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Abstract: Carbon dioxide (CO2) adsorption on decorated graphene (GR) sheets with transition metals
(TMs) including iron, nickel and zinc was investigated for removing this hazardous gas from the
environment. TM-doped GR results in higher activity toward gas detecting than pristine graphene
nanosheets. TM embedding restrains hydrogen evolution on the C sites, leaving more available sites
for a CO2 decrease. The Langmuir adsorption model with ONIOM using CAM-B3LYP functional and
LANL2DZ and 6-31+G (d,p) basis sets due to Gaussian 16 revision C.01 program on the complexes
of CO2→(Fe, Ni, Zn) embedded on the GR was accomplished. The changes of charge density
illustrated a more considerable charge transfer for Zn-embedded GR. The thermodynamic results
from IR spectroscopy indicated that ∆Go

ads,CO2→Zn@C−GR has the notable gap of Gibbs free energy
adsorption with a dipole moment which defines the alterations between the Gibbs free energy of the
initial compounds (∆Go

CO2 and ∆Go
Zn@C−GR) and product compound (∆Go

CO2→Zn@C−GR) through
polarizability. Frontier molecular orbital and band energy gaps accompanying some chemical
reactivity parameters represented the behavior of molecular electrical transport of the (Fe, Ni, Zn)
embedding of GR for the adsorption of CO2 gas molecules. Our results have provided a favorable
understanding of the interaction between TM-embedded graphene nanosheets and CO2.

Keywords: graphene nanosheet; gas sensor; CO2; (Fe, Ni, Zn); environmental pollutant; Langmuir
adsorption; DFT

1. Introduction

The surface of carbon nanostructures is a privileged factor for gas detecting and
adsorbing gas devices [1–6].

In addition, enough implanting of the compounds with transition metals might en-
hance their adsorbing ability and adjust their adsorbing selectivity as the excellent dopant
applicants [7–14].

Jayaprakash and coworkers in 2016 have investigated the effect of deficiency on
selectivity of nano pristine graphene [15]. They accomplished the DFT method to depict the
redox reactivity of pristine and defected graphene surfaces accompanying the rearranging
of Stone–Wales and double vacancy deficiencies in their model, which have indicated
changes in the bond length of carbon–carbon in the graphene nanosheet [15].

In addition, the outreach of a ReaxFF reactive potential has been studied, which is able
to explain the chemistry and dynamics of C-condensed phases using the density functional
theory method for achieving the equation of state for graphite and the formation energies
of defects in graphene [16]. These calculations were applied to rearrange the parameters of
ReaxFFCHO towards a new potential surface as ReaxFFC-2013 based on the DFT method
for Stone–Wales transformations in carbon structures [16].

Sensing and grabbing toxic and harmful gases like CO, CO2, NO, N2O, CH4, SO2 and
H2S can largely help maintain human health and the ecosystem [17–20].
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There are different usages of carbon nanocompounds, such as the adsorbing of hydro-
gen, hazardous compounds, gas and designing the sensor instruments [21–26].

Recently, many materials including carbon structures have been designed and applied
for the adsorptive removal of environmental pollutant gases [27–29]. Thus, it is essential to
make high-implement gas detectors for distinguishing these compounds [30,31].

Thus, this research wants to investigate the adsorption of hazardous gases of CO2 on
the carbon nanographene which has been decorated by transition metals of iron, nickel, zinc,
manganese, cobalt, and copper, respectively, using a DFT (density functional theory) approach
to discover the adsorbing parameters of the various TM-embedded nanographene surfaces.

2. Materials and Methods
2.1. Adsorptive Removal of Toxic Gases

This article brings up the adsorbing of CO2 onto transition-metals-embedded carbon
nanographene. This part defines the first process of bond formation arising during CO2
chemisorption and runs over the consequences gained for adsorbing of CO2 onto the (Fe,
Ni, Zn) embedding of carbon nanographene. The resulted data from transition-metal-
embedded graphene surface is measured for two toxic gases. Bonding of the CO2 gas
molecules to a TM atom on the GR surface can be observed, as first launched by the giving
of the lone pair on the C-atom to the unoccupied d orbitals of the TM atom. The donor
potency of CO2 in this procedure is recognized as being much smaller, and the stability of
the TM-C bond is confirmed to be captured by the back donation of electrons from occupied
d orbitals on the metal into unoccupied antibonding π* orbitals on the CO2 gas molecules.
It is assumed that the two steps, donation and back donation, intend to augment each other
in a cooperative state.

