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Abstract: Gully erosion is a worldwide threat with numerous environmental, social, and economic
impacts. The purpose of this research is to evaluate the performance and robustness of six machine
learning ensemble models based on the decision tree principle: Random Forest (RF), C5.0, XGBoost,
treebag, Gradient Boosting Machines (GBMs) and Adaboost, in order to map and predict gully erosion-
prone areas in a semi-arid mountain context. The first step was to prepare the inventory data, which
consisted of 217 gully points. This database was then randomly subdivided into five percentages of
Train/Test (50/50, 60/40, 70/30, 80/20, and 90/10) to assess the stability and robustness of the models.
Furthermore, 17 geo-environmental variables were used as potential controlling factors, and several
metrics were examined to evaluate the performance of the six models. The results revealed that all of
the models used performed well in terms of predicting vulnerability to gully erosion. The C5.0 and
RF models had the best prediction performance (AUC = 90.8 and AUC = 90.1, respectively). However,
according to the random subdivisions of the database, these models exhibit small but noticeable
instability, with high performance for the 80/20% and 70/30% subdivisions. This demonstrates the
significance of database refining and the need to test various splitting data in order to ensure efficient
and reliable output results.

Keywords: soil erosion; inventory data; performance; robustness; spatial prediction

1. Introduction

Soil erosion is known as a loosening of sediment from the uplands to the valley floor
induced by runoff [1]. This phenomenon is described as a catastrophic global issue with
extensive environmental, social, and economic repercussions [2]. Soil erosion endangers
water and soil resources, both of which are vital to human existence and the environmental
equilibrium. There are several types of soil erosion, the most notable of which is gully
erosion (GE) [3]. This type contributes to landscape shaping while also causing significant
damage such as the degradation of arable land fertility, damage to water infrastructure
and shortening of its life span, and the disruption of countries’ economic and societal
circumstances [4]. This phenomenon has affected one-third of the world’s arable land
in the last few decades [5]. According to the literature, soil erosion affects more than
10 million hectares of agricultural land each year, with annual global loss rates of approx-
imately 43 Pg [6]. According to FAO [7], soil losses due to soil erosion are estimated to
result in a $1 billion economic loss. Soil erosion affects 40% of Moroccan territory, with
annual loss rates ranging from 23 to 55 t/ha/yr on average, and extreme values reaching
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524 t/ha/yr in some places [8]. Furthermore, agriculture is the main source of income
for the people who live in the mountainous areas of Morocco. However, these areas are
heavily affected by soil erosion, which decreases the amount of fertile land, reduces the
quality and quantity of water, and has other serious economic and social effects [9]. In this
respect, the Lakhdar watershed in the Moroccan High Atlas is one of the regions impacted
by significant soil degradation as a result of its very complicated physical features, such as
a very high topography and a steep slope occupied by rocks with differing properties. In
connection with these factors, the study of gully erosion vulnerability may be a crucial tool
for understanding erosive processes in comparable environments. As a result, identifying
areas prone to soil erosion is an important step toward good natural resource management
and long-term protection and a deeper comprehension of the erosive processes and the
factors that influence this phenomenon under current climatic conditions.

Since the 1930s, numerous models have been developed to estimate soil loss rates
and qualitatively assess soil erosion sensitivity. Currently, combining remote sensing with
geographic information systems makes this task easier and more efficient [10]. According to
the literature, there seem to be two distinct methods of soil erosion analysis: Qualitative and
quantitative approaches. To assess medium- and long-term soil loss rates, empirical models
such as the Universal Soil Loss Equation (USLE), Modified Universal Soil Loss Equation
(MUSLE), and Revised Universal Soil Loss Equation (RUSLE) have been employed [11,12].
There are also physical models that can be used to quantify soil loss averages, such as the
Water Erosion Prediction Project Model (WEPP) [13], the Chemical Runoff and Erosion
for Agricultural Management System (CREAMS) [14], and other models such as The
Erosion-Productivity Impact Calculator (EPIC) [15] and the Limburg Soil Erosion Model
(LSEM). These models, however, cannot predict gully erosion susceptibility because this
type of erosion is controlled by several factors not completely taken into account by their
formulas, including topographic, hydraulic, climatic, soil conditions, and morphometric
characteristics [16]. Furthermore, quantitative models necessitate calibration and are subject
to significant uncertainty in terms of differences between predicted and measured loss
rates [17]. In this regard, other bivariate and multivariate statistical models have been
developed [18]. Furthermore, hierarchical process analysis (HPA) methods [19], logistic
regression models [20], Weight-of-Evidence (WoE) models, and entropy indexes are used
to evaluate the sensitivity to gully erosion [21,22]. Moreover, machine learning techniques
have proven to be an effective tool for assessing and mapping gully erosion [23,24]. These
methods are a subset of the artificial intelligence field that is based on the hypothesis that
computer programs can learn from inventory and model input data without the need for
human intervention [25]. Presently, the use of machine learning-based approaches has
become popular, particularly in the mapping and monitoring of natural hazards, because
they produce high-accuracy results in data processing, classification, and prediction [26]. In
addition, numerous researchers have tested the high performance of deep learning models
in the spatial prediction of vulnerable zones to gullying phenomena [27]. On the basis of this
previous investigation, we aim to fill a gap in the analysis of inventory data by investigating
various possible subdivisions and proposing to researchers and decision-makers a simple,
less expensive, and effective method for predicting soil erosion vulnerability.

