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Abstract: Soils comprise the largest pool of terrestrial carbon yet have lost significant stocks due to
human activity. Changes to land management in cropland and grazing systems present opportunities
to sequester carbon in soils at large scales. Uncertainty in the magnitude of this potential impact is
largely driven by the difficulties and costs associated with measuring near-surface (0–30 cm) soil
carbon concentrations; a key component of soil carbon stock assessments. Many techniques exist to
optimize sampling, yet few studies have compared these techniques at varying sample intensities. In
this study, we performed ex-ante, high-intensity sampling for soil carbon concentrations at four farms
in the eastern United States. We used post hoc Monte-Carlo bootstrapping to investigate the most
efficient sampling approaches for soil carbon inventory: K-means stratification, Conditioned Latin
Hypercube Sampling (cLHS), simple random, and regular grid. No two study sites displayed similar
patterns across all sampling techniques, although cLHS and grid emerged as the most efficient
sampling schemes across all sites and strata sizes. The number of strata chosen when using K-means
stratification can have a significant impact on sample efficiency, and we caution future inventories
from using small strata n, while avoiding even allocation of sample between strata. Our findings
reinforce the need for adaptive sampling methodologies where initial site inventory can inform
primary, robust inventory with site-specific sampling techniques.

Keywords: soil carbon; sampling; grazing; agriculture; stratification; inventory

1. Introduction

The top meter of soil globally contains approximately 1500 Pg C soil organic carbon
(SOC). Soils comprise the largest single pool of terrestrial carbon, containing more carbon
than the atmosphere and vegetation combined [1–3] with estimates ranging to 3500 Pg
C [4,5]. Roughly 116 Pg C has been lost globally in the last 12,000 years due to agriculture,
and approximately one third of that within the last two centuries [2]. Open grazing land and
croplands comprise approximately 40% percent of ice-free landcover both in the continental
United States and globally [6,7]. Because these stocks are large, even small changes in
SOC driven by agricultural soil management practices have potentially large impacts at
scale [8], suggesting that changes in land management might substantially offset carbon
emissions [8,9]. Globally, the application of conservation agriculture could store carbon at
similar rates to recent loss [10,11]. Detailed field data are needed to quantify baseline stocks
and more accurately model change through time at regional and farm scales, particularly
on diversely-managed sites [12].

Soil Syst. 2023, 7, 27. https://doi.org/10.3390/soilsystems7010027 https://www.mdpi.com/journal/soilsystems

https://doi.org/10.3390/soilsystems7010027
https://doi.org/10.3390/soilsystems7010027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com
https://orcid.org/0000-0002-5884-3487
https://orcid.org/0000-0003-2090-4616
https://orcid.org/0000-0002-1592-0577
https://doi.org/10.3390/soilsystems7010027
https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com/article/10.3390/soilsystems7010027?type=check_update&version=2


Soil Syst. 2023, 7, 27 2 of 19

Effective soil carbon measurement is critical to carbon accounting and sequestration
markets, but also of broad agronomic interest. A frequently cited component of soil health
initiatives [13] maintains that even relatively small changes in soil carbon concentration are
linked to increases in yield and yield stability in agronomic systems [14]. These purported
gains may be linked to changes in soil properties such as water holding capacity [15],
though a recent meta-analysis suggests this often-cited relationship is uncertain and may
be overstated [16].

Collecting soil carbon data at national and property scales is imperative for effective
agricultural carbon accounting, understanding links between soil carbon concentrations
and management outcomes, calibrating remote sensing models at multiple scales, and
projecting change in stocks over time [12,17–21]. The reduced cost of multispectral UAVs,
tractor-born sensors, and constellations of small satellites providing high-resolution
daily global imagery fostered the recent expansion in precision agriculture [22,23]. While
this has brought new resources for land managers, and a suite of predictive geospatial
data layers, advances in technology have not occurred in tandem with expanded testing
and open reporting of in-field carbon measurements. Data paucity is largely driven by
prohibitive sampling costs coupled with high spatial variability [17,24–28], although
many countries and governing bodies continue to build systematic carbon inventories at
large scales (e.g., Australia, EU, USA).

Approaches to effectively resolve local variability have developed from design-based
to model-based methods [29]. While simple random sampling can often produce clus-
tered sample locations, and thus areas with insufficient coverage, more regular grid sam-
pling may be either too sparse to capture local heterogeneity or too cost intensive to be
practicable [30–33]. Historical alternatives range from nested sampling designs with vari-
able, pre-determined distances between locations to collecting multiple samples from
one location [34–36]. In recent decades, researchers have defined land areas by common
characteristics, sampling them as sub-units of larger areas [29].