2.2. Langmuir Adsorption Model and Charge Density Analysis

Langmuir adsorbing can be defined through a physical and chemical interaction on
the area of the resembling solid state that adsorbs compounds without any interactions
with each other, making a mono layer of particles on the solid-state surface.

The Langmuir adsorption equation is the following [32]:

θA =
V

Vm
=

KA
eq pA

1 + KA
eq pA

(1)

where θA is the fractional occupancy of the adsorbing sites; the ratio of V, the volume
of adsorbed gas onto the solid, to Vm, the volume of a monolayer gas particles coating
the entire of the solid surface and totally filled by the adsorbate particle; KA

eq is the equi-
librium constant and pA is the adsorbate’s partial pressure. A continuing monolayer of
adsorbate particles coating a resembling solid surface is the basic concept for this adsorbing
system [33–37].

Different studies have concentrated on the gas-adsorbing susceptibilities of
C-nanosurfaces which denote a good accord with the Langmuir adsorbing template. The ad-
sorption of toxic NO gas on the Mn-embedded, Co-embedded and Cu-embedded graphene
nanosheets has been approved by the most appropriate Langmuir isotherm, which in-
dicates the nature of chemisorption for the bond distance between :

..
O = C =

..
O and

:
..
O : − N . =

..
O : molecules and TM-embedded C-nanographene, the equilibrium electron

diffusion of the adsorbed particles between the solid and gas phases, and a monolayer
feature. The gas molecules of :

..
O = C =

..
O and :

..
O : − N . =

..
O : are kept on TM-embedded

C-nanographene with Langmuir chemisorption (Scheme 1).
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Table 1. Calculated NMR chemical shielding tensors and Mullikan charge (Q) for some atoms in 
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Scheme 1. IR spectra of :
..
O = C =

..
O molecules which adsorb on transition metal (TM) embedding

of C-nanographene.

In fact, the mechanism of the gas-sensing phenomenon in the (Fe, Ni, Zn) embed-
ding of C-nanographene would be due to charge transfer between the surface and CO2
molecules adsorbed. The changes of charge density analysis in the adsorption process have
illustrated that Fe-embedded, Ni-embedded and Zn-embedded C-nanographene show
the Mulliken charge of −1.345, −2.087 and −1.416, respectively, before the adsorption of
carbon dioxide, and −1.898, −1.763 and −3.221, respectively, after the adsorption of carbon
dioxide (Figure 1 and Table 1).
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Table 1. Calculated NMR chemical shielding tensors and Mullikan charge (Q) for some atoms in the
active site of CO2 gas adsorption on the (Fe, Ni, Zn)-embedded C-nanographene.

CO2→Fe @C- GR CO2→Ni@C- GR CO2→Zn@C- GR

Atom σiso σaniso Q Atom σiso σaniso Q Atom σiso σaniso Q

C1 148.52 196.31 0.5999 C1 178.24 145.52 0.5848 C1 123.10 234.73 1.1957
O2 321.65 183.04 −0.2528 O2 398.64 64.18 −0.2501 O2 295.29 190.97 −0.6366
C8 100.76 347.30 −0.4878 C8 296.58 574.94 −0.4852 C8 273.90 3225.40 −0.8329
C10 237.59 173.64 −0.1115 C10 41.45 461.74 −0.0808 C10 292.83 1382.14 −0.3038
C14 240.60 485.27 0.0250 C14 68.33 371.25 0.0338 C14 463.91 927.12 0.0904
C15 237.40 341.12 −0.5742 C15 94.84 252.27 −0.5501 C15 534.07 1981.05 −0.9951
C16 183.26 383.67 −0.5461 C16 25.48 160.68 −0.6144 C16 1163.51 3304.01 −0.9772

