach for the synthesis
of MOFs by the improved mechanochemical method in 2010 [33]. The method revealed
LAG reactions at the 0.5 mmol scale by placing a mixture of ZnO (40 mg), Hta (80 mg), and
DABCO into a 10 mL stainless steel jar, along with DMF as the grinding liquid and two
stainless steel balls using 1–20 mg salt.
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2.5. Hydrothermal Approach

In 2006, Loiseau et al. reported the synthesis of a new aluminum trimesate com-
pound: Al12O(OH)18(H2O)3(Al2(OH)4)[btc]6‚ 24H2O by using aluminum nitrate with
1,3,5-benzenetricarboxylic acid and a linker in water media by applying the hydrothermal
approach [34]. In aluminum chemistry, this wasthe first time that such a µ3-oxo-centered
trinuclear configuration was observed. The same group also revealed the synthesis of new
indium trimesate In12O(OH)12({OH}4,{H2O}5)[btc]6. 31H2O, called MIL-96, (btc = 1,3,5-
benzenetricarboxylate or trimesate species) and gallium trimesate Ga12O(OH)12({OH}4,
{H2O}5)[btc]6.24H2O under mild conditions hydrothermally in the presence of trimethyl
1,3,5-benzenetricarboxylate [35–37]. Furthermore, Gao et al. showed that the assembly
of the asymmetric bis(bidentate)-2-pyrimidinecarboxylate ligand with CdII produced a
MOF with the RHO zeolitic topology, while 5-(20-pyrimidyl)tetra-zolate with CdII led to
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square grid networks [37]. Xu et al. synthesized two microporous yttrium trimesates with
different spatial arrangements of the linkers around the Y3+ centers, but having similar
1-D channels from yttrium salt and trimethyl 1,3,5-benzenetricarboxylate via the insitu
hydrolysis reaction in mixed solvents of DMF/water and DEF/water [38]. The microporous
3D MOF, [Cu3(ipO)2(pyz)2]n was synthesized by the in situ ligand transformation in a
hydrothermal approach using Cu(NO3)2·2.5H2O, 1,2,3-benzene tricarboxylic acid (H3btc),
pyrazine, KOH, and water [39].

2.6. Solvothermal Approach

Using high-throughput methods, for the first time in 2008, Stock et al. reported a
solvothermal method for the preparation of isoreticular structures of different MOFs based
on Fe(III) and aminoterephthalate [40]. The reactions of FeCl3 and 2-aminoterephthalic
acid under suitable conditions in both protic and aprotic solvents were studied. Using high-
throughput methods, Stock’s group also revealed the preparation of the Al-based MOF
[Al4(OH)2(OCH3)4(H2N-bdc)3]·xH2O (CAU-1) with high porosity and thermal stability.
The structure contains unprecedented octameric {Al8(OH)4-(OCH3)8}12+ building units that
are connected through the aminoterephthalate ions to a 12-connected net [41]. Li’s group
investigated the synthesis of MOFs in aqueous media using metallic chromium, which was
dispersed in an aqueous solution of HF. After adding H3BTC, the mixture was dissolved in
a mixed solvent of water/methanol in equal proportion. The resulting mixture was heated
in a Teflon autoclave at 210 ◦C for 4 days, which furnished a green powder and was further
washed with distilled water followed by methanol and then dried in air [42].

