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Abstract: Microalgae are multi-purpose microbial agents due to their capability to efficiently sequester
carbon dioxide and produce valuable biomass such as protein and single-cell oils. Formulation
and tuning of microalgae kinetics models can significantly contribute to the successful design and
operation of microalgae reactors. This work aimed to demonstrate the capability of self-organizing
map (SOM) algorithm to elucidate the patterns of parameter rankings in microalgae models subject
to stochastic variations of input forcing functions–bioprocess influent component concentration
levels. These stochastic variations were implemented on a modeled chemostat with a deterministic
microalgae kinetic model consists of ten time-dependent variables and eighteen model parameters.
The methodology consists of two major stages: (1) global sensitivity analysis (GSA) on the importance
of model parameters with stochastic sampling of bioreactor influent component concentrations, and
(2) training of self-organizing maps on the datasets of model parameter rankings derived from the
GSA indices. Results reveal that functional principal components analysis can project at least 99%
of the time-dependent dynamic patterns of the model variables on B-splines basis functions. The
component planes for hexagonal lattice SOMs reveal that the sensitivity rankings some parameters
in the algae model tested can be stable over a wide range of variations in the levels of influent
component concentrations. Therefore, SOM can be used to reveal the trends in multi-dimensional
data arrays arising from the implementation of GSA of kinetic models under stochastic perturbation
of input forcing functions.

Keywords: machine learning; self-organizing map; kinetics modelling; stochastic simulation; microalgae

1. Introduction

Some species of microalgae are multi-purpose microbial agents due to their capability
to efficiently sequester CO2 and produce valuable biomass such as protein and single-cell
oils. Microalgae can sequester CO2 at a rate of maximum of 2.35 GtCO2 can be sequestrated
in 100,000 km2 culture area, accounting for 8.01–5.31% of global CO2 emission reductions in
2020 [1], which is the reason for considering it as potential CO2-to-O2 conversion platform
for future space-based human settlements [2]. The protein and single-cell oils from microal-
gae have been demonstrated as alternative energy source such as biodiesel [3] and food
such as human or animal feed protein supplement [4]. An important consideration for the
successful design and operation of microalgae processing systems is a sound growth kinet-
ics model used for growth analysis and process design [5]. In addition to the mathematical
structure, parameter tuning of microalgae kinetics models can significantly contribute to
the design and operation of microalgae reactors [6].
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With the increasing capabilities in computational tasks in terms of hardware and
software, mathematical models of dynamical systems have been finding important roles
in system analysis. Among these are the kinetic models of microbial processes such
as those of microalgae [7,8]. The literature for modelling microalgae growth still lacks
comprehensive models combining the effects of various factors [8]. The growth dynamics of
microbial systems is commonly modeled as a set of ordinary differential equations (ODEs).
Inherent to these kinetic models and the actual microbial system being modelled are the
effects of forcing functions such as the concentrations of influent components going into
the cultivation space, i.e., bioreactor or bioprocess. These forcing functions have been
empirically shown to be significantly influencing microbial system dynamics [9]. The area
of wastewater treatment for example has seen a surge of various kinetic models depending
on the type of feed wastewater [10,11]. Consequently, these observations warrant the
investigation on the implications of variations of influent components concentrations on
the dynamics of a microbial system being cultivated in a bioreactor or bioprocess. In
modelling terms, the effects of various factors and processes in microbial dynamics are
captured through the model parameters. This work aimed that demonstrating that the
rankings of parameter sensitivities in microbial kinetics can be simply mapped out through
the machine learning algorithm of self-organizing map (SOM). This mapping of parameter
sensitivity rankings shall aid in revealing whether or not such parameter rankings can
be stable across a wide range of variations in the concentrations of influent components
into a continuously operated microbial bioprocess. Among many variables that have been
accounted in microbial kinetic models, the component concentrations in the liquid-phase
were selected because they are the common variables in fundamental model components,
e.g., power law form that is fundamental in reaction kinetics starts with concentration
variables main factors [9].