Fe 17 21,368.96 19,790.99 1.8981 Ni17 7265.00 43,068.15 1.7629 Zn 17 1374.46 528.33 3.2211
C18 40.19 130.77 −0.0049 C18 304.39 798.78 0.0153 C18 233.95 593.95 −0.2791
C19 739.86 1981.10 −0.0750 C19 1620.91 4749.68 −0.0591 C19 5571.71 12,698.28 0.1942
C23 93.25 179.03 −0.0816 C23 68.71 216.09 −0.0767 C23 127.04 228.84 −0.2287
C25 267.56 385.81 0.0005 C25 130.48 138.07 0.0295 C25 630.19 1178.08 0.0828
O33 284.15 153.28 −0.1321 O33 343.76 111.69 −0.1407 O33 293.15 160.22 −0.4784

The chemical shielding (CS) tensors in principal axes system evaluate the isotropic
chemical shielding (σiso), anisotropic chemical shielding (σaniso) [38]: σiso = σ11+ σ22+ σ33

3 ,
σaniso = −σ11+ σ22

2 + σ33.
Therefore, the changes of charge density for the Langmuir adsorption of carbon

dioxide on Fe-embedded, Ni-embedded, and Zn-embedded C-nanographene alternatively
are | ∆Q Zn-doped | = −1.805 >>| ∆Q Fe-doped | = −0.553 >>>| ∆Q Ni-doped | = +0.324
(Figure 1 and Table 1). The values of the changes of charge density have illustrated a more
significant charge transfer for Zn-embedded C-nanographene.

2.3. ONIOM Model

Our own n-layered Integrated molecular Orbital and Molecular mechanics, or ONIOM,
merges three theoretical levels that are combined for reducing the sequence of validity as
the high, medium and low degrees of theory. In this model, a high-degree level has been
performed using the density functional theory insight of the CAM-B3LYP functional, which
merges the hybrid qualities of B3LYP and the correction of long-range term [39] with a
6-31+G (d,p) basis set [40] for some carbon atoms in nanographene and oxygen atoms in the
adsorption zone, and an EPR-III basis set for nitrogen and LANL2DZ for some iron, nickel,
zinc, manganese, cobalt and copper atoms through adsorbing CO2 in the adsorption zone.
A medium-degree level has been considered on the other carbon atoms of nanographene
in the adsorption zone owing to semi-empirical methodologies. At last, a low-degree
level has been depicted on the other iron, nickel, zinc, manganese, cobalt and copper
atoms through adsorption of CO2 with MM2 force fields of molecular mechanic methods
EONIOM = EHigh + EMedium + ELow, (Scheme 2) [41].

In other words, the three-degree model of ONIOM leads to exploring a ground order
more precisely than the one-degree model, which might treat a medium-sized order exactly
as a huge order with admissible validity [42].

In this article, the structures have been computed using CAM-DFT method on the
mechanisms of adsorption of CO2 by the (Fe, Ni, Zn) embedding of C-nanographene
through bonding between transition metals and gas molecules. It has been discovered that
the surface binding zone preference of O-atoms of CO2 in an adsorption zone are greatly
influenced by the existence of neighboring atoms in the C-nanographene. The calculated
pair distribution functions in the CO2→Fe/Ni/Zn embedding of C- GR has depicted that
the creation of complexes leads to shorter bond lengths of O→Fe (1.90 Å), O→Ni (1.88 Å)
and O→Zn (1.98 Å), once balanced to the analogous increment. Furthermore, the graphene
sheet has been optimized and the C–C bond length in GR has been calculated at about
1.42 Å, which has the appropriate accord with the experimental amount (Scheme 2) [43].
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After the doping of TM on the graphene sheet, the bond length of Fe–C was 2.29 Å, O→Ni,
2.01 Å and Zn-C, 2.33 Å, which was larger than corresponding bond length of the TM–TM
atom in the mass.
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Scheme 2. Langmuir adsorbing of CO2 as the toxic gas pollutant onto (Fe, Ni, Zn) embedding of
C-nanographene graphene on optimized structure due to three-degree layered of high, medium and
low levels of ONIOM model.