3. MOF Applications in Energy Storage Devices

The energy crisis issues seriously threatening human survival because alternative
sources of energy such solar energy and wind energy are fluctuating sources of energy.
Therefore, the design of the electrodes is the main task for efficient electrochemical capac-
itors, rechargeable batteries, fuel cells, and electrolyzers [43]. Similarly, MOFs are also
outstanding electrode materials for electrochemical energy storage devices that meet the
needs of next-generation energy storage technologies such as in Li-S/Se batteries, LIBs,
SIBs, Li-air batteries, and supercapacitors. This is due to their exceptional morphology,
suitable functional linkers, high specific surface area, and metal sites. Therefore, due to
high energy efficiency and clean power systems, electrochemical energy storage devices
are much more demanding such as batteries and supercapacitors, and this research area
has rapidly been extended [44–46]. Batteries are used in various electronic gadgets such
as portable electronic devices due to their low weight, high energy density, and SIBs and
LIBs are regarded as a low-cost alternative battery technology [47–51]. Long cycle life,
high power density, and the competitive price of supercapacitors has also made them a
significant candidate for energy storage, and thus used in electric vehicles and aerospace
systems [52,53]. MOFs offer various advantages due to their unique structure and are
promising materials due to their porous structure with a large surface area in energy stor-
age and conversion. The properties of the MOFs also depend on their structure and have
been investigated very well in the literature by different research groups. Different MOFs
such as MIL-53, MIL-68, MIL-125, UiO-66, ZIF have been prepared. It was found that
they exhibit different morphology, pore size, and surface chemistry, and showed different
water adsorption behavior [53] Furthermore, it showed different isotherms for different
samples and MIL-68 showed a reversible extreme “S” shape isotherm [54]. The specific
structural features and flexibility of MOF structures also affects their adsorption proper-
ties. MOFs do not follows Gurvitsch’s rule, which controls the adsorption properties and
hence the extent of adsorption. Gating and kinetic trapping processes are very unique to
flexible MOFs, which are very important for adsorption purposes [55]. The extraordinary
inherent properties of MOFs make it a potential candidate for various technologies [56].
Appropriate linkers with different lengths and various metal nodes can be used to tune up
the pore size and topology of the framework, which has an impact on the electrochemical
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process [57]. Metal–oxygen linkages make up the MOF insulator, but the conductivity can
be improved using “through-bond” conductivity, which directly deals with the tuning of
morphology using the metal–sulfur bond [58]. Spatial and directional transport control can
be tuned using polar functionalities into the framework [59]. Charge conduction and sulfur
adsorption can be enhanced by tuning the morphology of MOFs because the diffusion
length can be shortened by decreasing the particle size for better conversion [60]. In this
section, the recent developments, future prospectives, and challenges of MOFs for energy
storage applications are summarized. MOFs find potential applications in Li-S, Li-Se,
supercapacitors etc as shown in Figure 8.
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Currently, the importance of electronic gadgets and other electronic materialshas
increased rapidly. High performance LIBs are widely used in various electronic gadgets
such mobile phones, laptops, and electric automobiles, etc. as energy storage batteries
with better performance. Thus far, a variety of materials has been explored for better
performance in LIBs as anode/anode materials, MOFs also being among them. The MIL-
53(Fe) can be directly used as a cathode electrode material by inserting lithium ions and
was synthesized in 2007 by using the solvothermal process by Tarascon et al. [62].

If we talk in terms of the high capacity, these LIBs are the best materials, as they
consume very low energy. The increasing demand for a high energy capacity has not
been fulfilled by other materials, for example, graphite, which has a theoretical capacity of
372 mA h g−1. Instead, a different solvothermal method was used to synthesizeCo-based
metal–organic framework (H–Co–MOF) microflowers, which showed a superior capacity of
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1345 mA h g−1 with aa current density of 0.1 A g−1 after 100 cycles. Moreover, this material
showed a large capacity of 828 mA h g−1 after 700 cycles at 2 A g −1 [63]. H–Co–MOF and
Co–MOF cycling performance for LIBs is shown as in Figure 9.
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MOF can be used to obtain different porous carbon materials, as shown in Figure 10.
A high specific capacity and an extensive life cycle can be obtained with a MOF-derived
porous carbon material.
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MOF-177 [Zn4O(1,3,5-benzenetricarboxylic acid)] showed a capacity of 400 mA h g−1

in the first cycle to 105 mA h g−1 after two cycles. This decrease in capacity has arisen
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because the Zn-based MOF electrode undergoes a conversion reaction and alloying reac-
tion [65]. Additionally, the theoretical capacity of ZnO is987 mA h g−1 and it is considered
as one of the most satisfactory anode materials due to its low cost and environmentally
friendly nature, but the main drawback of this material is the low electrical conductiv-
ity and large volume expansion [66]. Therefore, this problem with ZnO nanoparticles is
overcome by hollow porous ZnO/C nanocages, which showed a first discharge capacity
of 1982 mA h g−1 (current density of 100 mA g−1)and 1178 mA h g−1after 100 cycles, as
shown in Figure 11, and the capacity was 351 mA h g−1 at a current density of 2 A g−1 [67].
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Several polymetallic Li–MOFs such as MnLi, CoLi, NiLi, MnCoLi, MnNiLi, CoNiLi,
and MnCoNiLi were prepared using the hydrothermal method [68]. The best electrochem-
ical performance was exhibited by MnCoLi with a discharge capacity of 799.4 mAh g−1

after 100 cycles (current density of 100 mA g−1). Electrochemical performance of MnLi,
CoLi, NiLi, MnCoLi, MnNiLi, CoNiLi, and MnCoNiLi is as shown in Figure 12.

