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Abstract: The study concerns promising coal-fired power plants that can gain an advantage over
traditional options in the context of decarbonization. The calculations show that combined-cycle
plants with integrated coal gasification and carbon dioxide recirculation may have better technical
and economic characteristics compared to existing gasification processes (one- and two-stage). The
recirculation of carbon dioxide improves the efficiency of the gasification process (the combustible
gases yield and the fuel carbon conversion degree) and reduces the energy costs of the flue gas
cleaning and carbon capture unit, thereby improving the economic performance of the plant. The
estimates show that the decrease in the efficiency of electricity production associated with the removal
of carbon dioxide is approximately 8% for the recirculation of combustion products and 15–16% for
traditional processes, and the increase in the cost of electricity is 20–25% versus 35–40%, respectively.
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1. Introduction

Fossil fuels are likely to be the primary energy source in the global energy mix for a
long time to come. In this regard, a reduction in CO2 emissions requires, first of all, not
so only increase in the share of renewable energy sources (which is not always rational
both technically and in connection with systemic effects [1]), but also the introduction
of methods for capturing CO2 at fossil fuels thermal power plants (carbon capture and
storage (CCS) [2]). With any modernization options, CCS decreases net efficiency and
increases the cost of produced energy. The main issue is reducing the losses associated
with CCS [3]. According to the review [4], there is no long-term operational experience for
thermal power plants using CCS. In this regard, we do not have enough data to determine
the reliability of CCS technologies. Another important problem is the use of CO2: the level
of CO2 consumption in industry is orders of magnitude lower than the emission level [5],
and so it must be buried (for example, in suitable geological formations [6]).

CCS technologies for thermal power plants with fuel combustion are based on the
extraction of CO2 from flue gases. Typically, they are based on selective absorption and are
associated with high energy costs (primarily related to the regeneration of the absorbent) [7].
Simplification of the CO2 capture process is possible if inexpensive mineral sorbents are
used, such as minerals and slags containing alkaline and alkaline-earth metal elements [8].
The air separation significantly increases the efficiency of CCS systems: if the oxidation
agent is a mixture of oxygen and combustion products instead of air, then the flue gases
consist nearly entirely of CO2 and H2O, and so cleaning and removing CO2 becomes much
cheaper. In this case, however, there are costs associated with technical oxygen production.
The efficiency of an oxyfuel power plant is determined by the difference between the gain
in the CCS system and the air separation costs [3].

Integrated gasification combined-cycle (IGCC) technology has made it possible to
capture CO2 before gas combustion; for this, a “water shift” reaction is carried out in a
catalytic reactor where, under the excess water vapor, CO is converted into CO2 with the
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production of additional hydrogen [9]. The estimated efficiency of coal-fired IGCC plants
is higher than that of traditional thermal power plants, which is especially important when
switching to CCS. Promising schemes for IGCC plants with high-temperature air preheating
were proposed in [10]. A combined-cycle methodology with supercritical CO2 serving as
the working fluid was proposed in [11,12], and according to the authors’ estimates, the
efficiency of such a cycle can be up to 50%. Similar cycles were also considered in [13,14].

A new version of a coal-fired oxyfuel IGCC plant with a CCS system was proposed
in [15,16]. In this case, the fuel conversion degree was increased (with a slight decrease in
the content of combustible components in the produced gas) [17]. According to the authors
of [18], the net efficiency of such a plant with CCS may achieve 43–44%.

Typically, to increase the efficiency of gasification processes, steam is added [19–21].
The thermodynamic analysis of the gasification processes of various fuels (coke, coal, and
biomass) in O2/CO2 mixtures in [22] showed that the CO2 addition was justified only for
high-carbon fuels. The effect of CO2 on coal gasification kinetics was considered in [23–25],
and this effect for staged gasification processes was studied in [26,27].

The aim of present work was to determine the technical and economic characteristics
of coal-fired IGCCs with CO2 capture and recycling, along with the efficiency of electricity
production and the cost for such options. For comparison, calculations were made for
stations without CCS systems. Data on the fuel conversion efficiency are taken from
previous work on modelling the pulverized coal gasification processes with single-stage
and two-stage reactors.