The transition-metal-embedded graphene sheet has been made by a hard system and
Z-Matrix format of which a blank line has been positioned. The hard potential energy
surface has been exposed at a CAM-B3LYP functional [44,45], and concerns LANL2DZ/
6-31+ G (d,p) basis sets to appoint frontier molecular orbital, Mulliken charges, nuclear
magnetic resonance properties, dipole moment, thermodynamic characteristics and other
quantum attributes [46]. In this research, CO2 molecules have been adsorbed onto TM-
embedded C-nanographene toward the formation of CO2→Fe/Ni/Zn embedding of C- GR
sheets using Gaussian 16 revision C.01 software [47]. This software is applied for molecular
designing, causing automated scientific sequences to simplify more fast and extensive
quantum chemistry computations [47].

3. Results

Based on the computational results, transition metals of manganese, iron, cobalt,
nickel, copper and zinc embedded on the nanographene have been investigated as efficient
surfaces for the adsorption toxic gas of carbon dioxide (CO2) causing air pollution. These
experiments have been accomplished using spectroscopy analysis through some physico-
chemical attributes.

3.1. NMR Spectra

The analysis of altering in magnetic properties of surfaces upon interaction with
gases can be an appropriate route for detecting the gases [48–50]. In fact, the application
of magnetic attributes can be replaced with electrical parameters changes owing to the
interaction between graphene nanosheet and CO2 molecules.
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Concerning nuclear magnetic resonance spectroscopy, parameters of isotropic (σiso)
and anisotropy (σaniso) shielding tensors of NMR spectroscopy for certain atoms in the ac-
tive site of CO2 adsorption on the (Fe, Ni, Zn)-embedded carbon nanographene, through the
creation of the binding between gas molecules and the solid surface, have been evaluated
using Gaussian 16 revision C.01 software [47] and represented in Table 1.

The fluctuation of the magnetic properties of a GR nanosheet doped with transition
metals persuades a frequency shielding in the magnetostatic surface wave oscillator that
can be ascribable in the existence of various gases.

Considering Table 1, the degeneracy of NMR graphs via chemical shielding (ppm) for
CO2 adsorption on the (Fe, Ni, Zn)-embedded carbon nanographene has been depicted.
The data of NMR spectroscopy in Table 1 shows approximately the identical chemical
shielding behavior of isotropic and anisotropy parameters for CO2 → Fe @C- GR and
CO2 → Ni @C- GR embedding on the surface of nanographene, respectively.

Therefore, following the changes of magnetic attributes of the graphene sheet doped
with transition metals after CO2 adsorption, the TM-doped GR surface can be applied as
an appropriately selective magnetic gas sensor CO2 detector.

3.2. Natural Bond Orbital (NBO) Analysis

Natural bond orbital (NBO) analysis has been employed to investigate the intermolecular
and intra-molecular interactions [51] occurring from chemical bonds in the discussed model.

Therefore, NBO analysis of the CO2 adsorbed on the (Fe, Ni, Zn)-embedded carbon
nanographene has illustrated the character of electronic conjugation between bonds in the
gas molecules and TM-doped C- GR (Table 2 and Figure 2).

Table 2. NBO analysis for adsorbing CO2 on the (Fe, Ni, Zn)@C- GR and (Mn, Co, Cu)@C- GR, respectively.

NO→TM-Embedded/Gr Nanosheet Bond Orbital Occupancy Hybrids

:
..
O = C =

..
O :→Fe @C- GR

BD (1) C1–O2 1.9895 0.6388 (sp1.03) C + 0.7694 (sp3.01) O
BD (1) C1–O3 1.9975 0.6503 (sp0.97) C + 0.7597 (sp2.93) O

BD (1) C8–Fe17 1.9573 0.8077 (sp1.70) C + 0.5895 (sp0.31 d3.23) Fe
BD (1) C15–Fe17 1.9528 0.8178 (sp1.40) C + 0.5756 (sp0.36 d3.29) Fe
BD (1) C16–Fe17 1.9613 0.8196 (sp1.46) C + 0.5730 (sp0.4 d4.24) Fe