A flexible and wavy layered nickel-based MOF (C20H24Cl2N8Ni) was synthesized
by the solvothermal approach of 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (H2Me4bpz) with
nickel(II) chloride hexahydrate as shown in Figure 13.

It was also investigated whether the material C20H24Cl2N8Ni showed excellent spe-
cific capacity, cycling performance, and preservation of the crystal structure as shown in
Figure 14. The synthesized MOFs showed a first discharge specific capacity of 320 mAhg−1,
and the second discharge specific capacity dropped to 140 mAhg−1. Specific capacity loss
of 56.25% was observed for this MOF [69]. This loss was observed due to the SEI layer
being caused by the incomplete conversion reaction and irreversible lithium loss.
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3.2. MOFs in Sodium Ion Batteries (SIBs)

Sodium ion batteries (SIBs), because of their low cost, have a higher demand due
to their rapid use in the development of electric vehicles and consumer electronics for
a variety of commercial applications. SIBs can work at ambient- or room-temperature
without any problem and they are currently gaining much attention. Additionally, sodium
is very abundant with low cost, and special attention has been of it. In SIBs, sodium ions
migrate, but in LIBs, the lithium ions migrate, but the basic component and structure of
SIBs are identical to that of the LIBs [70–72]. Carbon electrodes were used in the beginning,
but transition metal oxide-based electrodes replaced carbon electrodes [73]. Later on,
porosity was introduced into the materials for electrodes for a better cycle life of the
SIBs, but unsatisfactory results were found in terms of reversible capacity [74]. Thus, the
problem was mostly solved with MOFs, and efficient electrodes were designed based on it
and its derivatives for SIBs [75]. Ni–metal–organic framework (Ni–MOF)-derived nickel
sulfide (NiS2) was used as the electrode material and it showed a high specific capacity
and excellent rate performance in the SIBs. Ni–MOF-derived NiS2 electrodes showed the
discharge capacity of 579.3, 362.7, 334.3, 330.9, and 280.6 mA h g−1 for the 1st, 3rd, 5th, 10th,
and 60th cycles, respectively [76] as shown in Figure 15. The discharge specific capacity
of the electrode for SIBs was very high, and could reach a value of 186.9 mA h g−1 after
100 cycles with a 76.2% retention value.

Likewise, the scalable solution-precipitation method was used to prepare MOF,
2-methylimidazole zinc salt (ZIF-8), followed by pyrolysis, which resulted in microporous
carbon (ZIF-C) with a homogeneous pore size of 0.5 nm. It has been shown that ZIF-C
has a better performance than the other CMK-3 electrodes. The initial charge capacities
shown by the electrodes with ZIF-C and CMK-3 were 164 and 95 mA h g−1, respectively.
This capacity was retained even after increasing the current density to 500 mA g−1, 129,
and 56 mA h g−1, which showed an exceptional storage behavior for SIBs [77]. MOFs have
been studied as electrode materials for aqueous sodium-ion rechargeable batteries (ASIBs)
due to them being cheap, safe, and of low toxicity [78] as shown in Figure 16.
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Similarly, simple carbonization of MOF-5 led to the preparation of cube-shaped
porous carbon (CPC) with a large surface area of 2316 m2g−1, which showed a bet-
ter sodium-storage capacity of 240 mA h g−1 at a current density of 100 mA g−1 af-
ter 100 cycles. Even after 5000 cycles at the current density of 3200 mA g−1, the high
specific capacity of 100 mA h g−1 was still retained [79]. Furthermore, flexible MOF
based electrodes were also used as the superior electrode and they showed superior
energy storage performance with good rate capability, a reversible specific capacity of
82 mA h g−1at 0.2C, and long cycle life with 81.2% capacity withholding over 1000 cy-
cles [80]. A new metal–organic framework prepared using the solvothermal method is
{(Me2NH2)2[Co3(µ3-O)(btb)2(py)(H2O)]·(DMF)2(H2O)2}n (Cobtbpy). H3btb is defined as
1,3,5-tri(4-carboxylphenyl)benzene, py = pyridine, DMF = N,N-dimethylformamide). The
(3,6)-connected to a 3D network with a point symbol of (4·62)2(42·610·83) based on the
[Co3(µ3-O)] clusters was shown by Cobtbpy. This material can be used in SIBs due to its sta-
bility, accessibility, and dense active sites. A composite mixed with CNTs can also be used
as an anode material with high reversible capability, delivering 379 mAh/g in sodium-ion
batteries at 0.05 A/g [81]. A scalable 2-D MOF via the solvothermal method was thoroughly
investigated as high-performance anodes for SIBs [Co(L)(H2O)]n·2nH2O [defined as “Co(L)
MOF”] and [Cd(L)(H2O)]n·2nH2O [defined as “Cd(L) MOF”] (L = 5-aminoisophthalic
acid) [82]. Porous TiO2 derived from MOFs (MIL-125) showed excellent sodium ion storage
performance with high capacity, good cycling stability, and excellent rate performance with
a maximum capacity of 250 mAh g−1 at the current density of 50 mA g−1 after 50 cycles. A
capacity of 173 mAh g−1wasstill retained at a high current density of 1 A g−1, even after
2500 cycles [83]. Annealing of a Mn-based metal–organic frameworks precursor was used
to synthesize porous MnO@C nanorods.A high reversible specific capacity of 260 mAh g−1