The objectives of this investigation are to identify the factors that cause gully erosion
and to test several “decision tree” models to develop a gully erosion susceptibility detec-
tion and prediction model suitable for mountainous and semi-arid areas. It is therefore
essential to evaluate the stability of these models against the variation in training and
testing percentages. Because of this, we will test how well these models perform with
five different splitting of data on Training and Testing: 90/10%, 80/20%, 70/30%, 60/40%,
and 50/50%. The advantage of this kind type of decision tree model is that it determines
the relationships between the explanatory variables, the dependent factors, and the oc-
currence of the phenomenon in a simple tree structure. This makes these models more
comprehensive compared to mathematical formulas or correspondence tables. According
to the literature, numerous studies have used these models to assess and monitor gully
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erosion vulnerability [24,28]. Despite this, the use of these combined approaches to predict
areas susceptible to gully erosion on the one hand, and their tests under different quanti-
ties of input data subdivision on the other hand, remains very limited. Additionally, the
combination of different types of decision trees has never been tested in Morocco, lending
originality to this research. Finally, the development of these advanced methods to map
gully erosion-vulnerable areas is critical because it will support decision-making in terms
of planning and implementing sustainable policies and strategies for land management of
water and soil resources.

2. Materials and Methods
2.1. Study Area

The Lakhdar watershed is one of the Oum Er-Rbia sub-basins (Figure 1) and is located
in the Atlas Mountains axial zone and covers approximately 1600 km2. The study area
is divided into three geomorphological distinct units: High mountains with altitudes
of up to 4000 m, plateaus, and valleys carved deeply by soil erosion. The region has a
major hydraulic structure of critical importance in terms of drinking water supply for
Marrakech city as well as irrigation of the Haouz plain downstream. Geologically, the
Lakhdar watershed is composed of an amalgam of lithologies with a dominance of Jurassic
limestones and Permo-Triassic sandstones; its upstream part is primarily characterized
by detrital deposits represented essentially by clays, marls, and alluvial deposits of the
Quaternary period (Figure 2 and Table 1). The study area is classified as a semi-arid zone
with hot summers (from June to August) and cold winters (since December to February).
The aridity primarily affects the downstream portion of the watershed area; however, the
upstream portion is controlled by high altitudes, resulting in significant spatial differences
in rainfall amounts. In general, the average annual rainfall is approximately 450 mm,
with maximum values of 600 mm recorded in the upstream portion and minimum values
of 300 mm recorded primarily in the downstream areas. The area under investigation
has a deteriorated vegetative cover, which is exacerbated by the dynamics and anthropic
activities that invade the area. This is supported by a 36% reduction in forest area over
the last few decades. As a result, the watershed area serves as a test bed for studying
soil erosion processes and comprehending the erosive processes that occur in a semi-arid
mountainous area.

Table 1. Description of lithological units in Lakhdar watershed, Morocco.

Class Description

1 Silurian: Graptolitic shales

2 Stephano-Triassic: Sandstones and red conglomerates

3 Permian-Triassic: Basalt

4 Lower Lias: Limestones, and red clays

5 Lower Lias: Limestones and marls

6 Middle Lias: Limestones

7 Upper Lias: Conglomerates, sandstones, and clays

8 Dogger: Marls and limestones

9 Quaternary: Alluvial and Rockfull

2.2. Methodology

The current study’s approach includes several major steps illustrated by the flowchart
presented in Figure 3. In addition, the same figure presents an overview of the approach that
was developed for probabilistic gully erosion susceptibility using decision tree models (C5.0,
XGBoost, treebag, GBM, and Adaboost) to produce accurate Gully Erosion Susceptibility
Maps (GESMs).
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2.2.1. Gully Erosion Inventory Mapping

One of the most important indicators for assessing gully erosion susceptibility is the
gully erosion inventory map (GEIM), which presents the spatial locations of the gullies.
The distribution of traditional and present gully locations can be used to estimate the
potential probability of gully erosion in a region. As a result, it is important to create a
gully erosion inventory map in order to estimate the optimal future gully erosion [29]. The
GEIM is required for the preparation of GESMs by various predictive models [30] and was
used as the dependent variable in this study. For GEIM preparation, gully locations were
identified by conducting fieldwork in the study region combined with google earth image
analysis. Gully locations were determined using a handheld GPS device. In the study area,
217 gullies were collected (Figure 1). This database was then randomly subdivided into
five quantities (50/50%, 60/40%, 70/30%, 80/20%, and 90/10%) to assess the performance,
robustness, and stability of the models (Figure 2).