The importance of model parameters in affecting the simulated dynamics of a mi-
crobial kinetics can be computationally evaluated using global sensitivity analysis (GSA)
techniques. Among the many GSA techniques, the Morris screening technique has been
shown to be computationally effective due to minimal number of simulations needed
to the calculate the sensitivity indices [12]. An improvement in implementing Morris
GSA on microbial kinetics is the integration of functional principal component analysis
(fPCA) of the time-series datasets of the response variables [13,14]. In this GSA-fPCA
methodology [15], the fPCA projects the time-series datasets onto basis functions, e.g.,
B-splines, Fourier Series, and this projection allows for the calculation of basis function
coefficients, which consequently reflect the dynamics of the model response variables. An
efficient projection onto basis function coefficients, which are also called scores, provides
a holistic measure of the elementary effects of perturbing the model parameters in the
Morris GSA. The aggregated GSA indices can then be used to rank the model parameters
for various purposes including model calibration and model simplification.

Computationally evaluating the effects of variations of influent components concentra-
tions on the dynamics of a microbial system poses a challenge of dimensionality. That is, the
random samples of the influent component concentrations and the calculated GSA indices
at each simulation stance all combined together produces an array of data that cannot be
simply evaluated on an apparent 2D or 3D space. One technique that is very effective in
elucidating patterns in high-dimensional datasets is the machine learning technique of
SOM [16,17]. Since its invention, SOM has been applied to various fields and problems [18],
e.g., economic stability analysis, social interactions, fault diagnosis, adaptive authentication
systems, facial emotions quantitation, fall detection in smart phones, and atmospheric
sciences. A survey of the literature done for this work found that SOM has not been
implemented as a computational tool to reveal the patterns of model parameter sensitivities
in microbial kinetics. Hence, this work should provide an expanded area of application of
the SOM algorithm. Further, this demonstration should lay down a numerical technique to
comprehensively evaluate sensitivities of parameters in microbial kinetic models.
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2. Methodology

The methodology consists of two major stages: (1) global sensitivity analysis (GSA)
on the importance of model parameters while perturbing the levels of bioreactor influent
component concentrations, and (2) training of self-organizing maps on the datasets of
model parameter rankings derived from the GSA indices. A graphical summary of the
methodology is shown in Figure 1.
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Figure 1. Overview of the computational methodology implemented: (a) global sensitivity analysis
(GSA) for model parameter sensitivity levels at randomly varied bioreactor influent component
concentration levels; (b) training of self-organizing map (SOM) configured as rectangular sheet of
neurons arranged as hexagonal lattice.

2.1. Algae Model Parameter Sensitivity Analysis

The first stage of GSA-fPCA is based on previous works of performing GSA on mi-
crobial kinetic models such as anaerobic digestion [14], and aerobic activated sludge [13].
The unique feature of the GSA-fPCA in this work is the integration of stochastic sampling
of influent component concentrations (Figure 1a) through Morris technique [12] to gen-
erate simulated variations in the influent to the algae reactor. This stochastic sampling
step represents the randomness of influent concentrations. The microalgae model used
in this work was based on the kinetic model formulated by Solimeno, Samsó [5]. See
Supplementary Materials for the detailed equations of the model used. A chemostat was
assumed for algae cultivation: inflow and outflow liquid rates = 75-L/day, liquid-phase
volume = 450-L, gas-phase volume = 60-L, solids retention time (SRT) = hydraulic retention
time (HRT) = 6 days [7,19]. The algae CSTR influent component concentrations were ran-
domly generated via Morris sampling technique from a sampling set with set upper-bounds
and lower-bounds based on typical empirical values (see Table 1). There are 10 model
response variables, and the Morris technique sampled ry