2. A Brief Review of Coal-Fired IGCC Plants

Gasification is typically considered to be a clean coal technology due to its low specific
emissions and low gas cleaning costs as producer gas obtained from coal conversion con-
tains strong reducing agents (CO and H2), and so the yield of nitrogen and sulfur oxides is
lower compared to that of coal combustion. Instead, there are easily removable compounds
such as hydrogen sulfide and ammonia [28]. Producer gas has a lower heating value
compared to natural gas. Therefore, special combustion chambers are being developed for
its combustion [29,30]. Coal-fired IGCC plants (as well as other clean coal technologies)
have the potential to develop in Russia where there are circumstances suitable for this,
namely, the obsolescence of existing power equipment and a noticeable trend towards a
decrease in the average quality of energy coals [31]. However, low gas prices and current
environmental standards are holding back this development. The possibility of combining
energy and chemical production (primarily, the synthesis of liquid hydrocarbons, oxy-
genates, and hydrogen) based on one thermochemical process opens up prospects for the
creation of environmentally friendly multi-purpose plants with the storage and export of
chemical energy [32–34].

Among the other ways to improve the technical and environmental efficiency of using
solid fuels, one can list fuel mixing [35,36], thermal preparation [37,38], the mechanical
activation of fuel particles [39], special combustion methods (vortex and staged) [40–42],
the use of chemical oxidation cycles [43], the use of reagents and catalysts [44,45], etc.
Gasification as a thermochemical process can also be used to store excess thermal energy
(for example, at nuclear power plants) [46–48].

The generally accepted value characterizing the efficiency of the gasification process
is cold gas efficiency (CGE, ηG), which is the ratio of the chemical energy of combustible
gases to the chemical energy of solid fuels [49], which is calculated as follows:

ηG =
Gout

g Qg

Gin
f Q f

, (1)

where G is the flow rate, Q is the heating value, and the indices g and f refer to producer gas
and solid fuel, respectively. The heating value of the generator gas is the sum of the heating
values of its components. Therefore, to assess the efficiency of cold gas, it is sufficient to
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determine the gas composition and the specific gas productivity of the gasifier. Depending
on the specific configuration of the gasifier, the numerator and denominator may include
additional terms (for example, those associated with the recirculation of heat and matter,
the use of additional fuel, etc.). Cold gas efficiency is a convenient process characteristic
when using producer gas for energy production. If producer gas is a raw material for
chemical syntheses, then the gasification process efficiency depends on many other factors
(CO/H2 ratio, content of sulfur and nitrogen compounds, methane content, etc.).

It is possible to classify industrial coal gasification processes according to different
criteria, such as conversion stages, fuel supply method, blast composition, ash removal
method, etc. Some gasifiers used in coal-fired power production are shown in Table 1.
Over the past 10 years, the gasification capacities in the world have grown from 100 to 285
GW(th) [50], primarily due to the petrochemical industry. Gasification-produced hydrogen
is inexpensive, albeit “grey”. The leader in the use of gasification technologies is China,
where more than 30% of all gasification capacities are located.

Table 1. Industrial entrained flow gasification processes (CWS—coal-water slurry; PC—pulverized
coal).

Gasifier Number
of Stages Fuel Gasification

Agent
Output Gas
Parameters Power Plant

Texaco (General Electric) 1 CWS Oxygen 1200–1500 ◦C, 29 atm Cool Water; Tampa Bay;
Edwardsport (USA)

Shell 1 PC Oxygen 1450–1600 ◦C, 40 atm Nuon (Netherlands);
Taean (Republic of Korea)

E-Gas (Dow Chemical) 2 CWS Oxygen 1000–1100 ◦C, 28 atm Wabash River (USA)

MHI/MHPS
(Mitsubishi-Hitachi) 2 PC Air 1100 ◦C, 20 atm Nakoso (Japan)

Prenflo (Thyssenkrupp) 1 PC Oxygen 1500 ◦C, 40 atm Puertollano (Spain)