2.2.2. Dataset Preparation for Spatial Modelling

The selection of Gully Erosion Conditioning Factors (GCFs) is a crucial stage in the
development of GESMs using several techniques [31]. In this study, 17 geo-environmental
variables were used for spatial modelling of gully erosion, including elevation, slope, aspect,
rainfall, LandUse-LandCover (LULC), Normalized Difference Vegetation Index (NDVI),
distance to rivers, Drainage Density, Valley Depth, Curvature, Lithology, Geomorphons,
Topographic Position Index (TPI), Topographic Wetness Index (TWI), Topographic Rough-
ness Index (TRI), Slope Length (LS), and Stream Power Index (SPI) (Table 2), while taking
previous literature and multicollinearity into account. Note that for all quantitative factors,
the classification is based on the Natural break technique, as suggested by the majority
of researchers [32].
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Table 2. Data sources used in this study.

Factors Data Layers Data Source

Topographic factors

Elevation
Slope (◦)

Stream Power Index (SPI)
Topographic Position Index (TPI)

Slope Length (LS)
Aspect

Curvature
Topographic Wetness Index (TWI)

Topographic Roughness Index (TRI)

SRTM-DEM (Digital Elevation Model) were
downloaded from the website of United States

Geological Survey (USGS)
(http://gdex.cr.usgs.gov/gdex/ (accessed on

2 August 2022));
Pixel size of 30 m × 30 m.

Hydrological factors Distance To Rivers
Drainage Density

Geomorphological factors Valley depth
Geomorphons

Geological factors Lithology

Geologic map of Ouaouizghte-Dades 1/200,000
Bourcart et al., 1942 [32]

Geologic map of Demnate-Telouate 1/200,000
Termier, 1941 [32]

Climatic factors Rainfall (mm) TRMM data

LAND cover factors
Normalized Difference Vegetation Index

(NDVI)
LandUse-LandCover (LULC)

LANDSAT-8 OLI TIRS satellite image

The elevation data layer was created using the digital elevation model (DEM) obtained
from the USGS (Figure 4a). The study area’s altitude was separated into five groups:
942–1513 m, 1504–1947 m, 1937–2379 m, 2381–2866 m, and 2860–3876 m (Figure 4a). The
slope has a big effect on how gullies form [33]. The slope map was created in GIS using a
DEM and was divided into five groups: 0–9, 10–18, 19–26, 27–36, and 37–71◦ (Figure 4a).
The aspect map, similar to that of the slope map, was created from the DEM and divided
into nine classes: Flat, north, northeast, east, southeast, south, southwest, west, and
northwest. The curvature is also mapped from DEM using GIS and divided into five
classes −24.9 to −2.4, −2.3 to −0.9, −0.8 to −0.4, 0.5 to 2.1, and 2.2 to 30.2 (Figure 4a). The
sediment power index (SPI) reveals the discharge, carrying potential, and water erosion
energy, which influences the sensitivity to gully erosion [34]. The following Equation (1)
was used to obtain the SPI from the DEM:

SPI = As× tanβ, (1)

where As is the upstream drainage area and β is the slope degree. The SPI was classified into
the five sub-categories of 0–443, 444–959, 960–1587, 1588–2547, and 2548–9410 (Figure 4a).
The topographic wetness index (TWI) is regarded as a key gully erosion conditioning factor.
Using the following Equation (2), the TWI was obtained from DEM data:

TWI = In(As/tanβ), (2)

where As is the upstream drainage area and β is the slope degree. The TWI was categorized
into five classes: 2–6, 7–8, 9–11, 12–16, and 17–25 (Figure 4a). The slope length (LS) factor
was calculated also from the DEM by means of Equation (3).

LS = (m + 1)× [As/22]× [sinβ/0.0896], (3)

where As is the upstream drainage area and β is the slope degree. The LS was categorized
into five classes: 0–4.16, 4.16–9.02, 9.02–14.58, 14.58–27.76, and 27.76–177 (Figure 4b). The
Terrain ruggedness index (TRI) indicates the elevation difference between the surrounding

http://gdex.cr.usgs.gov/gdex/
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cells of a DEM [35]. The TRI was classified into five classes: 0–4.49, 4.49–8.66, 8.66–13.80,
13.80–22.46, and 22.49–81.83 (Figure 4b). The topographic position index (TPI) is also
calculated using DEM; TPI is a terrain classification method in which the altitude of each
data point is compared to its neighbors. In a nutshell, we calculate the height difference
between each data point, or pixel in a raster DEM, and its immediate surroundings. The
TPI was classified into five classes: −13–152, 152–298, 298–459, 459–632, and 632–966
(Figure 4b). Drainage density factors were also used and categorized into five classes:
0.14–0.46, 0.47–0.64, 0.65–0.79, 0.8–0.93, and 0.94–1.3 (Figure 4b). The distance from the
river map was prepared by applying the Euclidian distance buffer (EDB) tool in GIS
(Figure 4a). It was classed into five sub-classes, namely 0–185 m, 186–419 m, 420–668 m,
669–966 m, and 967–2052 m (Figure 4a).