after 100 cycles at a current density of 50 mA g−1 was achieved using this hybrid material.
MnO@C exhibited a superior long-life cycling performance with a capacity of 140 mAh g−1

at very high current density of 2 A g−1 [84], as shown in Figure 17.
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It was investigated whether the substitution of the Cu nanoparticles in a metal–organic
framework (MOF)-derived octahedron carbon framework was used to prepare ultrafine
antimony embedded in a porous carbon nanocomposite (Sb@PC). This material was syn-
thesized using the insitu method and showed excellent performance in SIBs. The specific
capacities of 634.6, 474.5, and 451.9 mAh g–1 at 0.1, 0.2, and 0.5 A g–1 after 200, 500,
and 250 cycles, respectively, were excellent, with a suitable redox potential in the range
0.5–0.8 V vs. Na/Na+ shown by this material [85]. Moreover, a MOF was used in the
synthesis of a 3D porous carbon (3DPC) material that possessed a high specific surface area
and large pore volume and has been used in high-performance sodium ion batteries. An
excellent reversible capacity of 284 mAh g−1was achieved even after 100 cycles. The same
material showed a better rate capability with a high reversible capacity of 125 mAh g−1,
even at a high current density of 2.5 A g−1 and robust long-term cycling stability for
upto 3000 cycles with a marvelous capacity of 175 mAh g−1 at 1 A g−1 [86]. A wide
range of materials has been reported by different research groups for applications in SIBs.
Hydrolysis, followed by the ion exchange method and subsequent calcinations, led to
the formation of MgFe2O4microboxes. An easy pathway for the insertion/extraction of
Na+ was provided by sufficient space and the diffusion pathway. This material showed
a capacity of 406 mA h g−1 at a current density of 50 mA g−1 and up held a reversible
capacity of 135 mA h g−1 upto 150 cycles, as shown in Figure 18.
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Figure 18. Various active material ratios of A (7:2:1) and B (8:1:1) were used to check the electrochem-
ical performance of the MgFe2O4microbox electrodes. (a) Charge/discharge curves and (b) cyclic
performance of sample A at a current density of 50 mA g−1; (c) rate performance, and (d) Nyquist
plots of samples A and B [87]. Reproduced with permission.

3.3. MOFs in Li–O2Batteries

MOFs have attracted the great attention of the scientific community as an electrode
material in lithium–oxygen (Li–O2) batteries, sometimes called lithium air batteries. These
batteries are made up of lithium metals, which act as the anode, along with porous carbon
composites that act as the cathode. It has been studied that these rechargeable lithium–air
batteries have the highest theoretical specific energy among rechargeable batteries and
are also capable of transforming energy to a practical device. Moreover, MOFs have been
well-studied and used in various kinds of heterogeneous catalysis for many reactions with
Li–O2 batteries in ORR and OER [88].
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3.4. MOFs in Li–S Batteries

Similar to other batteries, lithium–sulfur (Li–S) batteries have found a potential ap-
plication in aerospace systems and electrical equipment. The theoretical specific energy
density is 3 to 5 times higher than that of Li ion batteries, and they are supposed to be
used in next-generation energy storage systems at larger scale [89]. The high capacities of
secondary batteries have been developed by using new conversion type batteries such as
Li–S batteries. These batteries generate electrical energy by the chemical redox of sulfur (S8)
because of its remarkable potentialities in energy storage [90].