ECUST 1 CWS Oxygen 1400 ◦C, 65 atm Yankuang, Hangzhou (China)

TPRI 2 PC Oxygen/steam 1500 ◦C, 40 atm Tianjin (China)

EAGLE (Osaki CoolGen) 2 PC Oxygen 1300 ◦C, 25 atm J-Power (Japan)

Modern entrained flow gasifiers are the descendants of the Koppers-Totzeck gasifier
and heavy oil gasification reactors. Industrial processes are carried out, as a rule, using
oxygen to improve the kinetic and thermodynamic conditions of fuel conversion. Therefore,
the resulting gas typically has a temperature in the order of 1500 ◦C, and its cooling before
cleaning is associated with significant thermodynamic losses. One of the ways to reduce
these losses is “chemical quenching”, where the heat of hot gases is utilized to convert
secondary fuel (as in the E-Gas and MHI/MHPS processes) while the temperature of
the producer gas can be reduced by 300–500 ◦C, though this leads to under-burning and
additional gas cleaning.

Common problems with coal-fired IGCC plants include low availability, which, even
for the best plants, does not exceed 0.8 and is, on average, at the level of 0.6 [51]. This
is due to the failures and equipment repair due to corrosion (nozzles and lining), the
condensation of acidic products, slagging, and ash transport. Gas storage is needed to
balance a plant’s load.

After several gasification projects in the 1980s and 1990s, a rather optimistic view
of the coal energy future has emerged. For example, in a 2001 study [52], a forecast was
proposed wherein, by 2004, the total gasification capacity in the world would be 60 GW
(in actuality, it was 40 GW), and specific capital investments in coal-fired IGCC plants
would decrease due to learning effects and would amount to 800–1000 USD/kW by 2012.
The review in [53] predicted that by 2020, the efficiency of coal-fired IGCC plants would
reach 53–56% at specific capital costs of 1200–1400 USD/kW. A graph approach to the
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analysis of the development of coal-fired IGCC plants was proposed in [54], showing the
possibility of achieving an efficiency of approximately 55%, a capacity commissioning rate
of 7.5 GW per year in the 2020s, and the possibility of replacing traditional coal blocks
with IGCC plants by 2035. Even in later studies [55,56], coal-fired IGCC plants were
considered as an option to replace nuclear power in Europe, and the improvement rate was
estimated at a 1–3% increase in efficiency and a 2–9% reduction in specific capital costs over
10 years. These high expectations were not fulfilled. According to [57], the specific capital
investments in coal-fired IGCC plants were estimated at USD 1500 per kW, and the review
in [58] showed examples of unpredictable growth in capital investments. The available data
has shown that specific capital costs can even reach USD 3000–4000 per kW (even without
CCS systems). The maximum net efficiency of the implemented coal-fired IGCC plants did
not even reach the expected level of 50% [59], while coal combustion power plants with
supercritical steam parameters can achieve efficiency ratings of approximately 44–48% due
to progress in heat-resistant materials [60–63]. Gas turbines for operation on generator gas
are, as a rule, more expensive than those developed for the combustion of hydrocarbons.
Finally, coal-fired IGCC plants cost nearly twice as much to operate as traditional coal-fired
thermal power plants. As noted in [64], a significant cost reduction due to learning effects
requires an installed capacity of approximately 100 GW of coal-fired IGCC plants, and this
threshold has not yet been reached.

The efficiency of electricity generation at IGCC plants is largely determined by their
coal conversion efficiency. Therefore, long-term trends in the development of gasification
technology were associated with increases in reaction temperature and capacity. Oxygen
is a typical gasifying agent in large-scale coal gasification; therefore, such plants require
an air separation unit (ASU), and the corresponding increase in the station’s own needs
should be compensated by an increase in the efficiency of the fuel gasification. For chemical
production, this circumstance is not always significant since nitrogen is a diluent that
increases the cost of gaseous product separation, and nitrogen may be used, for example,
for the production of ammonia. In the energy use of gasification, it may be expedient to
refuse air separation or use a weakly enriched blast [65], though on the other hand, this
may cause the volumes of the gases to increase and problems to arise with ash removal.
In addition to the cryogenic method of air separation, less-expensive methods are being
actively studied, for example, membrane and sorption separation, as well as chemical
looping cycles [66] (though these methods do not yet allow the achievement of high oxygen
purity and capacity [67]).