Drawing from large, often public, datasets and advances in remote sensing, stratifi-
cation by coarse geospatial covariates has become an accepted practice [17,20]. When
the sampled variable is spatially autocorrelated, stratification can increase per sample
precision compared to that of non-stratified sampling [25,37–40]. Stratification increases
sampling efficiency when grouping strata by variables that closely relate to variation in
the variable(s) being sampled; if this correlation is closer, the power of its improvement
over non-stratified sampling increases [41–43]. This method produces the greatest im-
provement in sampling efficiency when it produces strata that comprise small internal
variation, reducing total variation per sampled areas; or small size, where strata other-
wise might not be sampled sufficiently [29,39]. Multiple national soil carbon monitoring
programs have applied stratified sampling designs [41]; however, recommendations for
both strata design and sample allocation weights across strata are not often well defined.
Researchers recommend its use for both US national monitoring as well as farm-scale soil
carbon measurement [41,44]. Stratified soil carbon sampling designs have applied varied
geospatial covariates without converging on a standard combination [45,46]. Common
stratification covariates include slope, aspect, soil type, modeled soil carbon values, soil
minerals, soil mineral maps, apparent soil electrical conductivity, and crop yield [45–47].
We note that modeled soil carbon values may be locally unreliable [41]. Increasing the
number of geospatial covariates can result in more efficient sampling, but can also yield
too many strata [17,48]. Lack of agreement over the best method to define strata and the
complexity of applying robust stratification and sample selection process are perhaps
the best explanation for the fact that the majority of on-farm soil inventories still rely on
simple regular grid sampling [17].

Following site stratification, sampling designs vary, with different methods recom-
mended by authors of studies across management systems and geographies [47,49]. Within-
strata soil sampling design methods include conditioned Latin hypercube sampling (cLHS),
Neyman allocation, simple random sampling, stratified random sampling, even sam-
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pling, even sampling with pairs, proportional sampling, and modifications of these meth-
ods [20,36,49]. Sampling designs have been observed to increase efficiency differently on
different sites. However, most studies compare a small number of sampling systems at
a time, often on a single site or within a single geography. Sampling designs based on
site-specific variability can improve design precision, but require a priori knowledge of that
variability [49]. Smith et al. [17] recommend non-intensive pre-sampling data collection
to estimate variability. An approach based on a priori estimates of site variability may be
increasingly useful as more local data is available, or when data from analogous systems
can be applied to increase sampling efficiency at new sites.

There is a need to more robustly assess stratification and within-strata sampling
designs across geographies. Identifying an effective, standard approach to sampling for
soil carbon concentrations can significantly impact carbon sequestration monitoring efforts:
low-cost, scalable, high-resolution soil carbon information that can quantify effects of land
management and management transitions is critical to verification, sending robust data to
support government and commercial incentive programs [24,50].

To that end, we compare the efficacy of 12 simulated soil carbon sampling design
methodologies via a baseline sample optimization using common data from high-density
soil carbon sampling campaigns across four agricultural study sites in Virginia, Ten-
nessee, and New York [14,51]. Our objective is to identify techniques that optimize the
inventory of near-surface (0–30 cm) soil carbon concentrations. We ask several questions:
(a) what combination of geospatial covariates for stratification and within-strata sam-
pling design produce the most efficient sampling systems; (b) how do sampling systems
vary in performance across sites; and (c) what drives variation in sampling system
performance. This analysis will critically inform field research to address potential links
between soil carbon and agronomic outcomes [14] and landscape- and farm-scale carbon
stock assessment and budgeting [51].

2. Materials and Methods

We intensively sampled soil carbon at four research farms in the Eastern United
States from 2018 through 2020 (Figure 1). Sampling intensity varied across farms, from
1.99 to 5.61 samples per hectare. Stone Barns Center for Food and Agriculture (SB) is
located in the southern Hudson River valley (41◦06′18.3′′ N 73◦49′39.3′′ W), primarily on
fine sandy loam soils, dominated by the Charlton fine sandy loam [52]. Summer 2018
sampling occurred primarily on grazing lands in their first year of new management,
with mixed-species grazing from cows, sheep, and ducks. The majority of lands were
previously managed as hay fields. Oak Spring Gardens (OSG) is located in Upperville,
VA (38◦57′42.2′′ N 77◦51′21.9′′ W), in the Piedmont of northern Virginia, primarily on
silty clay loam and loam soils, with the Purcellville silty clay loam as the dominant soil
type [52]. We sampled at OSG across open grassland (conserved and unmanaged since
2016), orchards, and intact forests in spring 2020. Caney Fork Farm (CFF) is located in
Carthage, TN, USA (36◦14′ N 85◦54′ W), along the Caney Fork River on the Highland Rim,
primarily on Armour silt loams [52]. The area sampled in Summer 2019 included warm
season and cool season pasture in current management since 2015, along with a commercial
chestnut-pasture mix. Lock 7 (L7) is a recently acquired parcel of Caney Fork Farms in
Carthage, TN, USA (36◦17′44.2′′ N 86◦00′41.7′′ W), historically in conventionally managed
annual crops, and as of 2020 in the process of transitioning to regeneratively managed
crops and pasture. Soils are primarily on Holston loam [52].
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Figure 1. Location and layout of study sites: (a) Stone Barns Center for Food and Agriculture; (b) 
Caney Fork Farm; (c) Lock 7 at Caney Fork Farm; (d) Oak Spring Gardens. Locator map contains 
POLARIS mean percent organic matter at 5–15 cm depth, highlighting the N-S gradient in soil 
carbon values. 