3.5. MOFs in Li–Se Batteries

In recent years, lithium–selenium (Li–Se) batteries have been given a lot of attention
because of their outstanding performances and high theoretical volumetric energy densities
(~3253 mAh cm3−). These Li–Se batteries, when compared to Li–S batteries, show an
improved rate and cycling performance over Li–S batteries. However, these Li–Se batteries
have many challenges compared to other batteries. For example, in the process of the
lithiation of selenium, the cathode experiences huge volume expansion due to the void
space in its lattice spectrum. Instead, selenium possesses high conductivity compared to
sulfur (S8). Moreover, in these batteries, MOFs have been used as a pyrolysis precursor to
create porous carbon frameworks [91].

3.6. MOFs in Super Capacitors (SCs)

Yaghi et al. used a different series of MOFs with several organic ligands and different
central metal ions, which showed a high areal specific capacitance [92]. The electrochemical
double layer (EDL) mechanism or faradaic mechanism are the two mechanisms in which to
store electrical energy in electrochemical capacitors. These are based on the mechanism
wherein the former process, the EDL layer is formed by the electrolyte ions on the surface
of the electrode, and in the latter case, by redox reactions involving the surface regions
of the electrode materials [93]. MOFs are well-utilized in the field of supercapacitors as
electrode materials, but a low capacity has limited their use in supercapacitor applications.
The first neat MOF-based supercapacitor without conductive additives or other binders
was explored by Sheberla et al. in 2016 [94]. Zn-based metal–organic frameworks (MOFs)
were used to prepare nanoporous carbon, which was used in symmetric supercapacitors
because nanoporous carbon has a high specific surface area, good capacitance (specific
capacitance of 251 F g−1 in 1 M H2SO4), high stability, and good rate capability [95]. The
Ag–MOF electrochemical performance is shown in Figure 19.
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The electrochemical double-layer capacitance (EDLC) at the enlarged specific surface
area of the materials can be raised by using mixed metal–organic frameworks (M–MOFs).
The conductivity and specific surface area of MOFs can be improved using mixed central
metal ions. The Co/Ni–MOF//CNTs–COOH also exhibited an excellent energy density
(49.5W·h·kg−1) and power density (1450 W·kg−1). In these MOFs, the conductivity was
improved by substituting Ni2+ in the Ni–MOF with Co2+ or Zn2+ by a simple hydrothermal
method [97]. The electrode electrochemical performances of the Zn/Co–MOF-derived
material is shown as in Figure 20.
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densities of (B) NPC and (D) ZnCo2O4. (E) Specific capacitance at different current densities of MOF-
NPC, C@ZnCo2O4, and ZnCo2O4. (F) EIS curves of MOF–NPC, C@ZnCo2O4, and ZnCo2O4 [98].
Reproduced with permission.

Co8–MOF-5 (Zn3.68Co0.32O(BDC)3(DEF)0.75),designated as Co8–MOF-5, was used as
the electrode material, which showed a better performance in energy storage [99]. PANI-
ZIF-67-CC-based MOFs are used in SCs effectively because the bulk electric resistance of
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MOFs becomes reduced and it exhibits an extraordinary areal capacitance of 2146 mF cm–2