Another way to achieve a high reaction temperature is high-temperature air gasifi-
cation (HiTAG [68]). High-temperature gasification processes were proposed in [69,70],
where the calculated efficiency of the power plants reached 37–45% when the air was
heated up to 1000 ◦C (depending on the fuel type). Different methods for air heating were
considered in [10,71], including convective heating in a channel and non-stationary heating
in heat exchangers with ceramic packing.

Producer gas contains particulate matter, sulfur, and nitrogen compounds, and there-
fore, it requires cleaning before combustion. Cleaning, in turn, requires deep cooling. As a
result, a gas conditioning unit is responsible for a significant portion of the thermodynamic
losses [72]. High-temperature gas cleaning is much more technologically complicated
since it requires the use of chemical cycles for trapping sulfur compounds (for example,
with calcium or zinc compounds [73,74]), but it allows for increasing the efficiency of the
power plant [75]. The gas-cleaning temperature is limited, however, by the volatility of the
components in the mineral portion [76].

In addition to the power cycle, there are options for the producer gas conversion in
fuel cells, including hybrid schemes with the thermal integration of fuel cells in IGCC
plant [77–81]. In China, power plants with the electrochemical conversion of coal gasi-
fication products are being developed, but the declared capacities do not yet exceed
1 MW [82,83].
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In staged gasification processes (e.g., an MHI/MHPS staged gasifier) the mechanical
under-burning is returned to the oxidation zone to achieve the desired conversion efficiency.
In [84–86], IGCC plants with incomplete coal gasification were considered, where the char-
ash residue is burned in a separate furnace and used to heat air or to produce additional
steam. Schemes for combined cycle plants with integrated pyrolysis were proposed in [87].

As mentioned above, coal gasification is widely used in the chemical industry, and so it
is natural to expect attempts to combine the production of electricity and chemical products
within a single plant. Among such products, special attention is paid to hydrogen [88–90]
and synthetic liquid fuels (such as dimethyl ether, methanol, and Fischer–Tropsch hydrocar-
bons [32,91]). Hydrogen production, in some cases, can improve the economic performance
of gasification plants [92]. In general, an energy-technological installation can operate in
different modes, depending on the economic conditions, and focus on the prices of different
products (although it was concluded in [93] that multi-purpose installations lose out to
energy-only producing power plants). In changing the operating conditions of a plant, the
operating conditions of its gasifier also change [94].

Carbon emissions restrictions lead to a decrease in the production of fossil-based
energy. The replacement of coal with plant biomass and waste is often considered [95]. At
some IGCC plants (primarily, Nuon and Elcogas [96,97]), experiments have been carried
out to replace part of the coal with biomass. A simulation of such power plants showed the
possibility of a deep replacement (up to 60–70% in terms of heating value [80,96,98]). At the
same time, however, the efficiency of the power generation decreases [99], and low-melting
ash can lead to issues with slag removal. The performance of energy-technological plants
with the co-gasification of coal and biomass (including waste) was studied in [94,100],
where the calculations showed that the biomass addition made it possible to obtain a
gas that was richer in hydrogen, with lower specific carbon dioxide emissions (since the
hydrogen content of biomass is higher than that of coal). In [101], an exotic option was
considered for integrating a gasifier operating on a mixture of coal and biomass into a
natural gas-fired IGCC plant. In this case, it was possible to reduce gas consumption and
save on the construction of a solid fuel power plant.