[
ky + 1

]
= 220 combinations of the

influent component concentration levels, where ky = 10 is the number of model response
variables, and ry = 20 is the number of randomly sampled level increments in each variable.
The algae model parameters evaluated in the sensitivity analysis step are summarized in
Table 2, in which the sampling bounds for the model parameters are ±30% of the nominal
values reported by Solimeno, Samsó [5]. Note that the actual temperature of the algae
system, Tact, and the irradiance intensity, Iirrad, were treated as parameters in the context
of GSA even though these can be system variables particularly when an algae cultivation
process is exposed to the external environment with weather and seasonal variations [7].
This is a simplification of the computational analysis, but these may also be practically
realized when the algae system is operated in enclosed controlled setup. The differential
equations and the associated variable and parameter definitions for the algae model used
in this work are summarized in the electronic Supplementary Document for this work (see
Supplementary Materials section). The kinetic model integrated within the GSA-fPCA
computational steps was coded in the programming language R-statistical software (see
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Supplementary Materials section to download the R-script). The magnitude of the sen-
sitivity index µ∗ in the Morris GSA technique indicates the relative influence of a model
parameter on a model response variable [12] (see Appendix A for the equations involved
in calculating µ∗). Hence, a ranking of µ∗ levels for a set of model parameters under GSA
indicates the order of importance of the parameters in uncertainty analysis and model
parameter calibration [13,14]. The interaction effect of a model parameter can be measured
using the interaction index σ in the Morris GSA. High levels of σ means the parameter
sensitivity is highly confounded by other model parameters. The formula for both µ∗ and
σ are shown in the Appendix A section as Equations (A4) and (A5), respectively.

Table 1. Sampling bounds for the algae CSTR influent component concentrations used in the model
simulations for GSA-fPCA.

Variable Definition Symbol Units Lower Bound Upper Bound

Ammonium nitrogen SNH4 g-NH4
+-N/m3 1× 10−9 15

Ammonia nitrogen SNH3 g-NH3-N/m3 1× 10−9 6

Nitrate nitrogen SNO3 g-NO3
−-N/m3 1× 10−9 90

Dissolved oxygen SO2 g-O2/m3 1× 10−9 10

Dissolved carbon dioxide SCO2 g-CO2-C/m3 1× 10−9 8

Bicarbonate SHCO3− g-HCO3
−-C/m3 1× 10−9 200

Carbonate SCO32− g-CO3
2−-C/m3 1× 10−9 12

Hydrogen ions SH g-H/m3 1× 10−9 5× 10−5

Hydroxide ions SOH g-OH−-H/m3 1× 10−9 2× 10−2

Microalgae biomass Xalgae g-COD/m3 1× 10−9 200

Table 2. Algae model parameters and the sampling bounds for the GSA-fPCA sensitivity
index calculations.

Parameter Definition Symbol Units Nominal − 30% Nominal Nominal + 30%
Microalgae Processes

Maximum growth rate of
microalgae µalg d−1 1.36 1.6 1.84

Endogenous respiration
constant kresp d−1 0.085 0.1 0.115

Inactivation constant kdeath d−1 0.085 0.1 0.115

Affinity constant of microalgae
on carbon species KC gC m−3 0.003672 0.00432 0.004968

CO2 inhibition constant of
microalgae ICO2 gC m−3 102 120 138

Affinity constant of microalgae
on nitrogen species KN gN m−3 0.085 0.1 0.115

Affinity constant of microalgae
on dissolved oxygen KO2 gO2 m−3 0.17 0.2 0.23
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Table 2. Cont.

Parameter Definition Symbol Units Nominal − 30% Nominal Nominal + 30%
Photosynthetic Thermal Factor

Optimum temperature for
microalgae growth Topt

◦C 21.25 25 28.75

Actual temperature for
microalgae growth Tact

◦C 20 varies 40

Normalized parameter s — 11.05 13 14.95
Light Factor

Parameter activation α (µE m−2)−1 0.00164475 0.001935 0.00222525

Parameter inhibition β (µE m−2)−1 4.917× 10−7 5.785× 10−7 6.652× 10−7

Parameter production γ s−1 0.1241 0.1460 0.1679

Parameter recovery δ s−1 0.00040766 0.0004796 0.00055154

Light Intensity Iirrad (µE m−2)−1 170 200 230
Transfer of Gases to the Atmosphere

Mass transfer coefficient for
oxygen Ka,O2 d−1 3.4 4 4.6

Mass transfer coefficient for
dioxide carbon Ka,CO2 d−1 0.595 0.7 0.805

Mass transfer coefficient for
ammonia Ka,NH3 d−1 0.595 0.7 0.805

Note: The parameter definitions and their corresponding nominal levels are based on the work of Solimeno,
Samsó [5].