at 10 mV s–1, as shown in Figure 21 [100].
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The SC performance of the prepared (PANI)-cobalt-based MOF crystals (ZIF-67)–
carbon cloth (CC) electrode is as shown in Figure 22.
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Figure 22. The SC performance of the prepared (PANI)-cobalt-based MOF crystals (ZIF-67)–carbon
cloth (CC) electrode. (a) Nyquist electrochemical impedance spectra of ZIF-67-CC and PANI-ZIF-
67-CC. (b) Cyclic voltammograms collected of the PANIZIF- 67-CC electrode at a different scan
rate in 3MKCl. (c) Galvanostatic charge/discharge curves of the solid-state SC device at different
current densities. (d) Cycling performance of the solid-state SC device measured at 0.1 mA cm−2 for
2000 cycles [100]. Reproduced with permission.
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The flexible asymmetric supercapacitor was fabricated using Co3O4 as the cathode
and a N-doped carbon as the anode with high robust mechanical flexibility. The 2D MOF
was grown directly on the conductive substrate through thermal treatment using the
“one for two” strategy [101].The electrochemical performance of Na–Zn–MOF/rGO in SC
applications is shown as in Figure 23.
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Figure 23. Typical examples of MOFs with assistance components for supercapacitor. (a) Schematic
diagram of Na–Zn–MOF/rGO. (b) The cyclic voltammograms (CV) collected of Na–Zn–MOF/rGO
electrode. (c) A comparison of the GCD curves of a bare GCE, 1-GCE, 2-GCE, and 3-GCE. (d) Cycling
stability analysis of Na–Zn–MOF/rGO over 4000 cycles (the left and right insets show the first
and last 25 cycles). (e) Schematic of the synthesis procedure for the CNF@MOF hybrid nanofibers.
(f) Calculated areal capacitances of the device at different current densities within 0–0.7 V (blue curve)
and 0–1.0 V (orange curve). (g) The CV curves at scan rate of 100 mV/s under different folding angles.
(h) Cyclic performance and capacitance retention data of the device within 0–0.7 V (blue curve) and
0–1.0 V (orange curve). (i) The schematic illustration of the strategy to synthesize CoNi–MOF/CFP.
(j) CV curves of CoNi–MOF at a scan rate of 5, 10, and 25 mV/s. (k) Galvanostatic curves collected at
a current density of 2, 4, 8, 16, and 32 A/g. (l) The cyclability of the capacitor over 5000 cycles [102].
Reproduced with permission.

The flexible-solid-state asymmetric (FASC) supercapacitor in which the Ni–MOF
nanosheet was used as an electrode material exhibited the capacitances of 1518.8 F g−1

at 1 A g−1 and 244 mF cm−2 at 0.5 mA cm−2, respectively. This supercapacitor showed
excellent electrochemical stability and two LEDs can glow upto 4 min. FASC showed a
long-term cycling performance and high capacitance and it has been seen that its initial
capacitance of upto 97.2% can be retained even after 2000 cycles [103]. The electrochemical
performance of the synthesized flexible-solid-state asymmetric (FASC) supercapacitors of
the Ni–MOF and NME@Ni–MOF electrodes measured in 3.0 M KOH solution is shown in
Figure 24 [104].
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materials in 3M KOH in the frequency range of 100 kHz to 0.01 Hz. The inset is the equivalent circuit
of S@Ni–MOF [104]. Reproduced with permission.

Overall, we concluded that MOFs are very interesting materials in energy storage
applications and the data reported by different research groups are also summarized in
Table 1.

Table 1. Different metal–organic framework in energy storage applications.

MOF Type Current Density/
Scan Rate

Cycle Number/
Electrolyte Capacities Ref

Co3[Co(CN)6]2 20 mA g−1 5 304 (mAh g−1) [65]

MOF-177(Zn) 50 mA g−1 - - [65]

Co–MOF 0.6 A g −1 1 M LiOH 206.76 F g−1 [105]

Zr–MOF4 5 mV s −1 6 M KOH 207 F g−1 [106]

Mo MOF-derived MoO3/rGO 1 A g−1 PVA−H2SO4 617 F g−1 [107]

Ni MOF-derived nanoparticles/graphene 1 A g−1 1MH2SO4 886 F g−1 [108]

Co MOF-derived Co3O4
nano/microsuperstructures 1 A g−1 6 M KOH 208 F g−1 [109]

Mn–MOF 1 A g−1 6 M KOH 443 F g−1 [110]

Ni–MOF 1 A g−1 3 M KOH 1057.2 F g−1 [111]

MIL-101 0.25 A g−1 291 F g−1 [112]

Ni–MOF 10 6 M KOH 244 [113]
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Table 1. Cont.