One of the competitive advantages of IGCC (in terms of technological prospects) may
be the relatively low cost of CO2 removal, although, at high specific costs, it is difficult
to expect that an inexpensive CCS unit will make such a plant more attractive than a
conventional coal-fired power plant. The cost of capturing and burying CO2 is currently
approximately USD 40–60 per t (i.e., the LCOE increases by 50–100% due to CSS [102]), and
so the implementation of CCS requires either high carbon taxes or technology that is several
times cheaper [103]. The drop in the net efficiency due to a CCS system is 10–12 percentage
points, but for promising IGCC plants, even with such a decrease in net efficiency, it may
remain at the level of 38–42% [104–107]. In general, the reduction in net efficiency depends
on the degree of CO2 removal [108]. Roughly speaking, a CCS system reduces the net
efficiency of coal-fired IGCC plants to that of the average level of conventional coal-fired
thermal power plants [109–111]. The feasibility studies carried out in [112] showed that a
coal-fired IGCC plant is the most expensive coal option without CCS, but will be the least
expensive option if CCS becomes mandatory. Among the developing projects of coal-fired
IGCC-CCS plants, GreenGen (China) [113] and CoolGen (Japan) [114] can be listed.

The Allam cycle, using CO2 as a working fluid, theoretically allows for obtaining an
efficiency of 49–51% when operating on coal at a high degree of CO2 capture [11]. Work
on such a pilot plant has been underway for a long time [115]. Similar cycles for coal
combustion technologies were proposed in [116] (Brighton CO2-cycle: net efficiency varies
from 38 to 44–45%) and [117] (combined CO2-cycle: net efficiency of 37–40%).

Existing CCS systems continue to have a largely demonstration status; nevertheless,
according to [118], in 2020, the installed capacity of CCS in the world was 40 million tons of
CO2 per year. It is important to note that CO2 can only be buried in suitable locations, such
as depleted oil or gas fields. For example, the Boundary Dam coal plant partially offsets
the costs associated with the extraction of CO2 from flue gases due to the interest of oil
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companies that use CO2 to increase oil recovery [119]. In this regard, underground coal
gasification with the simultaneous burial of CO2 in mined-out seams is of interest [120].
According to the available volumes of depleted fields, Russia could become one of the
world’s leading countries in CO2 storage.

One of the developed methods for removing CO2 from combustion products is ab-
sorption (for example, with methanol or ethanolamines [121]). This method is quite energy-
intensive as the regeneration of the absorbent, as a rule, requires significant heat inputs.
IGCC allows for reduction through the use of absorption systems in gas conditioning
units. Compressing and transporting concentrated CO2 also requires significant energy
consumption, but this stage varies little in different CCS systems. The authors of [122]
reported on the possibility of an acceptable cost of CO2 removal using the Selexol process
(USD 10–20 per t). The mineral sorbents used without regeneration can reduce the cost
of the process, especially if CO2 mineralization makes it possible to obtain, for example,
construction materials [5]. Adsorbent regeneration has less energy consumption, but it also
has lower capacity [123,124]. Chemical looping cycles’ energy consumption is comparable
to that of absorption processes [125].

Another way to extract CO2 from combustion or gasification products is membrane
separation, which includes those used for separating H2/CO2 mixtures obtained by the
steam conversion of produced gas (water shift) [126]. This process is exothermic, and
it can be used to generate additional steam. Depending on a reactor’s configuration,
different strategies may be implemented to integrate carbon capture and power production
using a water-shift reactor [127]. Due to the significant differences in the diffusivity and
molecular masses of components, H2 and CO2 mixtures may be separated using relatively
inexpensive membrane technology. In [128], a combination of water-shift technology
with the absorption removal of CO2 was considered, and the calculated efficiency of the
electricity generation was 34–36%).

Combustion products primarily consist of N2, H2O, and CO2. It is possible to reduce
the cost of the CO2 separation stage if we exclude nitrogen, and water vapor is easily
removed by condensation, leaving highly concentrated CO2 as the output. This method
is the basis of oxyfuel combustion [129]. One of the issues with oxyfuel combustion
technologies is the need for costly air separation (the combustion temperature is moderated
by diluting oxygen with combustion products). In coal gasification, an air separation is
a standard option, and so it is possible, for example, to use the oxyfuel combustion of
producer gas in a turbine, thus reducing CCS costs [130]. The recirculation of combustion
products makes it possible to increase the fuel conversion efficiency because the flue gases
are a mixture with a high concentration of CO2. Such IGCC schemes were proposed for
fluidized bed reactors in [131,132], with an estimated net efficiency of 40–48%, and the
entrained flow reactors in [15–18] demonstrated an estimated net efficiency of 42%.