Soil carbon sampling sites were initially selected through stratified random sampling 
with the Google Earth Engine web application Stratifi [53]. The application uses an 
unsupervised classification algorithm (Weka X-Means) that incorporates vegetation 
indices from Landsat 8 greenest pixel composites (NDVI, NDWI), 
topography/slope/aspect (National Elevation Dataset) and estimated soil carbon stock 
from gSSURGO, SoilGrids, and POLARIS [54–57]. It creates a series of “strata” or areas 
with similar combinations of the above attributes. Weka X-means optimizes the number 
of strata based on the variability of covariates and we limited possible strata to between 
three and ten. Random sampling was allocated based on area of strata. Inputs to 
stratification included NDVI, Slope, Aspect, Elevation, and estimated soil carbon stock 
(gSSURGO) at all sites. We sampled each site at a density of 2 samples ha−1 or greater, with 
the intention of sampling beyond the sampling intensity required by a simple power 
analysis. This enabled post hoc model-selection optimization. We navigated to sample 
locations with the ArcGIS Collector mobile app, using smartphones paired with a Bad Elf 
Surveyor+ GPS. We sampled to 0–15 cm and 15–30 cm depths using metal collection 
buckets and 19 mm ship auger drill bits attached to a cordless hammer drill. After air 
drying, all soils were sent to Ward Laboratories in Kearney, NE, for total carbon (TC) 

Figure 1. Location and layout of study sites: (a) Stone Barns Center for Food and Agriculture;
(b) Caney Fork Farm; (c) Lock 7 at Caney Fork Farm; (d) Oak Spring Gardens. Locator map contains
POLARIS mean percent organic matter at 5–15 cm depth, highlighting the N-S gradient in soil
carbon values.

Soil carbon sampling sites were initially selected through stratified random sam-
pling with the Google Earth Engine web application Stratifi [53]. The application
uses an unsupervised classification algorithm (Weka X-Means) that incorporates veg-
etation indices from Landsat 8 greenest pixel composites (NDVI, NDWI), topogra-
phy/slope/aspect (National Elevation Dataset) and estimated soil carbon stock from
gSSURGO, SoilGrids, and POLARIS [54–57]. It creates a series of “strata” or areas with
similar combinations of the above attributes. Weka X-means optimizes the number
of strata based on the variability of covariates and we limited possible strata to be-
tween three and ten. Random sampling was allocated based on area of strata. Inputs to
stratification included NDVI, Slope, Aspect, Elevation, and estimated soil carbon stock
(gSSURGO) at all sites. We sampled each site at a density of 2 samples ha−1 or greater,
with the intention of sampling beyond the sampling intensity required by a simple power
analysis. This enabled post hoc model-selection optimization. We navigated to sample
locations with the ArcGIS Collector mobile app, using smartphones paired with a Bad
Elf Surveyor+ GPS. We sampled to 0–15 cm and 15–30 cm depths using metal collection
buckets and 19 mm ship auger drill bits attached to a cordless hammer drill. After air
drying, all soils were sent to Ward Laboratories in Kearney, NE, for total carbon (TC)
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analysis by dry combustion, following oven-drying. We conducted data analysis with
RStudio Version 1.4.1717, ArcGIS Pro 2.7, and Google Earth Engine.

After sampling, we excluded results from all forested areas and redrew study area
boundaries to ensure consistency across our predominately open, agricultural study
sites. We calculated summary statistics and measures of spatial autocorrelation with
semivariograms in R for all study sites and spatial statistics for clustering (Getis-Ord)
and autocorrelation (Moran’s I) in ArcGIS Pro. We performed a power analysis for each
of our full datasets to calculate the ideal number of samples for each property at 90%
confidence (z = 1.645) where E = 5% error of whole study site mean carbon values and
σ = standard deviation of the sample mean:

(
n =

(
Z× σ

E
)2
)

[25]. We note here that this
analysis looks at optimization of soil inventory; to optimize based on the ability to detect
a given change in concentrations, sample intensities would be significantly higher.

We conducted a Monte Carlo bootstrapping approach by simulating the application
of 12 sampling techniques on our data, iteratively increasing sampling intensity for each
methodology from 5 to 245. With 500 iterations at each sample intensity and two clustering
treatments (3 strata and 5 strata), this represents 240,000 simulated sampling events for each
technique, and 2.88 × 106 sampling events per each site. As our empirical sampling at each
site was biased towards stratified-random techniques, we developed a hybrid sampling
simulation based on the combination of a raster surface and true empirical samples. For
example, if we were to simulate taking 20 simple random samples at CFF in a single
iteration, we would place those samples within the site boundary and either (a) extract
soil carbon measurement from an existing empirical sample if within a 30 m radius of
a given random sampling location, or (b) extract predicted soil carbon values from an
interpolated raster surface. With this technique, we were able to avoid the biases inherent
in our initial sampling designs in our Monte Carlo simulation—i.e., even though samples
were initially collected via stratified random sampling, this a/b approach limits the effects
on our non-randomized initial approach.