:
..
O = C =

..
O :→Ni @C- GR

BD (1) C1–O2 1.9894 0.6430 (sp1.02) C + 0.7659 (sp3.25) O
BD (1) C1–O3 1.9974 0.6498 (sp0.98) C + 0.7601 (sp2.91) O

BD (1) C8–Ni17 1.9682 0.8015 (sp1.58) C + 0.5980 (sp0.34 d1.91) Ni
BD (1) C15–Ni17 1.9682 0.8098 (sp1.38) C + 0.5868 (sp0.38 d2.13) Ni
BD (1) C16–Ni17 1.9745 0.8219 (sp1.44) C + 0.5697 (sp0.67 d4.65) Ni

:
..
O = C =

..
O :→Zn @C- GR

BD (1) C1–O2 1.9948 0.5712 (sp0.99) C + 0.8208 (sp1.51) O
BD (1) C1–O3 1.9979 0.5802 (sp1.02) C + 0.8145 (sp1.50) O

BD (1) C8–Zn17 1.9643 0.6481 (sp1.39) C + 0.7616 (sp0.37 d2.47) Zn
BD (1) C15–Zn17 1.9592 0.7035 (sp1.19) C + 0.7107 (sp0.33 d3.15) Zn
BD (1) C16–Zn17 1.9287 0.7038 (sp1.25) C + 0.7104 (sp0.62 d4.67) Zn

In Figure 2, it has been observed the fluctuation of occupancy of natural bond orbitals
for CO2→Fe@C- GR, CO2→Ni@C- GR, CO2→Zn@C- GR surfaces through the Langmuir
adsorption process by indicating the active oxygen atom in carbon dioxide becoming close
to the nanographene.
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3.3. Thermodynamic Properties and IR Spectroscopy Analysis

The capacity of carbon dioxide (CO2) adsorption on carbon nanostructures decreases
with temperature, which exhibits the exothermic nature of the adsorption process, while
the thermodynamic parameters represent low isosteric heats of the adsorption process [52].

Thermodynamic parameters have been estimated due to Gaussian 16 revision C.01 soft-
ware using CAM-B3LYP/LANL2DZ, 6-31+G (d,p) through for the adsorption of toxic car-
bon dioxide (:

..
O = C =

..
O :) on the surfaces of the (Fe, Ni, Zn) embedding of nanographene

as the gas sensor which can be used as the selective detectors for environmental hazardous
gases (Table 3).

Table 3. The thermodynamic attributes of CO2 adsorbed on the (Fe, Ni, Zn)@C- GR as the selective
gas sensor.

Compound ∆Eo × 10−4

(kcal/mol)
∆Ho × 10−4

(kcal/mol)
∆Go × 10−4

(kcal/mol)
∆Go

ads × 10−4

(kcal/mol)
So

(Cal/K.mol)
Dipole Moment

(Debye)

:
..
O = C =

..
O : −11.6121 −11.6121 −11.6136 - 51.378 0.0000

Fe@ C- GR −146.2783 −146.2782 −146.2816 - 111.175 2.3199
Ni@ C- GR −162.4794 −162.4793 −162.4828 - 116.150 13.6226
Zn@ C- GR −178.2031 −178.2030 −178.2066 - 120.533 1.7301
:

..
O = C =

..
O :→ Fe @C- GR −157.8893 −157.8893 −157.8932 0.002 130.634 14.1988

:
..
O = C =

..
O :→ Ni @C- GR −173.0324 −173.0323 −173.0360 1.0604 122.276 12.5830

:
..
O = C =

..
O :→ Zn @C- GR −191.0952 −191.0951 −191.0989 −1.2787 127.012 2.0963

Furthermore, the infrared spectra for the adsorption of CO2 by (Fe, Ni, Zn) embedded
onto C-nanographene have been reported in Figure 3a–c.
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Figure 3. Alterations of frequency (cm−1) in the IR spectra for (a) :
..
O = C =

..
O : →Fe @C- GR,

(b) :
..
O = C =

..
O : →Ni @C- GR, (c) :

..
O = C =

..
O : →Zn @C- GR as the selective gas sensors.