An overview of the data on the net efficiency of coal-fired IGCC plants (operating,
dismissed, and promising) and their comparison with traditional coal-fired thermal power
plants is presented in Figure 1. The dotted lines limit the forecast indicators given in [53]
for the year 2020. Coal plants with ultra-supercritical steam parameters are quite close to
the predicted boundary. Most of the real coal-fired IGCC plants lie in a rather narrow range
of capacities and net efficiency. We concluded that the potential of gasification plants is still
far from being realized. The maximum net efficiency of coal-fired IGCC plants is close to
50%, and in rare cases, plants exceed this value, which, according to [42], corresponds to
the expected progress level of the 2000s.

When using CCS systems, as mentioned above, efficiency decreases, although es-
timates of some carbon dioxide cycles provide quite high values for net efficiency (for
example, the estimated net efficiency of the Allam cycle is approximately 50%). In general,
the lack of an experimental basis for the verification of the mathematical models of IGCC
power plants leads to the fact that calculated characteristics have no determined accuracy
interval, with rare exceptions (see, for example, [65,97,133], where operating stations data
were used). Most of the plants shown in Figure 1 correspond to the theoretically calcu-
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lated efficiency estimates for advanced power plant schemes, and all these schemes differ
from each other in a combination of elements (cleaning systems, the degree of integration,
methods of CO2 extraction, etc.). Moreover, schemes are typically optimized for different
fuels and conditions (for example, prices for fuel and electricity, specific capital costs, and
operating conditions of power units), and so their comparison is not always correct. Even
within a small power range, the net efficiencies of different coal-fired IGCC plants may
differ by a factor of 1.5–2.
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3. Calculation of Technical and Economic Characteristics of Coal-Fired IGCC Plants
with CO2 Capture

Economic calculations for coal-fired IGCC power plants were carried out according to
the method described in [113]. The energy cost is given by the formula [134]:

LCOE =
CPP f + M f

tP0
+ Mv + BC f , (2)

where CPP is the total capital cost of the plant, Mf represents the fixed repair costs, t is the
average number of hours per year that the installation produces electricity, P0 is the rated
power (500 MW), Mv represents the current costs for the production of 1 MWh of electricity,
B is the specific fuel consumption per 1 MWh of electricity, and Cf is the cost of 1 ton of
coal. Parameter f takes into account an inflation rate of 8% per year at 30 years of a plant’s
operation. The values of all the listed quantities are provided in Table 2.

A detailed consideration of a coal-fired IGCC plants with a description of the indi-
vidual elements of the equipment is not the purpose of this work. Instead, stations are
considered as the following lumped units: a gasification and gas conditioning unit; a
power unit (gas turbine and steam turbine part); and a CO2 capture unit. The primary
characteristic of the units is their energy efficiency (or their specific energy consumption).
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Table 2. Initial data for economic calculations (Data from [113]).

Variable Dimensions Value

CPP USD 3 × 109

Mf USD/year 1 × 106

t h 6136

Mv USD/MWh 10

Cf USD/t 100

Qc MJ/kg 32

WO2 MJ/kg 2.52

WCO2 (post-combustion) MJ/kg 8.4

WCO2 (oxyfuel) MJ/kg 0.96

The availability factor is 0.7, and as reliability estimates show, such a factor most accu-
rately reflects the operational features of coal-fired IGCC plants [51,58]. The specific fuel
consumption depends on the efficiency of the station, which can be calculated as follows:

B =
36 × 105

QcηPP
, (3)

where Qc is the calorific value of the fuel. The station’s efficiency (ηPP) depends on the
efficiency of individual nodes according to the following simplified formula [135]:

ηPP = ηG[ηGTU + (1 − ηGTU)ηSTU ]− ∆η, (4)

where ηG is the cold gas efficiency, ηGTU is the efficiency of the gas turbine plant, and ηSTU
is the efficiency of the steam turbine plant. This formula shows that the cold gas efficiency
is the determining factor in assessing the efficiency of electricity generation. Losses (∆η)
primarily consist of the needs of the process associated with air separation (O2 production)
and CO2 utilization. In this work, losses are estimated most simply as follows:

∆η =
WO2 α + WCO2

Qc
, (5)

where WO2 is the work required to obtain the stoichiometric amount of oxygen required
to burn 1 kg of coal and WCO2 is the work required to compress and purify CO2 from the
combustion products (estimated based on data from [136–139]).

The detailed modelling of coal conversion is computationally expensive because it
requires CFD codes with extended chemical kinetic mechanisms [140,141]. In this work,
cold gas efficiency is estimated using simplified mathematical models of coal gasification
processes developed in our previous works [142,143], which showed good agreement with
the available experimental data.

The specific energy consumption of oxygen production was estimated by analyzing
the literature data on air separation plants [144–150] (Figure 2). The most mature instal-
lations in the industry are cryogenic. They require more energy per unit mass of oxygen
produced, but they have better performances and oxygen purity levels. Most of the existing
large coal gasification plants operate for the needs of the chemical industry (hydrogen,
methanol, or fertilizer production), and so the nitrogen obtained during air separation is a
valuable product. The combination of power plants with chemical production (including
the utilization of captured CO2), in some cases, can improve the economic performance
of coal-fired thermal power plants [91,93], but such possibilities are not considered in
this work.
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4. Initial Data and Calculation Results

Several options for a coal-fired IGCC plant are being considered. The first option
(Figure 3) does not include a CO2 removal unit, and due to the use of a combined cycle,
the efficiency of electricity generation in such a scheme can be much higher than that of
traditional coal-fired thermal power plants. The second option (Figure 4) includes a CO2
removal scheme that uses the methyldiethanolamine absorption method. As indicated
in [151,152], the total energy costs for removing CO2, in this case, are approximately
4 MJ/kg CO2 (in [153], a range of 5–9 MJ/kg corresponded to high capture rates). Finally,
the third option (Figure 5) is the oxyfuel gasification process [15] in which the flue gases
consist of a mixture of CO2 and H2O (with small impurities), and so additional purification
before compression and disposal is not required. In this case, the energy consumption in the
CCS unit is 0.4 MJ/kg of CO2. The removal of CO2 from producer gas at an intermediate
stage between gasification and combustion is not considered. Optimization of the removed
fraction of CO2 is also not considered in this work, but we assume that this fraction is 90%
for all cases [154].
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Table 3 shows the gasification processes studied in previous works and the conditions
under which they were carried out. The Shell process (according to data from [21]) is a
single-stage gasification using pulverized coal as a gasification agent with an O2 concentra-
tion of approximately 80%. The MHI/MHPS process (according the data from [27]) is a
two-stage gasification using pulverized coal as a gasification agent with an O2 concentra-
tion that is close to atmospheric (with solid residue recirculation to reduce under-burning).
Using the previously developed mathematical models [21,22,27], the limiting values of
the cold gas efficiency were estimated. Then, the efficiency of electricity production was
calculated both without CO2 removal and with CO2 removal. Even without CO2 removal,
electricity production efficiency is higher for the oxyfuel gasification option. Table 3 shows
that a CCS leads to a significant reduction in the efficiency of a coal-fired IGCC plant, where
the drop is from 8 to 16 percentage points, depending on the composition of the gasifying
agent. A higher decrease is observed for gasification processes in O2/N2 mixtures since, in
this case, an energy-intensive absorption method for CO2 removal is required (Figure 2).
The decrease in efficiency due to the CCS unit for the oxyfuel gasification option is approxi-
mately 2 times lower than those of schemes without the recirculation of combustion products.
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The literature data has shown that the decrease in the efficiency of coal-fired IGCC plants with
CCS units lies in the range of 6 to 23 percentage points [104,106,107,111,155–157]. Estimates
of the efficiency of coal-fired IGCC plants operating in oxyfuel mode are 34–39% [16,131],
and our calculations showed similar values.