Predicted, interpolated raster surfaces were generated using Empirical Bayesian Krig-
ing (EBK) (ArcGIS Pro 2.7) for each study site. We calculated RMSE to ensure that models
were within the range of variability of each study site. These four EBK raster layers at
ten-meter resolution provided a continuous predictive surface of total carbon across each
of the study sites (Figure 2).

We generated strata at each site using K-means unsupervised classifications (R stats
package). We ran the bootstrapping model with two sets of strata limitations, the first at
three strata—the minimum for many sampling protocols (e.g., CAR, FAO, VCS [58–60])—and
the second at five strata. We generated these strata with two different sets of input data,
the first using a single Polaris organic matter layer and the second with a set of Open
Geospatial covariates (Table 1). We ran this analysis in order to compare the efficacy of
stratified sampling techniques using (a) a single predictive layer of our variable of interest
vs. (b) multi-covariate inputs related to productivity and landform. Input data for Polaris
was derived from 5–15 cm log-transformed mean om tiles from POLARIS, a 30 m resolution
national-scale probabilistic soil layer [56], and was designed to mimic inputs needed for
sampling designs using a Neyman Allocation, such as Ospats [20]. Input data for SG
included NDVI (Sentinel 2); elevation, slope, and northness (national elevation dataset);
and predicted SOC (gSSURGO).
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intensity of the power analysis (n = 58), (C) Grid at power analysis results intensity, (D) Northness 

Figure 2. Sampling inputs at Oak Spring Garden. (A) all samples on the study site, (B) SRS at intensity
of the power analysis (n = 58), (C) Grid at power analysis results intensity, (D) Northness (yellow,
closer to north, blue, closer to south), (E) Slope (yellow is steeper, min: 0, max: 17.3), (F) NDVI (yellow
is higher NDVI, min: 0.22, max: 0.81), (G) Stratified geospatial from (D–F), (H) Interpolated mean
carbon from measured TC using Empirical Bayesian Kriging (EBK) (yellow is higher, min: 0.79, max:
2.71), (I) Polaris mean OM (yellow is higher, min: 0, max: 2.77), (J) K-means Stratified from I.

Table 1. Information about modeling approaches including inputs to stratification and strata.

Model Sub-Model Labels Geospatial Inputs Number of Strata

Simple Random
Sample SRS Study Area Boundary -

Grid Sample Grid Study Area Boundary -

cLHS cLHS (p), cLHS (g)

p: Polaris Mean OM
5–15 cm

g: NDVI (Sentinel 2
L1c), Slope,

Northness, Soil C
(GSSURGO)

-

K-means

area (p), even (p), bias
(p), neyman (p),

area (g), even (g), bias
(g), neyman (g)

p: Polaris Mean OM
5–15 cm

g: NDVI (Sentinel 2
L1c), Slope,

Northness, Soil C
(GSSURGO)

3/5

For each K-means classification (Open Geospatial and Polaris) we allocated sam-
pling within individual strata using four-substrata random sampling approaches (Table 1):
(1) Neyman allocation optimizes sample allocation for a given strata based on total samples
(n), mean covariate values (e.g., geospatial covariates or Polaris) per strata (xs), mean
covariate across all strata (x), in-strata standard deviation of covariates (σs), and standard
deviation across all strata (σ): ns = n × xs×σs

x×σ [61]; (2) area-weighted sampling (AWS)
randomly allocates samples to strata on an equal area basis such that larger strata re-
ceived a proportionally larger number of random samples; (3) even-weighted sampling
randomly allocates an equal number of random samples to strata regardless of strata size;
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and (4) mean bias-weighted sampling randomly allocates samples weighted towards strata
(nk) with average laboratory-measured TC values (xk) closest to the TC mean (xk) for the
study site: nk = log

(
∑ |xk−x|

xk

)
. While we use laboratory values for mean bias-weighting,

future studies could alternatively use ex-ante estimates of predicted or locally observed
SOC values.

In addition to the eight K-means sampling approaches outlined above, we simulated
three sitewide sampling approaches—simple random sampling (SRS), grid sampling (Grid),
and Conditioned Latin Hypercube Sampling (cLHS) (Table 1). We used the spSample
tools in the R package sp to create simple random and regular (Grid) sample designs.
Conditioned Latin Hypercube Sampling (cLHS) allocates a random sample to optimally
represent the distribution of ancillary input data, such as environmental covariates [62]. We
used the cLHS R package [63] and the Open Geospatial and Polaris data as inputs—thus
creating two cLHS sampling approaches.