2.2. SOM Training on Parameter Sensitivity Index and Ranking

After all model simulations and parameter sensitivity index calculations were com-
pleted, the generated datasets were used to train SOM (Figure 1b). The datasets were
of two matrices (1) the randomly sampled 10 variables for the influent component con-
centrations together with the µ∗ of PC1 of the SO2 variable on the 18 model parameters;
(2) the randomly sampled 10 variables for the influent component concentrations together
with the ranking of the 18 model parameters based on the µ∗ of PC1 of the SO2 variable.
The structure of SOM can be varied and there are no current established rules to guide the
specification of the map architecture. Nonetheless, results of some works that implemented
SOM provide basis of map design. It was shown that the patterns elucidated by rectangular
SOMs may not be so different from those of cylindrical SOMs [20]. Hence, this study uses
rectangular SOM. The number of neurons or size of a SOM may be estimated using this
proposed formula: 5

√
S [21], where n is the number of variables used for SOM training,

i.e., E1,. . . , En, and S is the number of samples, which is equal to the number of simulation
runs generated during the Morris sampling of the influent component concentration levels.
Hence, n = 28, S = 220, and 5

√
S× n = 393 number of neurons. Another component of a

rectangular SOM architecture is the ratio of length to width, which also does not have a set
rule, but it is suggested that the map should not be a square map for proper orientation
and stabilization of the learning process [17]. So, a SOM length of 40 neurons and width of
10 neurons was used, i.e., a total of 40× 10 = 400 neurons. Lastly, the arrangement of the
neurons on the map is commonly specified as hexagonal lattice structure because it does
not favor horizontal and vertical directions [17]. All SOM calculations were implemented
through MATLAB (MathWorks®) using the public-domain add-in SOM Toolbox version
2.0 [17,21,22] (see Supplementary Materials section for the accompanying program code).
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3. Results
3.1. Effectiveness of GSA-fPCA in Calculating the Sensitivity Indices for Model
Parameters Ranking

The performance of the GSA-fPCA methodology in calculating for the Morris sensi-
tivity indices must be evaluated prior to the use of the indices for SOM. Figure 2a shows
the percentages of model response variabilities captured by the first three PCs. It can be
seen that the PC1 captures at least 99% of the time-series response dynamics across all the
model variables. PC2 and PC3 captures the remaining small percentages, i.e., less than 1%
(Figure 2a). This indicates that the associated scores of PC1 in all the model variables are good
representations of the dynamics relative to the mean curve of the time-series dataset of each
variable. Hence, the scores solely of PC1 are sufficient in calculating representative values of
the GSA indices for each model parameter. Relatively high values of Morris index µ∗ of a
model parameter mean high sensitivity of a model variable to that particular parameter. The
ranking of the model parameters based on µ∗ of PC1 basis function are shown in Figure 2b
with rank 1 having the highest value of µ∗ and rank 18 having the lowest. The pattern of
these rankings indicate that the relative importance of the model parameters are almost
consistently maintained across the model response variables. Few parameters can switch
sensitivity levels drastically from one response variable to another such as KN , KaO2, KaCO2,
and KaNH3. On the other hand, model variables are consistently very sensitive to Tact, µalg,
and Topt. The temperature Tact was found to be significantly influencing the growth of
microalgae [7,23]. With the significant effect of temperature, various model forms have been
evaluated to better capture its dynamics with microalgae growth [8].