Despite the fact that gully erosion is highly dependent on the lithology qualities of the
exposed material near the earth’s surface, lithology indicators play an essential function
in assessing gully erosion vulnerability [33]. The lithological map was generated from
the available geological data of Morocco and was classified into nine classes numbered
one through nine (Figure 4a and Table 1). The NDVI was calculated using the Landsat 8
imagery in a GIS environment following this Equation (4).

NDVI = (NIR− R)/(NIR + R), (4)

where NIR is the near-infrared spectrum and R is the red spectrum. The map was catego-
rized into five classes: −0.12 to 0.1, 0.11 to 0.14, 0.15 to 0.2, 0.21 to 0.31, and 0.32 to 0.58
(Figure 4a). The Land Use Land Cover (LULC) map was obtained from Landsat 8 imagery
based on the supervised classification process in the GIS environment. Water bodies, soil
bare, sparse vegetation, agricultural land, and forest are the LULC classes (Figure 4b).

The geomorphological factors used are Valley depth and Geomorphons. The first was
classified into five classes: −13–152, 152–298, 298–459, 459–632, and 632–966. The second
was classified into ten classes: Flat, summit, Ridge, shoulder, spur, slope, hollow, footslope,
and Valley depression (Figure 4b). Rainfall is a major factor that directly contributes to gully
erosion, and annual precipitation data were obtained from the Tropical Rainfall Measuring
Mission (TRMM). According to the rainfall map, the annual average rainfall in the study
area ranges between 390 and 610 mm.year−1. The most significant values are found in the
south, while precipitation decreases sharply in the north (Figure 4a). The rainfall map was
subdivided into five classes: 330–395, 395–450, 450–505, 505–552, and 552–610.

2.2.3. Multicollinearity Analysis

The multicollinearity test is an important approach to measure the linear dependency
among the specified independent parameters in statistical modelling. This method needs
to be applied to machine learning models in order to improve their performance [31]. This
study used the correlation matrix and variable inflation factor (VIF) methods to determine
the multicollinearity of the Gully erosion factors. Using the correlation between predictor
pairs alone has limitations, whether small or large [36].

2.2.4. Decision Tree-Based Approaches
Random Forest (RF)

The random forest (RF) algorithm is a statistical technique for controlling a large num-
ber of connected variables [37]. In 2001, Breiman [38] developed the technique as a binary
tree decision-making system [39]. RF may also assess dynamic trends and understand
nonlinear connections between explanatory and dependent variables. It will also merge
multiple data formats due to the lack of a uniform distribution of the data used. RF is
ideally suited to geographical studies and is often employed in land movement sensitivity
mapping [40]. This method combines many decision trees, with many bootstrap samples
obtained from the data and a range of input variables arbitrarily added to each tree. Fur-
thermore, the RF approach categorizes elements according to their relevance. The weights
are determined by taking the average decline in forecast accuracy.
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C5.0

C5.0 is a decision tree technique that works by first testing the classifier to classify
unseen data and then using the final decision. Pandya and Pandya [41] demonstrate
decisively that C5.0 is an improvement over C4.5 in terms of processing time, memory
consumption efficiency, error, and, ultimately, classification accuracy. When compared
to more advanced and complicated machine learning models (e.g., neural networks and
support vector machines), the C5.0 algorithm decision trees perform almost as well but are
considerably easier to understand and use [42].

Adaboost

Adaboost is a method for reducing the error of a weak learning algorithm. In the-
ory, the weak learning algorithm can be any that can generate classifiers that are only
marginally better than random guessing [43]. There are two primary issues with boosting:
Determining how to modify the training set so that the weak classifier can train using it and
how to combine the weak classifiers gained during training to form a strong one. Previous
authors [44] developed the Adaboost (adaptive boosting) method, which adjusts the weight
without requiring prior information on learner learning. Adaboost has been employed
in ensembles to increase prediction performance, most notably in neural networks [45],
support vector machines [46], and decision trees [47]. The classifier uses an adaptive resam-
pling strategy to select training samples, which means that a misclassified dataset generated
by a prior classifier is chosen more frequently than correctly classified ones, allowing a new
classifier to perform well in a fresh dataset. Each iteration gives the dataset a weight so
that the following integration concentrates on reweighted datasets that were previously
misclassified. In the final classifier, the ensemble predictions are weighted. The Adaboost
algorithm can be applied to two-class problems, multi-class single-label issues, multi-class
multi-label problems, single-label problem categories, and regression problems [47].

Treebag

Bagging or bootstrap aggregation is an ensemble method developed [48] that involves
repeatedly training the same algorithm using different subsets of the training data. Af-
ter that, the final output forecast is averaged over all sub-model projections. Bagging,
in general, increases classification accuracy by lowering the variation of classification
incertitude [49]. Freund and Schapire [48] claim that bagging can considerably enhance
accuracy if changing the learning set creates a major change in the predictor built. The
ensemble’s majority vote is used to forecast a test sample [50]. Bagging attempts to reduce
the error level owing to the variation of the base classifier by voting on the predictions of
each classifier because each ensemble member is trained with a separate set of data [48].