Table 3. Dependence of efficiency on the chosen scheme of a coal-fired IGCC plant and gasifi-
cation processes.

Gasification
Process

Oxygen
Concentration, % vol. Dilution CCS

Option
Cold Gas

Efficiency, %
Net Efficiency

without CCS, %
Net Efficiency
with CCS, %

1 stage [21] 80

N2 2 73.95 42.71 26.78

N2/H2O 2 75.23 43.45 27.21

CO2 3 76.07 43.93 35.52

H2O 3 75.71 43.72 35.22

N2/CO2 2 75.32 43.50 27.71

CO2/H2O 3 75.23 43.45 34.97

2 stages [27]

21
N2 2 74.87 43.24 24.85

CO2 3 78.34 45.24 36.71

25 CO2 3 80.19 46.31 37.77

30 CO2 3 81.78 47.23 38.70

Two-stage gasification processes demonstrate the highest levels of cold gas efficiency,
which are associated with its better thermodynamic characteristics [158]. The CO2 addition
to the gasifying agent (as mentioned above) leads to an improvement in fuel conversion
and a decrease in specific oxygen consumption. Therefore, the calculated performance of a
coal-fired IGCC plant based on a two-stage gasification process reached 36–38%, even with
a CCS. Coal-fired IGCC plants using a single-stage gasification process with O2/CO2/H2O
mixtures show efficiency limits of approximately 35%.

Figure 6 shows a comparison of the technical and economic indicators of coal-fired
IGCC plants. Without CO2 removal, the cost of electricity for all cases was approximately
USD 100 per MWh. A CCS leads to a significant increase in the cost of electricity (by
20–40%). At the same time, the oxyfuel gasification process again demonstrated a better
performance, where the increase in energy costs was approximately 20–25%. For traditional
processes, this increase reached 35–40%. We note that the economic efficiency of different
methods will be determined, among other things, by the level of carbon penalties [159].
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The cost of energy produced by coal-fired IGCC plants is high even for the base case
(without CO2 removal) due to higher capital costs (compared to conventional coal-fired
thermal power plants with steam cycles) and lower reliability. The values obtained in this
section can be compared with the data of other works listed above.

Comparison with traditional coal-fired thermal power plants has not been carried out.
It was shown in [3,110] that the CCS unit increased the costs for coal-fired IGCC plants, to a
lesser extent, when compared to coal-fired thermal power plants. The estimated increase in
the cost of energy when using CCS in a traditional thermal power plant scheme is at a level
of 50% or more [103], which is lower than the above estimates for coal-fired IGCC plants.

Sensitivity was estimated by a change in economic parameters of 5% both up and
down. Calculations were carried out for two-stage gasifiers due to their higher efficiency
levels. The results are presented in Figure 7. The most sensitive parameters are capital
costs, inflation rates, and availability, which illustrate the crucial drawbacks of IGCC
power plants. Lower availability and higher investments have been the major barriers for
IGCC technology for many years, as mentioned above. Fuel price and current costs are
less influential.
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5. Conclusions

Several promising schemes for coal-fired IGCC plants with CO2 capture have been
studied. The estimated decrease in power plant efficiency associated with a CCS depends on
the scheme option and the gasification process used (in this work, the efficiency decreased
from 43–47% to 25–39%). Our calculations showed that the use of gasification processes
with flue gas recirculation makes it possible to reduce losses for CO2 emissions by up to
two times (approximately 8.5% instead of 16–18%), and the increase in the cost of energy,
respectively, turned out to be 1.5–2 times less (22–23% instead of 35–40%). The two-stage
gasification process is more promising for coal-fired IGCC plants with CCSs due to the
higher efficiency of the thermochemical conversion of fuel into combustible gas.
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