
Citation: Johnston, A.; Adamchuk, V.;

Cambouris, A.N.; Lafond, J.; Perron,

I.; Lajeunesse, J.; Duchemin, M.;

Biswas, A. Proximal and Remote

Sensing Data Integration to Assess

Spatial Soil Heterogeneity in Wild

Blueberry Fields. Soil Syst. 2022, 6, 89.

https://doi.org/10.3390/

soilsystems6040089

Academic Editor: Jarosław

Zawadzki

Received: 20 October 2022

Accepted: 23 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Proximal and Remote Sensing Data Integration to Assess
Spatial Soil Heterogeneity in Wild Blueberry Fields
Allegra Johnston 1,2, Viacheslav Adamchuk 2 , Athyna N. Cambouris 1,*, Jean Lafond 3, Isabelle Perron 1,
Julie Lajeunesse 3 , Marc Duchemin 1 and Asim Biswas 4

1 Quebec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga,
Québec City, QC G1V 2J3, Canada

2 Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road,
Ste-Anne-de-Bellevue, QC H9X 3V9, Canada

3 Normandin Research Farm, Agriculture and Agri-Food Canada, 1468 St-Cyrille Street,
Normandin, QC G8M 4K3, Canada

4 School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
* Correspondence: athyna.cambouris@agr.gc.ca

Abstract: Wild blueberries (Vaccinium angustifolium Ait.) are often cultivated uniformly despite
significant within-field variations in topography and crop density. This study was conducted to
relate apparent soil electrical conductivity (ECa), topographic attributes, and multi-spectral satellite
imagery to fruit yield and soil attributes and evaluate the potential of site-specific management (SSM)
of nutrients. Elevation and ECa at multiple depths were collected from two experimental fields
(referred as FieldUnd, FieldFlat) in Normandin, Quebec, Canada. Soil samples were collected at two
depths (0–0.05 m and 0.05–0.15 m) and analyzed for a range of soil properties. Statistical analyses of
fruit yield, soil, and sensor data were used to characterize within-field variability. Fruit yield showed
large variability in both fields (CVUnd = 54.4%, CVFlat = 56.5%), but no spatial dependence. However,
several soil attributes showed considerable variability and moderate to strong spatial dependence.
Elevation and the shallowest depths of both the Veris (0.3 m) and DUALEM (0.54 m) ECa sensors
showed moderate to strong spatial dependence and correlated significantly to most soil properties
in both study sites, indicating the feasibility of SSM. In place of management zone delineation, a
quadrant analysis of the shallowest ECa depth vs. elevation provided four sensor combinations
(scenarios) for theoretical field conditions. ANOVA and Tukey–Kramer’s post hoc test showed that
the greatest differentiation of soil properties in both fields occurred between the combinations of
high ECa/low elevation versus low ECa/high elevation. Vegetation indices (VIs) obtained from
satellite data showed promise as a biomass indicator, and bare spots classified with satellite imagery
in FieldUnd revealed significantly distinct soil properties. Combining proximal and multispectral data
predicted within-field variations of yield-determining soil properties and offered three theoretical
scenarios (high ECa/low elevation; low ECa/high elevation; bare spots) on which to base SSM. Future
studies should investigate crop response to fertilization between the identified scenarios.

Keywords: precision horticulture; proximal soil sensors; apparent soil electrical conductivity; SPOT
satellite image; management zone; sensor combinations

1. Introduction

Wild blueberries (Vaccinium angustifolium Ait.), are a leading Canadian fruit export
worth an estimated $239 M and distributed in more than 30 countries [1]. From 2011–2019,
wild blueberries contributed an average annual farmgate value of $98.4 M in Canada [2].
Due to their winter-hardiness and ability to thrive in naturally acidic, sandy soils, wild
blueberries make up a significant portion of the agricultural industries of Northern New
England, Atlantic Canada, and Quebec.
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Because of spatially heterogeneous growing conditions—including topography, water
availability, and crop density—wild blueberries could benefit from site-specific nutrient
management (SSM). Some studies have investigated SSM in wild blueberry production.
Variable rate fertilization of wild blueberry based on proximal topographic data (slope)
has demonstrated increased efficiency in nutrient application and reduced subsurface
water contamination [3]. Findings by Farooque et al. (2012) found significant differences
among management zones (MZs) based on yield and soil properties, and furthermore
found significant positive correlations of electrical conductivity (ECa) with soil attributes
and fruit yield, suggesting the feasibility of using ECa data to delineate MZs [4].

Site-specific management based on temporally stable soil attributes are preferred to
yield-based SSM when high yield variability is observed [5]. As a biennial crop, wild
blueberry is susceptible to variability due to variations in seasons, growing conditions,
and management history. Studies have found that soil apparent electrical conductivity
(ECa) relates to several yield-determining properties such as soil organic matter, moisture
content, and soil texture [6–9]. In unsaturated, non-saline soils, ECa has been found to
reflect variations in both moisture availability and soil texture [8]. ECa may be measured via
time domain reflectometry (TDR), electromagnetic induction (EMI), or electrical resistivity.
TDR is a slower, point-based measurement solution which is difficult to adapt to field
scale [10]. Alternatively, EMI and resistivity ECa sensors provide quick, on-to-go proximal
sensing at a sampling density that can detect local-scale variability [11]. When paired
with a global navigation satellite system (GNSS) receiver, proximal ECa measurements
are georeferenced.

In parallel, mapping crop density and delineating bare spots is a field of increasing
interest for wild blueberry and precision agriculture, given the prevalence of bare spots
in young and mismanaged fields [3,12,13]. One study in Nova Scotia reported the per-
centage of bare spots in wild blueberry study sites varied between 30–50% [13]. Excessive
fertilization of bare spots may be economically inefficient and risks contaminating water.
Given their nonlinear response to nutrient application, it is recommended that bare spots
be managed separately [14]. In their study of MZ delineation, Farooque et al. (2012) sug-
gested defining bare spots as a separate class while delineating MZs for nutrient input
savings [4]. Previous research has mapped bare spots with a Global Navigation Satellite
System (GNSS) [3,15] or digital color photography [12,13]. As an alternative, satellite
imagery provides non-invasive and inexpensive data of large sites which can be rapidly
analyzed and classified with vegetation indices (VI). MZ delineation based on VIs have
been explored in grain crops [16,17], but the use of satellite imagery to delineate bare spots
in wild blueberry fields is scarce.