Gradient Boosting Machine (GBM)

The Gradient Boosting Machine (GBM) is a forward-learning ensemble approach
developed by [51] that is commonly used in machine learning. It is an effective method
for developing predictive models for regression and classification tasks. GBM assists us
in obtaining a predictive model in the form of an ensemble of weak prediction models
such as decision trees [52]. When a decision tree performs poorly as a learner, the resulting
algorithm is known as gradient-boosted trees [30]. Most supervised learning algorithms, in
general, rely on a unique predictive model, such as decision trees and regression models.
However, some supervised ML algorithms rely on the ensemble, which is a combination
of various models. In other words, when multiple base models contribute predictions,
boosting algorithms adapt to an average of all predictions. GBM is made up of three
components, which are as follows: Weak learners, a loss function, and an additive model.

Extreme Gradient Boosting (Boost)

The gradient boosting theory is the basis for the XGBoost model, which combines a
set of weak learners’ predictions to create a robust learner through an additive training
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strategy [53]. The XGBoost model requires a number of parameter selections to pre-
dict the model, but the performance is always dependent on the selection of the op-
timal parameters. Thus, in the modelling process, the user needs to select three key
parameters: colsample by tree (the portion of the variables to be used in each tree), sub-
sample (the subsample ratio for the data to be considered in each tree), and nrounds
(the maximum number of boosting iterations).

2.2.5. Models’ Optimization

Cross-validation is an extremely effective tool in advanced and powerful machine
learning models [54]. It allows us to make better use of our data and provides us with much
more information about the performance of our algorithms. In this research, we used two
approaches: K-fold cross-validation and tuning hyperparameters. For the first approach,
the K-fold cross-validation method splits the input dataset into K groups of identical-size
samples. The name given to these samples is folds. The prediction process uses k-1 folds
for the separate training data and the remaining folds are used for the testing data. This
is a popular CV approach because it is simple to understand and produces fewer biased
results compared to other techniques. For the second approach, the process of tuning the
parameters present as item sets while building ML models is known as hyperparameter
tuning. These parameters are defined by us and can be manipulated as desired by the
scientist in order for the model to perform well.

2.2.6. Validation and Accuracy Assessment

To assess the robustness of the used ML DT-based models used in the GE modelling
process, we employed a number of statistics-based metrics, including sensitivity and
specificity. This enables us to assess how the gully modelling predictive skill is employed
to classify gully locations; specificity denotes the non-gully areas, while sensitivity denotes
the gully area. These methods are relevant to predicting gully and non-gully areas. In
addition, the kappa approach is utilized to assess the reliability of a gully erosion model.
The values fall within the interval of −1 to 1, with 1 representing the best results. In
addition, we used the accuracy, RMSE, and MAE values to assess the performance of the
models tested for each data subdivision. A high value of accuracy and lower values of
RMSE and MAE indicates better results of gully erosion modelling. Finally, the receiver
operating characteristic curve (ROC) is regarded as a standard metric for evaluating the
results of using ML models. To evaluate the performance of the modelling process, we
use four types of possible metrics: True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). All of the equations used to calculate these parameters are
mentioned below:

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

FP + TN
, (6)

Accuracy =
TN + TP

TP + FP + TN + TP
, (7)

Kappa =
Accuracy− B

1− B
, (8)

Where B =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)√

TP + TN + FN + FP
, (9)

RMSE =

√
1
n∑n

i=1(XP − XA)
2, (10)
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MAE =
1
n∑n

i=1

∣∣∣(XP − XA)
2
∣∣∣, (11)

2.2.7. Variable Importance Analysis

We adopted two methods based on the RF model to generate a classification of factors
according to their importance. The first is the mean decrease in accuracy and the second is
the mean decrease in Gini. The mean decrease in accuracy shows how much the model
accuracy loses when a factor is left out. The more the accuracy decreases, the greater the
significance of the variable for effective results. The mean decrease in Gini is a measure
of variable importance based on the principle that whenever a node is split on variable m,
the Gini impurity criterion for the two descendent nodes is lesser compared to the parent
node. Adding the Gini reductions for each variable across all trees offers a rapid measure
of variable importance [55].

3. Results
3.1. Preliminary Data Analysis

The correlation matrix and the variance inflation factor (VIF) were used to examine the
collinearity between the explanatory factors (Figure 5 and Table 3). The correlation matrix
shows a high value of 0.8 between the LS factor and the TRI factor, while the collinearity
of the remaining factors remains acceptable. The VIF shows a tolerance level with values
less than 5: Curvature (1.069), TWI (1.075), and Distance to Rivers have the lowest VIF
values (1.088), and the highest value is related to the LS-factor (3.396). As a result of the
collinearity test, the LS factor has been omitted from the analysis.
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Table 3. Variance inflation factor (VIF) and Tolerance (TOL) results.