The graphs of :
..
O = C =

..
O : →Fe @C- GR, :

..
O = C =

..
O : →Ni @C- GR, and

:
..
O = C =

..
O :→Zn @C- GR have shown the frequency range around 500 cm−1–3000 cm−1

with the strongest peaks in IR spectrum around 750 cm−1 and 3000 cm−1 Figure 3a–c.
From Figure 4, it could be understood that the maximum of the Langmuir adsorbing

isotherm plots related to ∆Go
ads versus a dipole moment may depend on the interactions
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between the CO2 and TM-embedded C-nanographene. The order of Gibbs free energy
changes for clusters of gas→TM@ C- GR is ∆G0

CO2→Zn@C > ∆G0
CO2→Ni@C > ∆G0

CO2→Fe@C .
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Figure 4. The changes of Gibbs free energy (kcal/mol) versus dipole moment (Debye) for adsorption
of CO2 on the (Fe, Ni, Zn) embedding of C-nanographene surfaces.

The change of energy band gaps for the most stable structure of CO2 molecules
adsorbed on the GR sheet doped with TM has been graphed in respect of the corresponding
pure sheet due to the thermodynamic reported data in Table 3 (Figure 4).

The adsorptive capacity of CO2 on the TM-embedded C-nanographene is approved
by the ∆Go

ads amounts:

∆Go
ads,CO2→TM@C−GR = ∆Go

CO2→TM@C−GR −
(
∆Go

CO2 + ∆Go
TM@C−GR

)
; (TM = Fe, Ni, Zn) (2)

On the basis of data in Table 3, it is predicted that the adsorption of CO2 on the TM-
embedded graphene nanosheet must be physico-chemical attributes. As seen in Figure 4,
∆Go

ads,CO2→Zn@C−GR (−1.2787 × 104, kcal/mol) has the largest gap of Gibbs free en-
ergy adsorption with a dipole moment which defines the alterations between the Gibbs
free energies of initial compounds (∆Go

CO2 and ∆Go
Zn@C−GR) and product compound

(∆Go
CO2→Zn@C−GR) through polarizability. In fact, TM-embedded C-nanographene can

possess enough efficiency for the adsorption of the toxic gases carbon dioxide and nitrogen
dioxide through charge transfer from oxygen atoms to transition metals.

The electric dipole moments from the computations have been summarized in Table 3.
They display that the dipole moment diffused by the transitions metals of Fe, Ni and
Zn has been augmented. After the doping of transition metals on the GR nanosheet,
the distribution of electrons will influence electric dipole moments, causing long-range
interactions between the CO2 molecules adsorbing on the GR nanosheet concerning the
effect of transition metals on the zone growth (Figure 4).
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3.4. Frontier Molecular Orbital’s of HOMO, LUMO and UV-VIS Analysis

The lowest unoccupied molecular orbital (LUMO) energy is generated by ionization
and the highest occupied molecular orbital (HOMO) energy is observed by the electron
affinity. These parameters have been evaluated for adsorption of carbon dioxide on the
(Fe, Ni, Zn) embedding of nanographene as the gas detector in Table 4. The HOMO (ev),
LUMO (ev), and band energy gap (∆E = E LUMO − EHOMO) (ev) have exhibited the pictorial
explanation of the frontier molecular orbitals and their respective positive and negative
areas, which are a significant parameter for discovering the molecular properties of efficient
compounds in adsorption of CO2 on the TM-embedded nanographene surface (Table 4).

Table 4. The LUMO (ev), HOMO (ev), band energy gap (∆E/ev) and other qualifications (ev)
for adsorption of CO2 on the (Fe, Ni, Zn) embedding of C-nanographene surfaces using CAM-
B3LYP/LANL2DZ, 6-31+G (d,p).