Thus, a combination of proximal and remote sensing data provides improved in-
formation from their complementarity and is rarely addressed for blueberry production.
Proximally sensed soil apparent electrical conductivity (ECa) and topography provide
quick, temporally stable, and dense data auxiliary to yield-determining properties. Soil
ECa has been demonstrated to correlate with several soil properties including soil organic
matter, nutrient availability, moisture content, and texture [6,9,18], while elevation and de-
rived topographic information (e.g., topographic wetness index, slope, elevation) influence
water holding capacity, nutrient accumulation, and water movement.

A common method of data separation for site-specific management is the employ of
an unsupervised clustering algorithm such as fuzzy c-means to group similar data into
MZs, thereby classifying similar values into contiguous zones for uniform treatment within
zones [17,19,20]. The method is robust and widely used, but when several data layers
are combined, clusters tend to reflect the data layer of greatest variability. Alternatively,
the approach in this research aims to equally weigh ECa and topography data. A simple
quadrant method was used to subset the study sites into four theoretical combinations (i.e.,
quadrants) according to their ECa and elevation values: ECLowTopoLow, ECLowTopoHigh,
ECHighTopoLow, ECHighTopoHigh. These theoretical combinations identified extreme and
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spatially continuous areas which represented unique agro-environmental conditions that
may affect soil process and therefore crop yield.

The principal objectives of this study were: (1) to characterize within-field variation
of wild blueberry crop growing conditions; (2) to determine if combining proximally
sensed ECa and topographic data with remote sensing satellite imagery could significantly
distinguish soil properties that may influence fruit yield within the study sites.

2. Materials and Methods
2.1. Study Sites

Two commercial fields, designated as FieldFlat and FieldUnd, were selected for the
study (Figure A1). The fields were located 6 km southwest of Normandin, QC (48.8369◦ N,
72.5279◦W) and north of the Ashuapmushuan River. Soil in the region is primarily podzolic,
mixed with finer eolian deposits [21]. It is characterized by a rich organic surface layer
followed by an eluviated mineral layer, and an illuviated layer where Aluminum and
Iron redeposit. Podzols are characteristically acidic at the surface, and pH increases with
depth. Drainage varies from moderate to good with topography ranging from flat to
some undulation. FieldFlat (11.3 ha) represented a uniform low-lying topography ranging
from 123 m to 125 m elevation, and FieldUnd (13.2 ha) represented a more heterogeneous
topography with elevation ranging from 127 m to 136 m.

2.2. Experimental Design and Field Methods

Soil and fruit yield samples were collected on 8–9 August 2016, in both fields with a
33 m × 33 m grid sampling scheme for a total of N = 136 points in FieldUnd and N = 116
points in FieldFlat. Blueberries were harvested with a hand-held rake from a square meter
of blueberry bushes at each sample location. The weight of the fresh blueberries was
measured and recorded on site. Intensive soil sampling was conducted post-harvest in
October 2016 at the same locations from the organic horizon (0–0.05 m) and the mineral
horizon (0.05–0.15 m). A composite of four soil cores was taken from a 1 m radius of the
sample point to provide a representative sample.

2.3. Soil Analysis

Soil samples were air-dried, weighed, and ground to 2 mm for textural and laboratory
chemical analysis. Total Carbon (C) and total Nitrogen (N) content were evaluated with the
Elementar vario MAX CN analyzer (Elementar Analysensysteme GmbH, Hanau, Germany).
A Mehlich-III soil extractant was used to extract Iron (Fe), Aluminum (Al), Phosphorus (P),
Potassium (K), Calcium (Ca), and Magnesium (Mg) [22]. Soil P content was determined
by colorimetry (Lachat Instruments, model 8500, series 2, Loveland, CO, USA) [23]. Soil K
content was measured with flame emission spectrophotometry [24]. The soil Ca and Mg
contents were determined with atomic absorption spectrophotometry (Agilent Technolo-
gies, model 200, series AA, Santa Clara, CA, USA). Soil pH was determined from water
suspension (1:1, v/v) [25]. The P/Al ratio was calculated from the Mehlich-III extracted
P and Al, as literature has shown it to be a useful indicator for P accumulation in Quebec
mineral soils [26].

Soil particle size was determined for all soil samples at the 0.05–0.15 m depth (i.e., soil
mineral horizon) using the pipette method [27]. Sand partitioning was examined given
that percentage of silt and clay were expected to be low in podzolic soils. Texture was
categorized in terms of grams per kilogram of very coarse sand (1.0 to 0.5 mm), coarse
sand (0.5 to 0.25 mm), medium sand (0.25 to 0.10 mm), fine sand (0.1 mm to 0.05 mm), very
fine sand (0.05 to 0.002 mm), total silt, and total clay according to the Canada Soil Survey
Committee standards [28]. All descriptive statistics of soil analysis are presented in Table 1.
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Table 1. Values of Mean, standard deviation from Mean (SD), and coefficient of variation (CV) for
key soil properties at 0.00–0.05 m and 0.05–0.15 m depths, DUALEM horizontal co-planar (HCP),
perpendicular co-planar (PRP) conductivities, Veris conductivities, and wild blueberry yield collected
after the 2016 harvest from FieldUnd and FieldFlat experimental fields in Normandin, Quebec.

FieldUnd FieldFlat

Unit Mean SD CV Mean SD CV

Soil attributes 0–0.05 m depth

Total Nitrogen (N) % 0.46 0.270 59.1 0.44 0.25 56.7
Total Carbon (C) % 11.1 6.50 58.7 8.80 5.10 57.5

Soil pHwater – 4.70 0.50 10.6 4.50 0.40 7.80
Phosphorous (P) mg kg−1 63.0 54.0 85.1 39.0 48.0 124.0

Potassium (K) mg kg−1 107 70.1 65.3 93.0 56.0 60.4
Calcium (Ca) mg kg−1 361 76.0 21.2 387 99.0 25.6

Magnesium (Mg) mg kg−1 107 71.9 67.0 78.0 53.0 68.7
Aluminum (Al) mg kg−1 889 287 32.3 939 294 31.3

Iron (Fe) mg kg−1 1502 933 62.1 465 338 72.7
P/Al ratio – 0.039 0.038 97.6 0.069 0.049 71.3