Factors VIF TOL

Elevation 1.264 0.791

Aspect 1.118 0.895

Curvature 1.069 0.936

Slope 2.805 0.356

SPI 2.461 0.406

TWI 1.075 0.930

Drainage Density 1.214 0.824

Distance To Rivers 1.088 0.919

Lithology 1.366 0.732

Rainfall 1.406 0.711

NDVI 1.537 0.650

LULC 1.464 0.683

Valley Depth 1.207 0.828

TPI 1.217 0.822

TRI 3.301 0.303

LS 3.396 0.295

Geomorphons 1.494 0.669

3.2. Spatial Relationship between Gully Locations and Effective Factors

A bi-variate statistical approach based on the frequency ratio (FR) was used to correlate
causative factors with the spatial distribution of gullies (Figure 4a,b). For a given factor, this
ratio determines the likelihood of gully occurrence versus non-occurrence [56]. The highest
value of FR is 6.34 represented by the lithology class occupied by sandstones and red
conglomerates followed by the class of limestones and red clays, which had an FR value of
4.24, and lastly, the Basalts class with an FR of 2.36. The TRI factor and curvature represent
a strong spatial correlation with the gullies with an FR value of 2.30 (class 22.46–81.83)
and 1.98 (class 2.2–30.2), respectively. The topographic factors also showed a high spatial
correlation with an FR value of 1.82 for valleys ranging in depth from 298 m to 459 m
followed by the highest class of the LS factor with an FR of 1.81, and then the slope class
(27–36◦) with an FR of 1.72 and the elevation class, which ranges from 1937–2379 m with
an FR value of 1.71. The majority of gullies developed on the southwest-facing slopes,
which is represented by the high value of the Aspect factor (FR = 1.71). Rainfall also has a
strong concordance with gully development where the highest value of FR (1.70) is given
to the maximum rainfall class (552 and 610 mm). Compared with the rest of the factors,
the majority of gullies developed in areas where the distance to rivers was more than
552 m (FR = 1.68), areas classified as the moderate SPI class (FR = 1.66), bare soil areas
with an FR = 1.26 for the LULC factor, and areas in which the NDVI class ranged between
−0.12 and 0.1 (FR = 1.59). Furthermore, the majority of gullies form on slopes and cavity
areas, as indicated by the geomorphic factor, in which FR for these classes is 1.54. The
TWI naturally correlates with gully formation areas; in the current study, this index has an
FR = 1.14 represented by classes 7–8 of the TWI factor.



Soil Syst. 2023, 7, 50 14 of 24

3.3. Variable Importance Analysis

Two measures were considered to identify the importance of the predictive factors of
gully erosion: The average decrease in accuracy and the average decrease in Gini, which is
based on the RF model with four subdivisions of the input database (50%, 60%, 70%, 80%,
and 90%) (Figure 6). In general, the results of these two measures show that all variables
play a role in gully formation. However, some factors were more important in predicting
the spatial distribution of GE based on the average decrease in the accuracy index. The
results show that the factors lithology, geomorphons, elevation, and LULC are the most
important in terms of controlling gully formation. This can be explained by the study area’s
mountainous and geomorphological characteristics, as well as its continuous active tectonic
aspect. These findings also demonstrate the effect of anthropogenic action on gully erosion
sensitivity and the role of vegetation cover protection in combating this phenomenon.
Furthermore, the average decrease in the Gini index results is in perfect agreement with
the previous results, confirming the importance of lithology, geomorphological unit, and
vegetation cover protection in the formation of gullies.
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3.4. Gully Erosion Susceptibility Mapping

The gully erosion susceptibility maps (GESMs) allow us to visualize the spatial dis-
tribution of gullies and identify the areas vulnerable to gully formation. GESMs were
produced using the R interface and reclassified using the natural break method in GIS
software (Figure 7). The percentages of the areas occupied by each gully erosion sensitivity
class in relation to each model are shown in Figure 8. According to these results, the higher
sensitivity classes account for 24% of the total area for the RF and XGBoost models, 23% of
the study area for the C5.0 and GMB models, 25% of the area for the treebag model, and
28% of the total area for the Adaboost model. However, the areas with moderate gullying
susceptibility range in percentage of the area from 28% for Adaboost to 24% for the RF
model, 22% for the C5.0, and 19% for the treebag and GBM models. These findings are
consistent with field observations, as the majority of mapped gullies are classified as having
high or very high gully erosion sensitivity. Furthermore, all gully erosion sensitivity maps
show increasing spatial variation from the very low gully erosion class to the very high
gully erosion class, demonstrating the effectiveness of the models used and the reliability
of the results.
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3.5. Model Accuracy and Validation Results