For each of these 12 sampling simulations, we performed Monte Carlo bootstrapping
of 500 iterations at 240 unique sampling intensities to achieve an estimate of the mean for
which the 90% confidence interval was within a 5% margin of error of the true site mean per
laboratory measurements (Figure 3). This is the point at which we assume the distribution
of the sample is no longer significantly different from the distribution of the carbon samples
for the entire study site. We simulated a minimum of five and a maximum of 245 samples
chosen from within the study area for each site for each sampling approach.
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Figure 3. Monte Carlo Bootstrapping at OSG. Each line represents one of 12 different models and
shows the percent of 500 model runs that meet the target threshold out of 500 model replicates. The
dashed horizontal line sits at 90%.

Simulated points draw their values from the nearest field sampled location using
the st_nearest function (sf package CRAN) if within 30 m of a physically sampled site. If
further than 30 m, values are assigned to simulated points based on underlying interpolated
surface derived from Empirical Bayesian Kriging (Figure 4). At each sample intensity n, and
iteration i, we calculated the mean and standard errors and used these values to calculate a
90% confidence interval for each n

(
cin = 1.645× σni√

n

)
. We recorded each iteration where

this 90% confidence interval was less than or equal to 5% of the site population mean:
cin ≤ E → idealn . We set an optimization threshold (e.g., ideal sample size for each
sampling technique) at the first sample step n where 90% of iterations were less than or
equal to this threshold.
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Figure 4. Obtaining carbon values from the nearest known location in simulated sampling. Each of
the five points draws its value from the nearest location if within 30 m of a physically sampled site. If
further than 30 m, values are assigned to simulated points based on underlying interpolated surface
derived from EBK. Dark purple points have lower percent carbon, bright yellow have highest.

We grouped optimization results from our sampling approaches into broad categories
based on inputs to stratification (No Strata, Polaris, Open Geospatial) or by in-strata sam-
pling techniques (No Strata, cLHS, Area, Even, Neyman, Biased) for the five-strata models.
We normalized the results of the analysis for each site prior to grouping, with values of
zero indicating the most efficient sampling approach, and values of one indicating the least
efficient. We used these groupings as inputs to ANOVA analysis (multcompvar) to test for
significant differences between stratification inputs or in-strata sampling approaches.

3. Results

Soil carbon content of our study sites increased in magnitude from south to north,
with low mean carbon values at L7, moderate carbon values at CFF and OSG and high
values at SB (Table 2). All sites displayed log-normal distributed carbon values. Site
variability (sd) was lowest at CFF, followed by OSG, L7, and SB with the highest. All
sites demonstrated significant high-value spatial clustering (Getis-Ord, p < 0.0001) and
spatial autocorrelation (Moran’s I-p < 0.0001), indicating the clustering of high-carbon
samples. Autocorrelation (range from semivariograms) ranged from 44 m at CFF to 200 m
at OSG. While the uncertainty of drawing samples from the EBK surface is not explicitly
incorporated into our results, RMSE for our EBK models was generally within the range of
variability of our datasets, with the exception of SB, which had a relatively higher RMSE in
its EBK.

Per power analysis, ideal samples for all sites ranged from 2.22 samples ha−1 at L7 to
0.25 samples ha−1 at OSG (Table 2). The farms with the highest SD relative to mean carbon
values (L7 and SB) were correlated with higher sample intensity power analysis (Table 2).
While OSG (mean: 1.43, sd: 0.33) and CFF (mean: 1.4, sd: 0.29) had similar soil carbon
distribution, there is less variability per acre at OSG, and therefore a much lower sampling
intensity was produced by power analysis.

Effective K-means sampling intensities differed substantially between sampling in
three strata and in five. At five strata, 11 sampling approaches (23%) were less efficient than
a power analysis, yet these sampling schemes were restricted to OSG and CFF (Figure 5). At
OSG, all approaches using K-means stratification were either equal to or less efficient than
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power analysis; at CFF, all K-means approaches (with the exception of Neyman allocation
using Polaris) were similarly less efficient than power analysis. At three strata, 15 sampling
approaches (31%) were less efficient than the power analysis, spread across all study sites.

Table 2. Summary statistics across sites including sample intensity, soil type, range/sill from semi-
variogram, and interpolation error.

Farm N-Samp Ha Samples ha−1 Power ha−1 Dominant Soil Type Mean
Total C

SD
Total C Range/Psill EBK

RMSE

OSG 569 234.0 2.43 0.25 Purcellville silty clay
loam 1.43% 0.33 240.2/0.02 0.283

CFF 344 61.3 5.61 0.75 Armour Silt Loam 1.4% 0.29 44.6/0.02 0.247

SB 207 104.1 1.99 1.14 Charleton Fine Sandy
Loam 2.49% 0.82 146.3/0.04 0.758

L7 245 70.7 3.47 2.22 Holston Loam 0.89% 0.34 252.0/0.13 0.256
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3.1. Five Strata

At five strata, we see little evidence that any one in-strata sampling approach for
K-means stratification outweighs any other. With the exception of K-means stratification
using Polaris, all other strata types were significantly more efficient than power analysis,
led by Grid and SRS, and followed by Open Geospatial. cLHS significantly outperformed
power analysis, either using Open Geospatial or Polaris inputs. All sites had a cLHS model
as the most efficient model, with the exception of L7, which had cLHS as the second-best
model behind Grid.