Gas→TM@C- GR LUMO HOMO ∆E µ χ η ζ ψ

:
..
O = C =

..
O :→Fe@ C- GR

−0.1904
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Moreover, for getting more conclusive approving in identifying the compound charac-
teristics of adsorption complexes of CO2 on the (Fe, Ni, Zn) embedding of C-nanographene
surfaces, a series of chemical reactivity parameters, such as chemical potential (µ), elec-
tronegativity (χ), hardness (η), softness (ζ) and electrophilicity index (ψ), have been carried
out (Table 4) [53–55].

Figure 5 has drawn that chemical potential (µ) for CO2 adsorption on the surface of
a zinc embedding of carbon-nanographene has a considerable minimum potential well.
The negative content of the chemical potential (µ) and the positive contents of other factors
have remarked an admissible efficiency of scavenging CO2 by zinc-embedded carbon-
nanographene. In fact, the chemical potential defined the increase of CO2 molecules to the
crystal of Zn@C- GR while the number of other particles and the number of unoccupied
lattice locations kept constant. As a matter of fact, enhancement of the gas molecules of
CO2 thus involves the simultaneous increasing of a lattice site or unit cell to the crystal
of the Zn@C- GR surface. This procedure leads to an augmentation in surface region and,
thereby, energy must be spent in generating a new surface of nanographene. In addition,
the alliance of particles alters the mass of the crystal and the process is also accomplished
versus the mechanical powers.
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From Table 3, the Zn@C- GR surface has indicated the considerable value of stabilized
energy compared to Fe@C- GR and Ni@C- GR. In addition, the parameter of chemical
potential (µ) has approved the activity of zinc atoms that might form the bonds with the
oxygen atoms of CO2 from functional groups towards the covalent bond of optimized
coordination, performing like grapnel sites for increasing the sensitivity and selectivity of
the GR nanosheet (Figure 5).

In this work, the energy gap establishes how toxic gases of CO2 can be adsorbed on the
(Fe, Ni, Zn) embedding of nanographene as the gas sensors with the CAM-B3LYP/LANL2DZ,
6-311+G (2d, p) quantum approach. In addition, frontier molecular orbitals perform an
essential function in the optical and electrical factors like ultraviolet and visible spectra [56].

The energy gap between LUMO and HOMO has recognized the qualifications of
molecular electrical transport [57].

Furthermore, TD-DFT/LANL2DZ, 6-31+G (d,p) calculations with a CAM-B3LYP
functional have been accomplished to discern the low-lying excited states of CO2 can be
adsorbed on the (Fe, Ni, Zn) embedding of nanographene. The consequences contain
the vertical stimulation energies, oscillator strength and wavelength, which have been
introduced in Figure 6a–c.

Figure 6a–c have shown UV-VIS spectra for CO2→Fe @C- GR, CO2→Ni @C- GR,
CO2→Zn @C- GR with maximum adsorption bands between 1000–5000 nm. Moreover,
a sharp peak around 2500 nm for CO2 →TM@C- GR using a CAM-B3LYP functional has
been observed (Figure 6a–c).
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4. Conclusions

This article has reported the trends for toxic carbon dioxide (CO2) adsorption on
transition metals of iron, nickel and zinc embedding of carbon-nanographene surface.

In particular, the energetic, structural and infrared adsorption characteristics of lin-
early (atop) CO2 adsorbed on (Fe, Ni, Zn) embedding of C- GR have been discussed.
Spin-unrestricted density functional theory (DFT) calculations were applied to verdict the
tendency of CO2 adsorption energy of (CO2→ Fe-, CO2→Ni-, CO2→Zn-) embedded on
the nanographene sheet and normal mode vibrational frequencies (νCO2) of :

..
O = C =

..
O :

for clusters composed of Fe, Ni and Zn.
Moreover, the adsorption of CO2 molecules has indicated the spin polarization in

GR nanosheets with a magnetic moment of transition metals, exhibiting that the magnetic
properties of the TM-doped GR nanosheet has changed.

The effects of the transition metal electronic structure onto the adsorption energy of
CO2 toxic gas and how these chemical factors might be related to the catalytic activity of
transition-supported metal catalysts that deal with adsorption, and surface diffusion, have
been investigated.
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