In this regard, six models were used, the input data were evaluated by cross-validation
ten times for each model, and the accuracy was calculated on the basis of five subdivisions
by four parameters, namely Kappa, ROC-AUC, RMSE, and MAE. As a result, we were
able to identify the degree of discrimination and reliability, reflecting the performance
of the chosen models. Comparing the results obtained (Figures 9–11), the C5.0 model
shows a better performance, especially for the 70/30% subdivision, with an AUC value
of 90.80% followed by the RF model with an AUC value equal to 90.10% for the 80/20%
subdivision, then XGBoost and Adaboost models with an AUC of 90% for the 70/30%
subdivision, then the GBM model with an AUC of 88.20% for the 90/10% subdivision,
and finally, the treebag model with an AUC of 87.7% for the 70/30% subdivision. This
demonstrates that the entire accuracy of the used models is high, particularly at the 70/30%
and 80/20% subdivisions for the majority of these models. The average Kappa index values
for the RF, C5.0, Adaboost, GBM, treebag, and XGBoost models are 0.58, 0.56, 0.59, 0.55,
0.57, and 0.54, respectively. These results are classified as acceptable to moderate. The
average RMSE values range between 0.45 for the RF and Adaboost models, 0.46 for the
C5.0 and treebag models, and 0.47 for the GBM and XGBoost models, indicating that the
output results are of high quality and reliability. In the 10-fold cross-validation analysis,
the prediction models used demonstrated robustness and stability for the calibration and
validation datasets. These models also had a high accuracy, which exceeded 80% for the set
of random subdivisions used.
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4. Discussion

In this section, the results are discussed in three parts: (i) The analysis of the models’
performances; (ii) the investigation of the importance of each geo-environmental factor
in the modelling of gully erosion; and (iii) the analysis of gully erosion vulnerability
mapping results.

4.1. Accuracy Assessment and Comparison

The performance of the modelling is based on two fundamental aspects: Discrimina-
tion and reliability. In this respect, the evaluation of the performance of the GE sensitivity
models was carried out according to five random subdivisions (50/50%, 60/40%, 70/30%,
80/20%, and 90/10%) by 10-fold cross-validation through several statistical metrics, namely
the Kappa index, AUC, RMSE, and MAE.

In terms of prediction accuracy, the C5.0-70/30% model performed the best (AUC = 90.8),
followed by the RF-80/20% model (AUC = 90.1), the Adaboost-70/30% model (AUC = 90),
the XGBoost-80/20% model (AUC = 89.8), the GBM-80/20% model (AUC = 88.2), and
the treebag-70/30% model (AUC = 87.7). These precision values indicate that all of the
models utilized demonstrated a high level of performance and robustness, making them
applicable to a variety of study domains and the monitoring and evaluation of natural
hazards such as soil erosion, landslides, floods, and others [25,57,58]. To confirm this
performance, however, the use of a single accuracy indicator may increase the margin of
error, leading to potentially inaccurate results [59]. In this regard, the determination of
additional accuracy indices such as RMSE, MAE, and the Kappa index can bolster the
validity of the employed models [60]. Although the values of AUC and Kappa in terms of
the discrimination index are greater in the present study, the values of RMSE and MAE are
lower, indicating that the majority of gully inventory points were recognized on the final
gully erosion sensitivity maps, reflecting the accuracy of the used models.

Moreover, despite the fact that these decision tree models are highly intuitive and
do not necessitate a great deal of work in the preparation and processing of the database,
they do require some effort. The obtained results indicate that the accuracy measures have
high sensitivity to random database partitioning. Nonetheless, the majority of models
perform better at the 70/30% and 80/20% subdivision levels, indicating that one of the
disadvantages of decision tree-based models is that a simple change in the database can
result in a change in the general structure of the decision tree and, as a result, model
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instability. For this reason, it is necessary to test multiple subdivisions in conjunction with
10-fold cross-validation to select a more accurate prediction model.

In the case of managing natural hazards such as gully erosion, the primary goal of the
manager is to identify high-risk regions. However, the cost and time required to accomplish
this goal are extremely significant. Consequently, the adoption of predictive models can be
advantageous in terms of costs and resources mobilized to solve such an issue, since these
models enable managers to concentrate on management priorities, thereby enhancing the
efficiency of decision making.

4.2. Geoenvironmental Variable Importance Analysis

Several studies have highlighted that a large database is necessary for obtaining
accurate results and a more accurate prediction of gully-vulnerable locations [61]. For this
purpose, in this work, 17 factors were utilized to build GESMs, including topographical,
hydrological, geomorphological, climatological, and soil-property-associated factors. The
integration of these parameters with inventory data facilitates the identification of regions
with a high risk of gully erosion.