Soil attributes 0.05–0.15 m depth

Total Clay g kg−1 23.5 5.20 22.1 26.5 6.10 23.1
Total Silt g kg−1 119.7 75.6 63.1 77.5 30.5 39.3

Total Sand g kg−1 857 74.0 8.60 896 30.0 3.4
Very coarse sand 1 g kg−1 12.0 13.7 113.7 25.4 15.3 60.0

Coarse sand 2 g kg−1 99.9 88.8 88.9 170 88.9 52.3
Medium sand 3 g kg−1 284.8 163.2 57.3 357 103 28.9

Fine sand 4 g kg−1 312.2 123.2 39.5 280 126 45.0
Very fine sand 5 g kg−1 147.8 130.3 88.1 63.3 49.3 77.9

Fruit yield and Sensor data

Fruit yield g m−2 643 350 54.4 399 225 56.5
HCP 1.0 6 mS m−1 4.29 0.73 17.0 4.26 0.35 8.20
PRP 1.1 7 mS m−1 1.33 0.14 10.7 1.02 0.11 10.5
HCP 2.0 8 mS m−1 3.84 0.31 8.10 2.95 0.22 7.60
PRP 2.1 9 mS m−1 1.65 0.11 6.90 1.31 0.11 8.60

Veris Shallow 10 mS m−1 3.21 0.10 2.40 2.70 0.10 2.30
Veris Deep 11 mS m−1 2.86 0.60 22.0 2.30 0.80 34.2

Elevation m 132.2 2.60 1.90 124.3 0.50 0.40
Slope deg 1.90 2.60 134 0.90 1.20 130

TWI 12 – 6.40 3.30 51.6 5.00 2.80 56.4
1 very coarse sand (1.0 to 0.5 mm), 2 coarse sand (0.5 to 0.25 mm), 3 medium sand (0.25 to 0.10 mm), 4 fine sand
(0.1 mm to 0.05 mm), 5 very fine sand (0.05 to 0.002 mm); 6 HCP 1.0 (1.03 m), 7 PRP 1.1 (0.54 m), 8 HCP 2.0 (1.55 m),
9 PRP 2.1 (3.18 m), 10 Veris Shallow (0.3 m), 11 Veris Deep (0.9 m), 12 Topographic wetness index.

2.4. Proximal Soil Sensing

Soil ECa data was measured at six depths using two sensors, the DUALEM-21S
(Dualem Inc., Milton, ON, Canada) and the Veris 3100 (Veris Technologies, Inc., Salina,
KS, USA); this data was used to determine if one sensor or a particular sensing depth
was more predictive of spatial variability or crop growth potential. Elevation data was
simultaneously acquired with DUALEM measurements on 28–29 September 2016, using a
real-time-kinematic GNSS system.

The depth of investigation of ECa measurements depended on the configuration of
the transmitter and receiver coils. The DUALEM-21S has one transmitter coil and four
receiving coils to capture four depths. Receiving coil spacing and arrangement affects
the depth investigation. Receiver coils closer to the transmitter have a shallower depth
of investigation. Additionally, coils arranged in the horizontal co-planar (HCP) receive
lower depths than the perpendicular co-planar (PRP). The DUALEM-21S configuration
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has two PRP coils spaced 1.1 m and 2.1 m from the transmitter (PRP1.1 and PRP 2.1,
respectively), and two HCP coils spaced 1 m and 2 m from the transmitter (HCP1.0 and
HCP2.0, respectively) [29,30]. A schematic overview of the of the DUALEM-21S sensor
is presented in Figure 1. The DUALEM-21S was run for twenty minutes before being
calibrated to reduce the possibility of drift in sensor data. It was pulled on a sled by a John
Deere Gator at a relatively constant speed to maximize contact with the ground. At the end
of sampling, the sensor was passed over previous transects so that data could be reviewed
for evidence of drift.
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Figure 1. Schematic overview of the DUALEM-21S sensor with transmitting coil (T) and four receiving
coils, two (H1 and H2) in horizontal coplanar (HCP) and two (P1 and P2) in a perpendicular (PERP)
loop orientation [29,30].

The depth of investigation of the HCP 1.0 and HCP 2.0 were estimated to be about
1.55 m and 3.18 m, respectively; the depth of investigation of the depths PRP 1.1 and PRP 2.1
was estimated to be 0.54 m and 1.03 m, respectively. Depth of investigation was estimated
where a 75% response is received by the sensor [31]. DUALEM/elevation transects were
spaced approximately 10 m apart and sampled at a frequency of 1 Hz.

Veris ECa measurements were acquired on 21 October 2016. Effective sensing depths
of the Veris Shallow and Veris Deep layers were 0.30 m and 0.90 m, respectively. The
Veris 3100 is a galvanic contact resistivity sensor and derived conductivity from its inverse
relationship with electrical resistivity. It was configured with six rolling coulter electrodes.
Electrical current flows through the second and fifth coulters. The voltage drop is measured
between the third and fourth coulters and first and sixth coulters (Sudduth et al., 2003).
The electrodes are equally spaced in a Wenner array so that resistance is measured at
two depths.

The Veris sensor transects were spaced approximately 3 m apart and sampled at a
density of 1 measurement per second. Slope and topographic wetness index (TWI), ref. [32]
were calculated from elevation data using SAGA GIS (v.2.1.2, System for Automated
Geoscientific Analyses, Hamburg, Germany). The sensor data was prepared by first
removing outliers outside two standard deviations followed by applying a moving average
filter to reduce noise in the sensor data [33]. TWI is a commonly used hydrological index
which describes the tendency of a given cell to accumulate water based on its catchment
area and the slope angle [34]. It is defined as,

TWI = ln
(

SCA
tan ϕ

)
, (1)

where SCA is the Specific Catchment Area and ϕ is the slope angle. Higher TWI values are
associated with greater water accumulation.
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2.5. Satellite Imagery

Satellite imagery of the fields, on 11 August 2016, the same week that yield sampling
was carried out, were obtained from Airbus’s SPOT-6 satellite archive (Airbus Defense
and Space, Ottobrunn, Germany). The SPOT-6 image was delivered georeferenced and
corrected for off-nadir acquisition and terrain effects using the standard Reference 3-D
model for ground corrections (Astrium Services, 2013). The image included red, green, blue,
and near-infrared (NIR) bands at 5 m2 resolution, as well as a panchromatic band at 1.5 m2

resolution. It was pansharpened to 1.5 m2 with the Gram-Schmidt method in ENVI image
analysis software (Exelis Inc., Boulder, CO, USA), then radiometrically and atmospherically
corrected. Pan-sharpening is an image-fusion technique that merges visible multispectral
bands and the panchromatic band to produce color images of higher spatial resolution [35].
Pan-sharpening may affect the accuracy of color information in multi-spectral images, but
the Graham-Schmidt method has been shown to improve spatial resolution with less effect
on color reproduction [36,37]. For the purposes of this study, pan sharpening for a higher
spatial resolution was prioritized over greater color accuracy, given the size of the wild
blueberry bush clusters and bare spots.