Broadly, we see that sites with high variability (SB, L7) see benefits from stratified sam-
pling approaches, while sites with low variability (CFF, OSG) show fewer improvements in
sample efficiency with stratified sampling.

3.2. Three Strata

In contrast, with three strata, we see a significant reduction in sampling efficiency
when using even allocation within strata (Figure 5). This holds true across all sites,
although is most dramatic at OSG and CFF. Unlike five strata, we see K-means stratifica-
tion with area-weighted, mean-biased, and Neyman allocation outperforming the power
analysis. cLHS and No Strata are the most efficient sampling schemes, outperforming
all K-means stratification schemes. All sites with three strata stratification have regular
grid sampling as the most efficient technique, with the exception of OSG, where cLHS
optimizes sample intensity.

On the whole, we see sites with low variability (OSG, CFF) display few increases
in efficiency from stratified sampling, with outsized penalties for choosing Even sample
allocation approaches. Sites with high variability (SB, L7) still show improvements to
sample efficiency with stratified sampling, with the exception of Even sample allocation,
yet we note that the penalties associated with this approach are not as large as those seen at
low variability sites.

3.3. All Site Summary

Per ANOVA results for five-strata approaches, across all sites we see No Strata
(Grid and SRS) and cLHS with both Polaris and Open Geospatial inputs significantly
outperform (a) K-means sampling with Polaris and (b) power analysis (Figure 6). K-
means sampling with Open Geospatial does not significantly outperform power analysis,
yet it is also not significantly outperformed by No Strata or cLHS—as are K-means
models with Polaris inputs.

There were three clear patterns that emerged across all four study sites: first, no two
study sites display similar patterns across all sampling techniques at either stratification
level; second, cLHS and Grid emerged as the most efficient sampling schemes across all
sites and strata sizes; and third, the number of strata chosen when using K-means shows
that stratification can have a significant impact on sample efficiency.
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with the lowest sampling intensity and one as the submodel with the highest sampling intensity.
Labels on individual boxes reflect results from ANOVA, reflecting significant differences between
groups a, b, and c.

4. Discussion

While many agree that sequestering carbon in agricultural soils is a viable natural
climate change mitigation strategy [10,64,65], there is continual disagreement about if and
how soil carbon stocks can be measured on local and national scales [17,66]. It is clear, how-
ever, that regional, national, or even global incentives for agricultural carbon sequestration
should be supported by the best-established practices for measuring landscape-scale soil
carbon stocks [17].

Our results do not reveal a single optimized sampling scheme applicable to the
inventory of soil carbon concentrations at the four study sites considered here. Our analysis
does suggest, however, that several general principles can be applied to reduce sampling
effort at a given level of desired inventory precision. First, even at the farm-scale, cLHS,
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Grid, and SRS generally outperform all forms of stratified sampling. Second, stratification
efficiency with both cLHS and K-means is similar when using either the Polaris predictive
carbon layer or Open Geospatial predictors, indicating that a single predictive soil carbon
layer can be as efficient in designing sampling schemes as a stack of predictive layers. Third,
depending on the number of strata, Even-weighted sampling within strata can produce
dramatically misleading results and should be avoided at all costs.

4.1. Grid Sampling

While researchers tasked with farm-scale inventory, especially for regulatory pur-
poses, often avoid systematic sampling [67], we show here that regular grid sampling
is often among the most efficient sampling methodologies. We posit that at sites similar
to ours—with relatively high sample intensities and small study areas—grid sampling is
likely to obtain reliable representative samples, while avoiding chance sample clustering
around hot-spot carbon locations. While this does not point to the need to perform grid
sampling across the board, it indicates that it can be an effective sampling methodology
when performed under the right conditions.

We propose that sampling designs for significantly larger regions than those studied
here would see a dramatic decrease in the efficacy of Grid sampling. We see the efficacy
of Grid sampling fall significantly across our four study sites and as we move into the
largest study site (OSG)—the only site where Grid sampling does not outperform our power
analysis. Further studies should investigate this trend to confirm the general understanding
that design-based methods gain efficiency on larger scales.

4.2. cLHS

Despite broad similarities between cLHS and K-means sampling approaches (i.e.,
variation across single or multiple input surfaces dictates the placement of sampling
locations) [62], cLHS consistently outperforms stratification. Rather than creating strata
based on the variability of the study area and then sampling randomly within strata, cLHS
skips the intermediate step of defining strata and assigns sampling locations to maximize
variability/entropy across all input surfaces. Functionally, sample locations from both
techniques should be placed to capture the variability in each system.