An aspect parameter sensitivity that must also be considered is the interaction effect
of the parameters. If parameter interaction is high, then the confounding effect of sensi-
tivity is also high. Figure 2c shows the levels of the Morris GSA parameter interaction
index σ. It can be seen that some parameters have dominantly high interaction levels
when sensitivity is evaluated against certain state variables. For example, parameter KO2
has high interaction levels when the sensitivity of state variables SCO2, SCO3, SH, SHCO3
and SNH3 are evaluated. Model parameter Topt has a dominant high level of interaction
when the sensitivity of state variables SHCO3, SNH4, SNO3, SO2, and Xalg are evaluated.
Model parameter Tact has a dominant high level of interaction when the sensitivity of all
state variables are evaluated. The parameter µalg also has high interaction levels when
the sensitivity of state variables SHCO3, SNH3, SNH4, SNO3, SO2, and Xalg are evaluated.
The other model parameters have low to moderate interaction index level; hence, these
are the parameters that have low confounding effect in terms of the sensitivity of the
state variables.

3.2. SOM Component Plane Projection of the Morris Sensitivity Index and Parameter Ranks

The model response variable SO2 was selected for the demonstration of implementing
SOM to elucidate patterns on the sensitivity indices and model parameter ranks. From
the trained SOM, the useful analysis tools are the component planes, which show the
mapping the various attributes. These mappings make the comparison of the variable
patterns visually comprehensible. Figure 3 shows the component planes for the Morris
sensitivity index µ∗ from PC1 of the SO2 variable together with the randomly varied levels
of the influent component concentrations. Figure 4 shows the component planes of model
parameter ranks derived from the Morris sensitivity index µ∗ from PC1 of the SO2 variable
together with the randomly varied levels of the influent component concentrations. These
graphical results suggest that some model parameters maintain dominant influence on
the model response while some parameters have wide ranges of ranking levels. The
parameters that have stable ranking level(s) are Tact at rank 1, µalg at ranks 2 and 3,
Topt at ranks 2 and 3, δ at ranks 10 and 11, Iirrad at rank 12, KO2 at rank 13, and KC at
rank 18 (Figure 4).
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The model parameters that have wide ranges of ranking levels are s at ranks 4 to 8,
α at ranks 4 to 9, KaO2 at ranks 4 to 9, γ at ranks 4 to 9, kdeath at ranks 6 to 10, kresp at
ranks 6 to 9, β at ranks 9 to 11, KN at ranks 14 to 16, KaCO2 at ranks 14 to 16, KaNH3 at ranks
15 to 17, and ICO2 at ranks 15 to 17 (Figure 4).

4. Discussion

Inherent to the use of time-dependent dynamical models such as microbial kinetic
models are the problems on parameter calibration and model simplification [24]. A key step
in solving both problems involves determination of the sensitivities of model parameters. In
complex model forms such as the one used in this work [5], numerical procedures become
necessary to perform GSA that estimates the parameter sensitivities. Model simplification
for microbial systems has been gaining interest due to the need to compromise between
model applications such as control theory, and availability or capability to collect empirical
data for model calibration. Several computational techniques for GSA have already been
successfully demonstrated in various GSA problems. Recent studies started focusing on
the integration of these GSA techniques in systematic approaches for model calibration and
validation [24]. Based on literature survey, this study is the first attempt to show a compre-
hensive approach to perform GSA on time-dependent microbial kinetic models subject to
stochastic variations in the influent component concentrations, and this is accomplished
through the integration of SOM for mapping of the sensitivity indices.