Both study sites were subset from the pre-processed image and analyzed separately.
Several broadband VIs known to estimate crop vigor and tree canopy in other studies
were calculated from the multispectral bands (Table A1). In addition to broadband veg-
etation indices, principal component analysis (PCA) has been used in remote sensing to
reduce dimensionality while preserving total variance of a dataset [38]. A smaller set of
Principal components (PC) uncorrelated to one another are derived from the dataset, the
first principal component (PC) representing the greatest proportion of variance, and the
subsequent components accounting for the remaining variance of the original dataset [39].
PCA is frequently used in anomaly detection [40]. The second principal component (PC2)
has been characterized as the “change component” which identifies seasonal changes in
datasets [41,42]. Furthermore, the second principal component (PC2) has been found to
distinguish different types of vegetation [43,44]. Because weeds and other vegetation may
grow between wild blueberry bushes, the resulting PCs were compared with the VIs to
examine if they could distinguish blueberry bush and bare spots.

The vegetation indices were calculated using the band math tool in ENVI software. A
forward PCA Rotation was carried out in ENVI on a subset of the satellite image taken for
each study site. A covariance matrix was calculated from the subset image. The number
of output principal components was set to 4. The four principal components and an
eigenvalue chart were generated. All the VI outputs and the principal components were
exported as raster grids to ArcGIS. The values of each VI and PC raster were extracted at
the geographic points where fruit yield and soil were sampled.

Pearson’s correlation coefficient was calculated for each VI and the sampled yield
in kg ha−1 to evaluate the relationship of the VIs to fruit yield. Sampled yield was also
classified as bare or not bare, where all yield values which were 0 kg ha−1 were given a
value of 0 and all yield values > 0 kg ha−1 were assigned a value of 1. Again, Pearson’s
correlation was calculated for each of the VIs and PC2s with the classified yield.

2.6. Statistical Analysis

All sample and proximal sensor data were normalized using the lambda function of
the ‘box-cox’ package in R (R Foundation for Statistical Computing, Vienna, Austria). The
function automatically selected a box-cox transformation parameter (λ) which minimized
the coefficient of variation of the data series [45–47]. Classical statistics including mean,
standard deviation (SD), and coefficient of variation (CV) were calculated. Previous research
has used CV as a first approximation of field heterogeneity [48]. The percentage of the
coefficient of variation (CV) was used to evaluate the intensity of the variability of the
datasets using the approach of Nolin and Caillier (1992), where CV is classified as weak
(<15%), moderate (15–35%), strong (35–50%), very strong (50–100%), or extremely strong
(≥100%) [49].
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Elevation and ECa data were interpolated to continuous surfaces using the Ordinary
kriging method in ArcGIS (ESRI, Redlands, CA, USA). The values of topographic attributes
(elevation, slope, TWI) and ECa at six depths (i.e., Veris Shallow, Veris Deep; DUALEM
PRP 1.1, PRP 2.1, HCP 1.0, and HCP 2.0) were extracted from their respective kriging-
interpolated surfaces at the same locations as the fruit yield and chemical/granulometric
soil sampling points to compare and quantify the relationship between sensor data, soil
properties, and fruit yield. The correlation coefficient (r) between soil attributes, fruit yield
and sensor data was determined with Pearson’s Correlation.

Spatial statistics were calculated using the ‘gstat’ package in R for all soil properties,
fruit yield, and sensor data to assess spatial variability with R statistical software [50,51].
A theoretical variogram model (Pure nugget, spherical or exponential) was fitted to the
experimental variogram of the box-cox transformed data. The corresponding nugget,
range, partial sill, and total sill were calculated from the best-fitting variogram model. The
degree of spatial dependence was classified using the Cambardella et al. (1994) approach
whereby the nugget-to-sill ratio represented strong (<25%), moderate (25–75%), weak
(>75%), or random (100%) spatial dependence [52]. Interpolated maps were produced for
each of the properties using the Ordinary Kriging (OK) method to assess patterns of spatial
variability. Accuracy of the maps were cross-validated with the leave-one-out method, and
standardized root mean square error (RMSEr) and coefficient of determination (R2) were
calculated for each map for comparison.

2.7. Selection and Comparison of Theoretical Combinations

The sensor layers (ECa and elevation) and their derivatives (slope and TWI) were com-
pared by their correlation coefficients (Pearson’s r) with soil properties to determine which
datasets would be selected for the theoretical combinations of site-specific management
scenarios. Among the six ECa depths, both DUALEM PRP 1.1 and Veris Shallow depths
demonstrated significant correlation with the greatest number of sampled soil attributes in
both fields (Tables 2 and 3). Similarly, elevation was shown to relate to more soil properties
than to the topographic wetness index or slope, neither of which showed significant corre-
lation with most soil properties in either field. Geostatistical analysis revealed moderate
to strong spatial dependence of elevation, Veris Shallow, and DUALEM PRP 1.1 in both
fields, indicating it would be feasible to characterize within-field variation with the sensor
layers (Table 4). Furthermore, the kriging-interpolated maps displayed distinct within-field
spatial patterns between elevation and ECa, suggesting a combination of the two provided
a better reflection of field conditions (Figures A4 and A5). Veris Shallow and DUALEM PRP
1.1 displayed similar spatial patterns on the kriging-interpolated maps, suggesting either
sensor could be used to characterize within-field spatial variability (Figures A2 and A3).
Ultimately, the shallowest sensing depth, Veris Shallow (0.3 m) was chosen with elevation
for the theoretical combinations because it corresponded more closely with the rooting
depth of wild blueberry (0–0.3 m).

Given that only two sensor layers were selected for theoretical combinations, a quad-
rant plot was used to identify four theoretical scenarios. Quadrant analysis is a simple
method for classifying or sub-setting data by dividing an x-y scatterplot into four sections
(quadrants). Quadrant plots have been used across many research disciplines to classify or
subset datasets [53–55].