However, given the significant effects that number of strata can have on inventory
accuracy, cLHS emerges as a methodology more resilient to errors in study design—i.e.,
choosing an arbitrary number of strata is not possible with cLHS. As both approaches
should theoretically accomplish similar goals, it appears to be the prudent choice for our
study sites to choose cLHS over stratified sampling for this very purpose. In this, cLHS
appears to function equally well using a single predictive carbon layer (Polaris) or a stack
of geospatial predictors. We posit that sampling via cLHS may be similarly effective on
study sites with similar size and variability.

4.3. Polaris vs. Open Geospatial

Our analysis mirrors others in demonstrating that the choice of inputs for initial
stratification can be an important driver of design efficiency [68]. Yet, even as there
is wide agreement that stratification is valuable and that soil spatial variability can
be described with models such as SCORPAN [69], there is little consensus on which
geospatial inputs produce the most precise stratified sampling plan at a given sam-
pling intensity. Potash et al. [70] show that stratified sampling with single covariates
(e.g., a Sentinel-2 derived SOC index) or combinations of covariates (Sentinel 2 indices,
landform, etc.) leads to reductions in sample error relative to simple random sampling.
Across all sites, we see no appreciable difference in sampling efficiency between Polaris
and Open Geospatial predictors with cLHS. However, we do show that with the use
of K-means stratification, Open Geospatial does slightly outperform Polaris—which
significantly underperforms cLHS and Grid sampling (Figure 6). While this, of course,
does not hold true for every one of our sites, it highlights the importance of gaining an a
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priori understanding of the site level accuracy of predictive geospatial layers in advance
of their broad application in sample design. Our results may point to the fact that at
small study sites, stratification performs best with empirical input variables that are
most accurate at local scales—e.g., slope, NDVI. While national-scale predictive models
such as Polaris may be accurate at the national scale [56], their accuracy at the farm
scale is often unreliable [41]. While we do not see a correlation between farm size and
stratification inputs, we posit that as study area size increases, predictive soil carbon
layers may prove to be just as, if not more, efficient in allocating sampling resources.

4.4. Avoiding Small Strata K-Means

We show a dramatic change in sampling efficiency for K-means stratified sampling
with even allocation (e.g., even number of samples per strata regardless of area) based
on the initial number of strata. K-means is sensitive to outliers [71]; thus, where there are
outliers in stratification input layers, clustering can produce one or more relatively small
strata by area. If samples are then allocated evenly across all strata (Even) there is then a
chance that these “hot-spot” strata are oversampled. For CFF (Figure 7), this becomes
especially apparent with Even (g). Strata 3 comprises only 12% of the study site area, yet
under an Even sampling, it would receive n/3 samples: this can both skew the mean
carbon estimates, and artificially increase variability across the entire site. Especially
for CFF, where Strata 2 contains the lowest mean carbon values, this over-allocation of
samples to the smallest strata could significantly impact the accuracy of an inventory.
This does not present an issue with AWS, as Strata 2 would receive a relatively small
number of samples.
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Figure 7. Stratification with certain geospatial surfaces can lead to skewed sampling with certain
in-strata sampling techniques. (A) Strata for CFF using Open Geospatial; (B) mean carbon values
(from laboratory data) per strata; and (C) number of samples per acre with Even sampling with
100 samples across study area.

This finding is particularly relevant considering that many existing soil monitoring
protocols do not explicitly recommend against Even allocation of samples across strata,
rather require a minimum number of samples per strata [58,59]. Protocols such as FAO [59]
suggest the use of minimum samples and AWS, but leave room for interpretation. Others
such as VCS [72] suggest a sample optimization strategy that has the potential to oversample
small, yet highly variable strata. However, some protocols do explicitly recommend AWS
over Even allocation [60]. While it is possible to optimize the number of strata for a study
site (e.g., Elbow Method, Gap Statistic, Silhouette Method), this is difficult without an a
priori understanding of population characteristics, and therefore is often overlooked in
sample design for soil carbon inventory.
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4.5. Cost Penalties

As we show, the difference in precision per number of samples for a given study site
can be large. On small or relatively uniform sites where grid sampling is nearly as effective
as other methods, or where the difference between sampling approaches is small (e.g., most
methods at CFF or L7 with five strata), the sampling cost penalty associated with inefficient
design is slight. However, applied to large holdings, regional campaigns, or on sites where
design choice considerably impacts sampling efficiency, the cost-penalty for inefficient
sampling design quickly adds up (Table 3). Consider our largest study site OSG (234 ha)
and a conservative analytical cost of $20/sample. A land manager looking to obtain a soil
carbon inventory with 90% confidence and 5% error would incur a $90 penalty for choosing
sampling intensity from a power analysis (0.25 samples ha−1) as compared to the best
performing model (cLHS (p): 0.229 samples ha−1). By employing the worst performing
model (Even (p): 0.397 samples ha−1) rather than the best performing model, the cost
penalty for inefficient design increases to $790. These penalties may be larger (as they are
for our three other study sites) or smaller depending on the characteristics of the area of
interest (Figure 3). At large scales or across cooperatives of multiple smaller operations,
these inefficiencies may not be recuperated through management change and/or carbon
market payouts.