MOF Type Current Density/Scan
Rate

Cycle
Number/Electrolyte Capacities Ref

Fe-MIL-88B NH2 5 1 M KOH 74 [114]

Porous α-Fe2O3–MOF 50 cycles at a rate of
0.2 C

1.1 M LiPF6in ethylene
carbonate/diethylene

carbonate
424 mAh g–1 [115]

Metal–organic framework-derived
nanoconfinements of CoF2

cyclic stability over
400 cycles.

modified
LiPF6/FEC/EMC

electrolyte
500 mAh g–1 [116]

Fe7S8–C/ZnS–C@MoS2/rGO 5 A g−1 1598.3 mA h g−1 [117]

MOF-derived MnO/C nanocomposites 0.5 A g−1 1 mol L−1 Na2SO4
solution 421 F g−1 [118]

Ni–Co MOFs 0.5 A g−1 KOH electrolyte 172.7 F g−1 [119]

MOF-derived NiCo2S4 and carbon hybrid
hollow spheres 3.8 A g−1

3 M KOH and 0.02 M
Zn(CH3COO)2 aqueous

solution
343.1 mAh g−1 [120]

Ni–MOF–rGO 1|A g−1 272|mA g−1 [121]

Co–CoO@NC/ZIF-9 0.05 mA cm−2 42 cycles (500 mAh g−1) [122]

4. Conclusions

In summary, MOFs are promising precursors of a porous crystalline material, consist-
ing of a metal atom and organic linker to prepare various advanced functional materials
with the desired composition, morphology, structure, and properties. They exhibit a wide
range of applications, especially in the field of energy storage and conversion including
fuels, cells, batteries, and superconductors. In this review, we studied the various tech-
niques for the synthesis of porous crystalline MOFs. Various strategies have been used
by scientists, in the last few decades, for the synthesis of a variety of MOFs by changing
their structural and electronic features. These MOFs in the laboratory can be synthesized
using various methods including hydrothermal bombs, the heating of materials at very
high temperature, and their different types of geometries have been discussed. It has also
been considered that the geometry of MOFs can be controlled by altering the organic and
metal ion ratios. In this way, various types of MOFs can be designed and utilized in various
applications depending upon their properties.

In the second part, we discussed the various properties of MOFs, especially focusing
on their energy storage devices. MOFs, because of their high porosity, high surface area, tun-
able pore size, and hence their structure, show great performance in energy storage devices
including various kinds of batteries, fuel cells, and supercapacitors. They have excellent
choices of tunable organic linkers and metals, which resulted in different nanostructures.
Similarly, the performance of MOFs can be enhanced by the doping of N, O, and P, which
is an effective approach. In addition, mixed transition metal oxides obtained from MOFs
have attracted much attention due to their wide range of applications. Obviously, these
properties can be realized from different MOFs, which lead to their superior performance
because of their controllable shape, size, and structure and purity of the materials.

The new potential applications of MOFs includecatalysis, gas sorption, electrochemical
energy, and sensing applications. The performance can be improved by blending liquid
MOFs with different materials such as glass, etc. and can be used in heterogenous catalysis
chemistry. The stability and scale-up preparation of MOFs is the main challenge in this
area. Additionally, these materials suffer from poor thermal, chemical, and mechanical
stabilities, which might limit their practical applications.
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Abbreviations

MOFs Metal–organic frameworks
SCs Super capacitors
LSBs Lithium–sulfur batteries
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
MIL101 Metal–organic framework-101
NMOF Nanoscale metal–organic frameworks
Cr-BDC Chromium-benzenedicarboxylate
IRMOF Isoreticular metal framework
MTBS Methyltributylammonium methyl sulfate
LAG Liquid assisted grinding
DMF Dimethylformamide
DABCO 1,4-Diazabicyclo[2.2.2]octane
MIL-53, MIL-68, MIL-125, UiO-66, ZIF Metal–organic frameworks
LIBs Lithium-ion batteries
SIBs Sulfur-ion batteries
ZnO Zinc oxide
Li–S/Se Lithium–sulfur/selenium batteries
H–Co–MOF Co-based metal organic framework
EIS spectra Electrochemical impedance spectroscopy spectra
SEI layer Solid electrolyte interface layer
CV Cyclic voltammetry
Ni–MOF Nickel metal–organic frameworks
ZIF-8 2-Methylimidazole zinc salt
ZIF-C Microporous carbon
CPC Cube-shaped porous carbon
CNTs Carbon nanotubes
Sb@PC Antimony embedded porous carbon nanocomposite
3DPC 3D porous carbon
Li–O2 Lithium–oxygen batteries
SCs Super capacitors
EDL Electrochemical double layer
EDLC Electrochemical double-layer capacitance
Co8–MOF-5 Cobalt-based metal organic framework
PANI-ZIF-67-CC Polyaniline–cobalt-based MOF crystals—carbon cloth
LEDs Light emitting diodes
FASC Flexible-solid-state asymmetric supercapacitor
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