A scatterplot which projected elevation on the x-axis and Veris Shallow ECa on the
y-axis was divided into four quadrants based on the median values of the dataset of ECa
while topography was projected with the sample points (Figures 2 and 3). The upper-left
quadrant represented sample points situated in low elevations with high ECa values. The
lower-right quadrant represented points situated in high elevations with low ECa values.
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Table 2. Pearson’s correlation coefficient values of soil nutrients, fruit yield and sensor data
in FieldUnd.

Fruit
Yield Elevation Slope TWI 12 HCP 1.0 6 PRP 1.1 7 HCP 2.0 8 PRP 2.1 9 Shallow 10 Deep 11

Fruit Yield −0.25 ** n.s. n.s. 0.21 * n.s. 0.22 * n.s. n.s. n.s.

Soil attributes 0–0.05 m depth

Total C 0.44 *** n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Total N 0.47 *** n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Soil pH −0.21 * −0.33 *** 0.22 ** n.s. n.s. 0.43 *** 0.32 *** 0.43 *** 0.35 *** 0.46 ***

P −0.21 * −0.29 *** 0.28 ** n.s. n.s. 0.38 *** 0.24 ** 0.38 *** 0.35 *** 0.37 ***
K 0.46 *** n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Ca n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Mg 0.27 ** n.s. n.s. n.s. n.s. 0.20 * n.s. 0.21 * 0.20 * n.s.
Al −0.21 * n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Fe n.s. −0.20 * n.s. n.s. n.s. 0.34 *** 0.23 ** 0.34 *** 0.30 *** 0.23 **

P/Al ratio n.s. −0.31 *** 0.27 ** n.s. n.s. 0.39 *** 0.27 ** 0.42 *** 0.34 *** 0.38 ***

Soil attributes 0.05–0.15 m depth

Total clay n.s. 0.55 *** n.s. n.s. −0.18 * −0.47 *** −0.45 *** −0.53 *** −0.28 *** −0.39 ***
Total silt 0.19 * −0.69 *** n.s. −0.18

* 0.25 ** 0.54 *** 0.61 *** 0.66 *** 0.38 *** 0.30 ***
Total sand n.s. 0.62 *** n.s. 0.17 * −0.24 ** −0.53 *** −0.58 *** −0.62 *** −0.36 *** −0.31 ***

Very coarse sand 1 n.s. 0.33 *** n.s. n.s. n.s. −0.35 *** −0.37 *** −0.38 *** −0.22 * −0.23 **
Coarse sand 2 n.s. 0.63 *** n.s. n.s. −0.22 * −0.64 *** −0.62 *** −0.69 *** −0.44 *** −0.45 ***

Medium sand 3 n.s. 0.73 *** n.s. n.s. −0.18 * −0.66 *** −0.62 *** −0.71 *** −0.45 *** −0.47 ***
Fine sand 4 n.s. −0.22 * n.s. n.s. n.s. 0.28 *** 0.19 * 0.25 ** 0.26 ** 0.34 ***

Very fine sand 5 n.s. −0.74 *** n.s. n.s. 0.21 * 0.68 *** 0.65 *** 0.74 *** 0.48 *** 0.49 ***

1 very coarse sand (1.0 to 0.5 mm), 2 coarse sand (0.5 to 0.25 mm), 3 medium sand (0.25 to 0.10 mm), 4 fine sand
(0.1 mm to 0.05 mm), 5 very fine sand (0.05 to 0.002 mm); 6 HCP 1.0 (1.03 m), 7 PRP 1.1 (0.54 m), 8 HCP 2.0 (1.55 m),
9 PRP 2.1 (3.18 m), 10 Veris Shallow (0.3 m), 11 Veris Deep (0.9 m), 12 Topographic Wetness Index; Correlation
significance denoted by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 0.001, respectively; n.s.where
non-significant at p = 0.05.

Table 3. Pearson’s correlation coefficient values of soil nutrients, fruit yield and sensor data
in FieldFlat.

Fruit
Yield Elevation Slope TWI 12 HCP 1.0 6 PRP 1.1 7 HCP 2.0 8 PRP 2.1 9 Shallow 10 Deep 11

Fruit Yield n.s. n.s. n.s. 0.20 * n.s. n.s. 0.31 *** n.s. n.s.

Soil attributes 0–0.05 m depth

Total C 0.38 *** n.s. n.s. n.s. n.s. 0.33 *** n.s. 0.43 *** 0.40 *** n.s.
Total N 0.39 *** −0.19 * n.s. n.s. n.s. 0.38 *** n.s. 0.46 *** 0.44 *** n.s.
Soil pH −0.21 * −0.29 ** n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

P n.s. −0.31 *** n.s. n.s. n.s. n.s. 0.28 ** n.s. n.s. n.s.
K 0.35 *** n.s. n.s. n.s. n.s. n.s. n.s. 0.32 *** n.s. −0.20 *
Ca 0.18 * n.s. n.s. n.s. 0.31 *** n.s. 0.41 *** n.s. n.s. n.s.
Mg 0.31 *** −0.25 ** n.s. n.s. n.s. 0.32 *** n.s. 0.38 *** 0.39 *** n.s.
Al n.s. −0.29 ** n.s. n.s. 0.25 ** n.s. 0.43 *** n.s. n.s. 0.25 **
Fe n.s. −0.22 * −0.18 * n.s. n.s. 0.29 ** n.s. 0.20 * 0.42 *** n.s.

P/Al ratio n.s. −0.28 ** n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Soil attributes 0.05–0.15 m depth

Total clay n.s. n.s. −0.22 * n.s. n.s. −0.26 ** n.s. n.s. n.s. n.s.
Total silt 0.35 *** −0.20 * n.s. n.s. n.s. 0.31 *** n.s. 0.41 *** 0.34 *** n.s.

Total sand −0.26 ** n.s. n.s. n.s. n.s. −0.25 ** n.s. −0.28 ** −0.32 *** n.s.
Very coarse sand 1 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. −0.29 **

Coarse sand 2 n.s. 0.38 *** n.s. n.s. n.s. −0.35 *** −0.19 * n.s. −0.33 *** −0.31 ***
Medium sand 3 n.s. 0.53 *** 0.27 ** n.s. n.s. −0.46 *** −0.28 ** −0.23 * −0.51 *** n.s.