Table 3. Cost difference for best vs. worst samples (N) scaled up to 1000 ha per site. Parentheses after
model names reflect inputs to stratification: geospatial (g) or polaris (p).

Three Strata

Power Analysis Best Model Worst Model Cost Diff Per 1000 ha

Farm N × ha−1 Pwr N Name N × ha−1 N Name N × ha−1 N Best v
Power

Best v
Worse

OSG 0.25 58 cLHS (p) 0.229 53 Even (p) 0.397 93 $385 $3376
CFF 0.75 46 cLHS (p) 0.669 41 Even (g) 1.191 73 $1632 $10,442
SB 1.14 119 Grid 0.922 96 Even (g) 1.576 164 $4420 $13,067
L7 2.22 157 Grid 1.868 132 Even (p) 2.476 175 $7074 $12,167

Five Strata

OSG 0.25 58 cLHS (p) 0.229 53 Neyman (p) 0.308 72 $342 $1538
CFF 0.75 46 cLHS (p) 0.669 41 Neyman (p) 0.799 49 $1632 $2611
SB 1.14 119 Area (p) 0.836 87 cLHS (p) 0.980 102 $6149 $2882
L7 2.22 157 Grid 1.868 132 Neyman (p) 2.179 154 $7074 $6225

It is therefore imperative that governing bodies, verifiers, land managers, and others
seeking to incentivize wide-spread soil carbon focused practice adoption understand the
critical importance of thoughtful sampling design and allocation. Specifically, per our
findings, these institutions should explicitly caution participants against (a) small numbers
of strata, and (b) the use of even within-strata sample allocation to avoid these costly
sampling inefficiencies.

4.6. Adaptive Framework

More broadly, this analysis indicates that none of the commonly applied stratification
techniques is likely to emerge as a single optimized sampling scheme applicable to all
regions. We therefore recommend an adaptive sampling approach (Figure 8) similar to
those recommended by carbon measurement protocols [58–60]. An initial cLHS scheme
(or Grid on small properties) can be used to understand spatial auto-correlation, and the
variability and magnitude of near-surface carbon values. A power analysis can then identify
the appropriate sampling intensity for a given level of precision. Results from this study
and future work across more study sties can be used to point out the reduction in sampling
intensity from this power analysis for a full sampling campaign.

While not tested in this study, we hope that as more data in a given region becomes
available, sampling intensity for AWS or cLHS built from Polaris or Open Geospatial
(e.g., with the Stratifi web-app or a K-means/cLHS algorithm in R/Python) or Grid
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sampling could be applied directly based on power analysis information gathered
from analogous areas (i.e., without pre-sampling). In this way, initial inventories in a
given region are likely to incur an ‘early adopter’ penalty, due to the double sampling
necessary to acquire the soil data needed to more efficiently allocate future samples in
a given region. Continued collaboration in the acquisition and sharing of farm-level
inventories may therefore lead to reduced costs for land managers and an increase in
our understanding of sampling design.
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Figure 8. Framework for sampling design. Existing data may be previous soil carbon sampling on
study site, on adjacent properties, or local/regional common-practice baselines based on soil type,
land management, and landform characteristics.

4.7. Future Work

We recognize several areas where future studies could improve on our work: (a) initial
high-intensity sampling designs should be created with either SRS or Grid approaches,
rather than the K-means stratification which we used across all study sites; (b) sites should
explicitly be chosen across a range of landscape variability, to test these approaches at
highly uniform and heterogonous sites; (c) similar techniques should be applied at high
intensities across larger study sites (1000+ ha); (d) backfilling our bootstrapped models with
interpolated EBK surfaces introduces error into our approach that cannot be quantified—
future studies should identify sampling intensities a priori that reduce the need for pulling
EBK values; and (e) similar approaches to those presented here should be applied in future
studies assessing inventory techniques for soil bulk density and in turn landscape-scale
soil carbon stock assessment.

5. Conclusions

Rebuilding soil carbon is emerging as the cornerstone of healthy soil initiatives
and as a central component of natural climate solution schemes, yet managing SOC
requires agricultural producers to adopt new practices that reverse carbon losses from
conventional agriculture (e.g., heavy tillage, continuous overgrazing) [10]. Motivating
producers to transition to these practices in support of land stewardship and climate
mitigation requires low-cost, scalable, high-resolution soil carbon information that
can quantify the costs and benefits of a regenerative agricultural transition [73]. A
central challenge limiting widespread adoption of regenerative soil practices there-
fore is detecting SOC change at management relevant scales (i.e., small changes over
large areas) [74].

No clear “best” model emerged from our analysis, however, across all study sites,
cLHS appears to be the most effective and resilient sampling methodology, while across
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smaller study sites, Grid sampling appears to be just as effective. A single predictive soil
carbon layer (Polaris) was as effective as a stack of predictive geospatial layers on these
sites (Figure 5). If one were to choose stratified sampling with K-means, we recommend
more than three strata and the avoidance of even-weighted sampling.
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