Unlike the works in anaerobic and aerobic wastewater treatment models [10,13,14],
GSA for model simplification of microalgae models has not yet received much attention
even though their structures are similar to the former. The parameter sensitivity patterns
by SOMs in Figures 3 and 4 warrant emphasis on some model parameters. Temperature
effects such as the actual reactor temperature Tact (rank 1) and the nominal optimum tem-
perature Topt (rank 2,3) that are both highly sensitive parameters (Figure 4) are known to
have significant effects on microalgae dynamics [8]. It must be reiterated that temperature
is mostly modeled as a system variable, and its strength of influence on microalgae dy-
namics were found next to dissolved nutrients [8,23]. These results confirm the findings
of previous works that measured and modeled the effects of temperature on microal-
gae growth [23,25]. Even though its sensitivity was ranked average, light intensity Iirrad
(rank 12 in Figure 4) was found by previous works as a significant factor [23] next to
temperature and dissolved nutrients. Light intensity has been commonly studied while
the effect of light wavelength has only few published works [8]. There are debates on
whether Iirrad should be mathematically coupled with Tact as their interdependency was
found significant in some instances [25]. It has been suggested, however, that Tact and
Iirrad should be uncoupled to eliminate complexities in the mathematics that may lead
to overfitting [25]. The model by Solimeno, Samsó [5] used in this work maintains this
uncoupling approach; hence the multiplication of the functions separately containing Tact
and Iirrad (see Supplementary Materials). The maximum growth rate of microalgae µalg
(rank 2,3) appears in several rate expressions defining various processes. Its high rank-
ing manifests the importance of this fundamental step in the microalgae dynamics [8].
Moreover, four groups of parameter ranking patterns may be deduced from the results
of computational analysis (Figures 3 and 4): (1) high and stable rank order, (2) high and
unstable rank order, (3) low and stable rank order, and (4) low and unstable rank order. The
grouping of parameters based on sensitivity ranking warrants the question of the cut-off
criteria between groups. Such establishment of criteria are of significant value and being
suggested for future works.

Several variables influence the dynamics of microalgae cultivation–influent compo-
nent concentrations are just few variables that must be considered for process simulation,
design, and operation [7]. The intent of this work is to lay down a base protocol for the
computational analysis of model parameter sensitivities to these potential variable fluctu-
ations of various forcing functions. Other variables that have been accounted in existing
microalgae models are microalgae species, salinity, reactor geometry, geographic location,
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and weather data [7,8]. Accounting for potential effects of the variables in these aspects
during GSA for model parameter analysis will result to large arrays of data. An analysis of
parameter sensitivities in such multi-dimensional arrays may be efficiently accomplished
through the implementation of SOM as demonstrated in this work.

5. Conclusions

The findings in this work reveal that the ranks of some model parameters in the
algae model tested can be stable over a wide range of variations in the levels of influent
component concentrations. This implies that the strengths of the mechanisms being mod-
eled through these model parameters may not significantly vary with variations in the
influent variations. Therefore, SOM can be used to reveal the trends in multi-dimensional
data arrays arising from the implementation of GSA of kinetic models under stochastic
perturbation of input forcing functions. A future perspective based on the results of this
work is the evaluation of the potential benefits of the proposed protocol to variables other
than the influent component concentration levels.

6. Recommendations

Future implementations of this method should consider algal models that incorporate
as state variable the phosphate (P) concentration in a limited supply so the effects of P
variations can be modeled. The model used in this work, which is the model developed
by Solimeno, Samsó [5], assumed that P is at an abundant supply, hence, as not a limiting
nutrient and not modeled as a state variable. Based on the literature of algae dynamics,
the P concentration can be critical to algal growth. Finally, some of the model parameters
such as Topt may be specified if the species of microalgae is known, hence eliminating these
specified parameters from the sensitivity analysis.
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Appendix A

(i) Algae model solution form:

y(t) = F(u, P, t) (A1)

where y(t) are the N time (t)-dependent response curves, u are external model inputs such
as influent component concentrations, P is the k parameters vector, i.e., P = (p1, p2, . . . , pk),
and F is the solution to the system of differential and algebraic equations that are highly
nonlinear in terms of P.

(ii) Projection of model variable yi(t) onto 1. . . q basis functions ξ(t):

yi(t) ≈ ∑
q
j=1 ωijξ j(t); f or i = 1, . . . , N

ξ(t) ≡
[
ξ1(t), ξ2(t), . . . , ξq(t)

] (A2)

(iii) Calculation of Morris sensitivity index µ∗ using basis function scores ωij’s:

EEd, ij(P
∗) =

[
ωij(p1, . . . , pd−1, pd + ∆, pd+1, . . . , pk∗)−ωij(P∗)

]
∆

(
σpd

σω

)
(A3)

µ∗ =
∑r

∣∣∣EEd, ij

∣∣∣
r

(A4)

The parameter interaction index σ indicates high model parameter interaction at
high levels:

σ =

√
1
r ∑r

(
EEd, ij − µ∗

)2
(A5)
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