Fine sand 4 n.s. −0.52 *** −0.22 * n.s. n.s. 0.36 *** 0.23 * n.s. 0.39 *** 0.22 *
Very fine sand 5 n.s. −0.52 *** n.s. 0.19 * n.s. 0.51 *** 0.34 *** 0.24 * 0.49 *** 0.20 *

1 very coarse sand (1.0 to 0.5 mm), 2 coarse sand (0.5 to 0.25 mm), 3 medium sand (0.25 to 0.10 mm), 4 fine sand
(0.1 mm to 0.05 mm), 5 very fine sand (0.05 to 0.002 mm); 6 HCP 1.0 (1.03 m), 7 PRP 1.1 (0.54 m), 8 HCP 2.0 (1.55 m),
9 PRP 2.1 (3.18 m), 10 Veris Shallow (0.3 m), 11 Veris Deep (0.9 m), 12 Topographic Wetness Index; Correlation
significance denoted by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 0.001, respectively; n.s. where
non-significant at p = 0.05.
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Table 4. Summary of spatial statistics including the range of influence, nugget ratio and degree of
spatial dependence as classified by Cambardella et al. (1994) in FieldUnd and FieldFlat experimental
fields in Normandin, Quebec.

FieldUnd FieldFlat

Range
(m)

Nugget
Ratio x (%)

Spatial
Class y R2 Range

(m)
Nugget

Ratio x (%)
Spatial
Class y R2

Soil attributes 0–0.05 m depth

Total N - 1.00 R - 87 0.59 M 0.12
Total C - 1.00 R - 62 0.66 M 0.08

Soil pHwater 82 0.40 M 0.31 104 0.58 M 0.24
P 17 0.27 M 0.10 557 0.00 S 0.35
K - 1.00 R - - 1.00 R -
Ca - 1.00 R - 279 0.66 M 0.11
Mg 8 0.00 S 0.01 - 1.00 R -
Al 58 0.64 M 0.13 40 0.00 S 0.40
Fe - 1.00 R - 86 0.72 M 0.14

P/Al ratio 80 0.71 M 0.40 - 1.00 R -

Soil attributes 0.05–0.15 m depth

Total clay - 1.00 R - 111 0.27 M 0.38
Total silt 5444 0.08 S 0.49 - 1.00 R -

Total sand 479 0.40 M 0.46 - 1.00 R -
Very coarse sand 1 472 0.63 M 0.15 31 0.00 S 0.29

Coarse sand 2 12242 0.01 S 0.42 216 0.15 S 0.62
Medium sand 3 5352 0.04 S 0.65 107 0.21 S 0.60

Fine sand 4 341 0.77 W 0.08 288 0.14 S 0.64
Very fine sand 5 5564 0.02 S 0.72 274 0.06 S 0.74

Fruit yield and sensor data

Fruit yield - 1 R - - 1.00 R -
Elevation 87 0.01 S 1.00 75 0.00 S 0.99

Veris Shallow 10 129 0.63 M 0.53 60 0.03 S 0.49
Veris Deep 11 132 0.72 M 0.20 60 0.03 S 0.06

PRP1.1 7 129 0.32 M 0.45 96 0.32 M 0.15
PRP2.1 9 127 0.23 S 0.67 94 0.78 W 0.10
HCP1.0 6 121 0.13 S 0.85 126 0.65 M 0.76
HCP2.0 8 87 0.00 S 0.90 60 0.03 S 0.66

X: Nugget ratio = (nugget variance/total variance) × 100; Y: S = strong spatial dependence (<25%); M = moderate
spatial dependence (25–75%); W = weak spatial dependence (>75%); and R = random spatial dependence (100%)
[52]. 1 very coarse sand (1.0 to 0.5 mm), 2 coarse sand (0.5 to 0.25 mm), 3 medium sand (0.25 to 0.10 mm), 4 fine
sand (0.1 mm to 0.05 mm), 5 very fine sand (0.05 to 0.002 mm); 6 HCP 1.0 (1.03 m), 7 PRP 1.1 (0.54 m), 8 HCP 2.0
(1.55 m), 9 PRP 2.1 (3.18 m), 10 Veris Shallow (0.3 m), 11 Veris Deep (0.9 m).

A subset of the four theoretical combinations were created by selecting the 15 points
from each quadrant which were situated at the outermost corner of the scatterplot. To
ensure the subsets represented the average soil conditions in their respective theoretical
combinations, the 10 points which showed the greatest similarity in sampled soil properties
and yield were selected for each quadrant. Quadrants were delineated according to median
values in the x and y datasets. FieldUnd displayed a bimodal distribution in ECa data, so
two medians were calculated for ECa in the high elevation region and low elevation region,
respectively (Figure 2).

To compare the four scenarios for significant differences, a Two-way Analysis of
Variance (ANOVA) was calculated. Tukey–Kramer’s post hoc test was performed to
compare the four scenarios and determine the degree of separability of yield-limiting
properties between the four theoretical combinations.
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To compare average soil conditions of bare spots to average field conditions in FieldUnd,
the standardized measurement (Z) was calculated for each soil attribute. Bare spots were
defined as sample points where no blueberries could be harvested in a 1 m2 area. The
standardized measurement was calculated as,

Z =
observed value− sample mean

sample mean
(2)

Tukey–Kramer’s post hoc test was performed again to compare the average soil
attributes of the bare spot scenario and the four sensor combination scenarios in FieldUnd.

The methodology and workflow are summarized in a flowchart in Figure 4.
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3. Results and Discussion
3.1. Descriptive Statistics of Fruit Yield, Soil Properties and Sensor Data

For brevity, only the results from the chemical attributes at the 0–0.05 m depth and
the physical attributes from the 0.05–0.15 m depth are discussed here. Descriptive statistics
of soil attributes, fruit yield and sensor data are summarized in Table 1. Fruit yield
showed very strong variability in both fields (CVUnd = 54.4%, CVFlat = 56.5%). A study
by Farooque et al. (2012) conducted in two wild blueberry fields in Nova Scotia reported
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similar CV values of 49.52 % and 55.36% [4]. Most soil attributes also showed strong or very
strong variability. In FieldFlat, P in the 0–0.05 m depth showed extremely strong variability
with a CV value of 124%.