According to five random subdivisions (50, 60, 70, 80, and 90%) of the model training
database and using two measures (the average decrease in accuracy and the average de-
crease in precision), the RF technique determined the importance of the factors. The overall
examination of these results revealed that all influencing variables contribute to gully
formation. Furthermore, lithology, elevation, geomorphic factors, and LULC are the most
significant contributors. This is consistent with the mountainous character of the study area
and also demonstrates the visible influence of human interference on natural ecosystems
on the acceleration of soil erosion. This is because the combination of highly friable litholo-
gies such as clays and marls, high altitudes, and degraded vegetation cover facilitates
gully development, particularly on steep slopes and in places with damaged vegetation
cover [62]. Multiple investigations in comparable circumstances have confirmed that these
variables effectively regulate the degree of soil particle detachment and gully formation
vulnerability [33]. Furthermore, the LULC factor refers to human activities and natural
land surface changes. In addition, the lack of a viable alternative economic sector for the
local population, other than forest exploitation, significantly exacerbates soil erosion (wood,
pasture, etc.). Therefore, people strive to make a living by clearing, overgrazing, and over-
exploiting firewood in order to satisfy the significant rise in demand for arable land [63].

In other words, areas covered by friable lithologies such as clays and marls are the most
susceptible to soil particle detachment [64]; therefore, vegetation cover protects the soil,
and its degradation increases the likelihood of gully formation [62]. In addition, research
on the effect of topographic parameters on gully formation in arid and semi-arid contexts
has revealed the existence of direct and indirect impacts of topographic circumstances on
the evolution of vegetation cover, rainfall, and runoff kinetic energy [65–68]. In reality,
topographical features influence the local climate, which is characterized by geographically
and temporally localized rainfall events, therefore places with steep slopes, such as hillsides,
are characterized by high runoff velocities. This results in soil saturation, a substantial
separation of soil particles, and the creation of ravines. The geomorphic element, which
is also of major importance, verified this. This feature, which enables the mapping of
slope units [69] and demonstrates that the majority of gullies are related to slopes and
depressions, validates the effect of topography on the expression of erosive processes in
mountainous regions.

Finally, all factors demonstrated significance in predicting and identifying regions
with a high vulnerability to gully erosion; however, only the LS component was excluded
because it was inconsistent with the other topographic variables.

4.3. Gully Erosion VulnerAbility Maps

Taking into consideration the subdivision where each model performs best, various
models were used to develop vulnerability maps. The findings reveal that certain factors
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influence the spatial variability in vulnerability more strongly than others. Thus, the rise in
the proportion of the most susceptible regions from upstream to downstream of a basin
is directly attributable to the topographical impact. This is consistent with the substantial
geographical link between these sites and classes with slopes above 27 degrees, TRI > 22,
as well as slopes and Hollow units in Geomorhons’ factor. Moreover, precipitation and
LULC seem to be significant elements in regulating gully development, which is why all
models anticipate that gully formation will be greatest in regions with high precipitation
and degraded vegetation cover. These conclusions are comparable to those of earlier studies
conducted in specific localities of the High Atlas, Morocco [70,71].

Comparing the maps generated by the various models, it is evident that the Adaboost
model predicts more susceptible regions than the other models, especially in comparison to
the XGBoost model, which predicts the fewest vulnerable areas. In general, the differences
between the predictions of the models are limited; this is evident in Figure 7, where the
areas highly susceptible to gully formation were predicted almost identically by all six
models (Figure 7—Areas 2 and 3); however, for the low-vulnerability areas, only minor
differences between XGBoost and the other models can be observed (Figure 7—Area 1).
In general, the results of this study using RF, C5.0, Adaboost, XGBoost, treebag, and GBM
models demonstrates that machine learning methods are capable of producing GESMs with
great precision. This can be viewed as a fundamental tool to aid planners and managers
in ensuring the sustainable and effective management of soil erosion-affected areas in a
semi-arid mountain setting.

5. Conclusions

Gully erosion is a phenomenon of great complexity. To ensure appropriate manage-
ment of this phenomenon, it is vital to comprehend the geographical distribution of gullies
and detect regions with a high possibility of gully formation. Six decision tree models
based on machine learning algorithms (Random Forest (RF), C5.0, XGBoost, 18 treebag,
Gradient Boosting Machines (GBMs), and Adaboost) were tested to determine the role of
17 parameters in gully formation in a semi-arid environment with a hilly character and
to test their stability in response to the changing splitting quantities in input data. The
outcome was six erosion vulnerability maps for gullies. The examination of these results
demonstrates that all the utilized models are robust and extremely reliable at predicting
and identifying the sensitivity to gully erosion and that the most influential factors are
Lithology, LandUse-LandCover (LULC), Geomorphons, and Elevation factors. In addition,
the analysis of factors and their effects on gully formation and soil degradation revealed
that topographical factors, such as geomorphological units and valley depths, play a sig-
nificant role in the formation of gullies in this mountain environment. The validation of
these results is likewise satisfactory, as they demonstrate congruence between the regions
predicted by the ML models and the inventory points recovered from the real field data.
This substantiates the accuracy of the predicted gullies’ future results. The results also
confirmed the need to test the performance of the models under many subdivisions of the
input data in order to build a more accurate and stable model in terms of prediction. In
this semi-arid highland context, the vulnerability maps generated have been shown to be a
valuable tool for the sustainable management and planning of gully-erosion-affected areas.
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