The high variability observed in yield and yield-determining attributes demonstrated
field heterogeneity of the wild blueberry fields. High CV values of both fruit yield and
soil attributes in FieldUnd and FieldFlat may be explained by extrinsic sources, such as
crop management or weather, or intrinsic sources such as natural variations in soil [56]
and plant density [57]. The CV values of pH showed weak variability (CVUnd = 10.6%,
CVFlat = 7.8%). This may be due to the logarithmic scale of pH and has been observed
in other studies [4,58]. Average soil pH was acidic (4.7), as is characteristic of Podzolic
soils [21].

Silt content and sand partitioning were better indicators of variability in soil texture
than total sand or total clay content. While CV was low for total sand content in both
fields, total silt content showed high and very high variability (CVUnd = 63%, CVFlat = 39%).
Partitioning of sand furthermore revealed variability by sand grain size. In general, soil
texture was more variable in FieldUnd, likely due to the effects of varying topography on
the accumulation of finer soils downslope and coarser soils upslope.

3.2. Relationship of Sensor Data to Fruit Yield and Soil Properties

A summary of Pearson’s correlation coefficients of soil properties, fruit yield, sensor
and topographic data are presented in Tables 2 and 3. In both fields, several soil attributes
which research have shown to be yield-determining showed significant positive correlation
with fruit yield, including total C (rUnd = 0.44, rFlat = 0.38), total N (rUnd = 0.47, rFlat = 0.39),
K (rUnd = 0.46, rFlat = 0.35), and Mg (rUnd = 0.27, rFlat = 0.31). Total C represents the sum of
organic and inorganic C in the soil and is directly related to the soil organic matter (SOM)
content [59]. Higher total C at the soil surface could represent higher SOM, which in turn
improves water holding capacity and nutrient availability [60,61]. Past research found total
N to be the principle limiting nutrient for plant growth, fruit yield, and quality of wild
blueberry in the Lac-Saint-Jean region [62]. Fertilization trials by Percival and Sanderson
(2004) previously found main and interactive effects of soil-applied N, P, and K on stems
per m2 and specifically that soil-applied K influenced stem density and number of set
fruit [63]. The relationship of fruit yield with nutrients at the 0–0.05 m depth may, in part,
be due to the shallow rooting depth of wild blueberry (0.1–0.15 m), which could leave it
sensitive to variations in weather and organic matter coverage [64,65].

In both fields, a negative correlation was observed between fruit yield and soil pH. Soil
pH has been found to relate to foliar nutrient levels with the ideal pH range between 4 to
5 [66], and higher pH values are associated with weed growth which can limit blueberry
stand growth. In FieldUnd the P/Al ratio, which can serve as an indicator of phosphorous
accumulation, did not show significant correlation with yield, but did show significant
correlation with ECa and elevation.

Of the topographic attributes, elevation showed significant correlation with more soil
attributes in comparison to TWI or slope. In FieldUnd, elevation was negatively correlated
with fruit yield (rUnd = −0.25) and strongly negatively correlated with total silt, fine sand,
and very fine sand. In both fields, fruit yield was significantly positively correlated with
total silt content (rUnd = 0.19, rFlat = 0.35). Low lying regions of the field, where finer sands
accumulate, would have improved water holding capacity and nutrient availability. Eleva-
tion also showed a significant negative relationship to pH, P, and Fe. In FieldFlat, elevation
showed significant negative correlation with total N, pH, P, Mg, Al, and Fe. The findings
demonstrate considerable correlation between elevation data and key soil attributes.

The correlation analysis indicated that both DUALEM PRP 1.1 (depth: 0.54 m) and
Veris Shallow (depth: 0.3 m) similarly correlated with the majority of soil attributes, show-
ing significant correlation with 12 of 17 attributes at the mineral depth. Higher correlation
coefficients of soil attributes at these two depths can be explained in part by depth of soil
sampling (0–0.15 m) and in part by the rooting zone of wild blueberries. Wild blueberry
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rhizomes make up approximately 85% of wild blueberry [67] and are found in the first
0.15 m of soil, a majority of which are found in the first 0.10 m [64]. Nutrient storage and
lateral water transport occur at this depth which may explain why the shallowest sensing
depths showed a correlation to a greater number of chemical soil attributes. Again, findings
demonstrate ECa to be an adequate predictor of key soil attributes.

3.3. Spatial Structure of Soil Variability (ECa and Elevation)

A summary of geostatistical parameters, including range, nugget-to-sill ratio, and
spatial class as defined by Cambardella et al. (1994) is presented in Table 4 [52]. Additionally,
the R2 of the observed vs. predicted values are presented. Elevation showed strong spatial
dependence in both fields. All ECa depths showed moderate to strong spatial dependence
in both fields, except PRP 2.1 in FieldFlat which showed weak spatial dependence. Fruit
yield demonstrated random spatial dependence in both FieldUnd and FieldFlat.

Physical soil attributes demonstrated greater spatial dependence than chemical soil
attributes. In FieldUnd, certain chemical soil attributes showed moderate or strong spatial
dependence, including soil pH, P, Mg, and Al. Soil texture attributes which showed
moderate spatial dependence included total sand and very coarse sand. Total silt, coarse
sand, medium sand, and very fine sand all showed strong spatial dependence in FieldUnd.
The same attributes all showed large range values in the variogram model, suggesting
external trends in the field, or drift, such as elevation influence the soil texture [68,69].
Several soil attributes showed weak or random spatial dependence, including total N, total
C, K, Ca, and Fe at the 0.0–0.05 m depth, and fine sand at the 0.05–0.15 m depth. Exogenous
factors such as wind and sun exposure which introduce stochastic processes could have
contributed to a lack of spatial structure for certain chemical attributes [70].

In FieldFlat, several physical attributes showed strong spatial dependence, total sand
and total silt showed random spatial dependence, but the sand partitions (very coarse sand
to very fine sand) all showed strong spatial dependence. At the 0–0.05 m depth in FieldFlat,
total N, total C, pH, P, Ca, and Fe showed moderate spatial dependence and Al showed
strong spatial dependence.

Contrary to FieldUnd, in FieldFlat, more soil attributes showed spatial structure at the
0–0.05 m depth, suggesting that exogenous factors in the surface layer of the soil were not
the only explanation for random spatial structure. A second explanation is that spatial
dependence of fruit yield and many soil attributes occurred at a smaller range than the 33 m
sampling interval [71]. Kerry and Oliver (2003) suggest to sample at one third the range of
ECa data [4,72]. The practical ranges of ECa in FieldUnd varied between 87 m and 132 m,
suggesting a sampling interval ~29–44 m. In FieldFlat, the practical ranges varied between
60 and 126 m, suggesting a sampling interval of ~15–20 m to capture spatial variability.

Attributes which showed no spatial dependence were not used for interpolation by
kriging. Cross-validation of interpolated maps provided the root mean square error (RMSE)
and coefficient of determination (R2) values, which were used to evaluate the accuracy of
each kriging-interpolated map. The RMSE was standardized (RMSEr) by the total variation
to compare among several variables. A RMSEr value >0.71 signifies that the kriging model
accounted for less than 50% of variability at the validation points [73]. Strong spatial
dependence did not always result in higher R2 values or lower RMSEr values (e.g., very
coarse sand content). In certain instances, a linear trend between observed and predicted
values was observable in the cross-validation plots, but the spread of data resulted in high
RMSE and low R2 values. The R2 was generally higher for kriging-interpolated maps of
physical attributes than chemical attributes. Again, a greater sampling density may have
better captured chemical processes and yielded more accurate maps.

Patterns of spatial variability were observed in the kriging-interpolated maps. Certain
attributes followed the same pattern as elevation, while others showed patterns more like
ECa. Others presented unique patterns. The spatial dependence observed among several
agronomic properties (soil texture, pH, P, total N, and total C) and their relationship to
elevation and ECa reaffirmed the viability of site-specific management.
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3.4. Characterization and Delineation of Bare Spots

The standardized values, average soil conditions in bare spots, and average field
conditions are presented in Table 5. In FieldUnd, sampled bare spots occurred in the high
elevation region and were mostly distributed among areas of higher ECa, suggesting that
high ECa alone is not a predictor of fruit yield and reiterating the need to treat bare spots
separately from other parts of the field. Inversely, in FieldFlat, sampled bare spots occurred
in an area of low elevation, low ECa. The average soil conditions in bare spots had a
slightly lower ECa (ZUnd = −0.14 ZFlat = −0.09), yet soil showed higher than average pH
(ZUnd = 0.33, ZFlat = 2.53), and lower than average total C (ZUnd = −0.27, ZFlat = −1.19), K
(ZUnd = −0.59, ZFlat = −1.347), and Ca (ZUnd = −0.25, ZFlat = −1.73). This suggested soil
conditions in bare spots differed considerably from average field conditions, despite little
change in ECa. In FieldUnd bare spots occurred at above average elevations (Zund = 1.1)
and slope (Zund = 0.68), while in FieldFlat bare spots occurred in below average elevations
(Zflat = −1.16) and above average slope (Zflat = 0.47).

Table 5. Statistical comparison of key soil properties in bare spots relative to field averages FieldUnd

and FieldFlat experimental fields in Normandin, Quebec. Standardized measurements (Z) of soil
properties close to a value of 0 resemble the field average.

FieldUnd FieldFlat

Z Score 13 Bare Spot
Average

Field
Average Z Score 13 Bare Spot

Average
Field

Average

Soil attributes 0–0.05 m depth

Total Carbon (C) −1.14 3.64 11.1 −1.24 2.53 8.80
Total Nitrogen (N) −1.17 0.14 0.46 −1.16 0.15 0.44

Soil pHwater 0.91 5.16 4.73 2.29 5.34 4.50
Phosphorous (P) 0.54 92.0 63.4 1.20 96.1 39.0

Potassium (K) −1.04 33.9 107 −1.14 28.9 93.0
Calcium (Ca) −0.34 335 361 −1.46 242 387

Magnesium (Mg) −0.82 48.3 107 −1.09 19.4 78.0
Aluminum (Al) 1.35 1277 889 0.52 1093 939

Iron (Fe) −0.40 1126 1502 −0.80 193 465
P/Al ratio 0.30 0.08 0.069 1.23 0.09 0.039

Soil attributes 0.05–0.15 m depth

Total Clay 0.33 25.3 23.6 −1.57 16.9 26.5
Total Silt −0.59 74.8 120 −1.12 43.3 77.5

Total Sand 0.58 900 857 1.45 940 896
Very coarse sand 1 −0.38 6.85 12.0 0.22 28.8 25.4

Coarse sand 2 0.01 101 99.9 −0.64 113 170
Medium sand 3 0.44 356 285 −0.64 291 357

Fine sand 4 0.41 362 312 1.32 447 280
Very fine sand 5 −0.57 73.6 148 −0.06 60.2 63.3

Fruit yield and sensor data

HCP 1.0 6 −0.64 3.90 4.31 −1.38 3.91 4.26
PRP 1.1 7 −0.46 1.28 1.33 0.168 1.03 1.02
HCP 2.0 8 −0.88 3.59 3.84 −0.73 2.84 2.95
PRP 2.1 9 −0.94 1.58 1.65 −1.02 1.25 1.31

Veris Shallow 10 −0.14 3.20 3.21 −0.09 2.66 2.70
Veris Deep 11 0.08 2.89 2.86 −1.25 1.77 2.30

Elevation 1.09 135 132 −1.16 123.6 124.3
Fruit yield −1.84 0 643 −1.77 0 399

Slope 0.72 3.75 1.90 0.47 1.30 0.90
TWI 12 −0.371 5.22 6.40 0.14 5.50 5.00

1 very coarse sand (1.0 to 0.5 mm), 2 coarse sand (0.5 to 0.25 mm), 3 medium sand (0.25 to 0.10 mm), 4 fine sand
(0.1 mm to 0.05 mm), 5 very fine sand (0.05 to 0.002 mm); 6 HCP 1.0 (1.03 m), 7 PRP 1.1 (0.54 m), 8 HCP 2.0 (1.55 m),
9 PRP 2.1 (3.18 m), 10 Veris Shallow (0.3 m), 11 Veris Deep (0.9 m), 12 Topographic wetness index, 13 Z = observed
value—sample mean/sample standard deviation.

Pearson’s correlation values of VIs and fruit yield are presented in Table 6. The VIs did
not show a strong relationship with fruit yield, but several showed promise for classifying
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bare spots. When fruit yield was classified in binary terms (bare vs. vegetation), the
correlation coefficients of several VIs improved. Correlation between the VIs and FieldUnd
was likely higher because bare spots in the field were larger and more contiguous than in
FieldUnd (Figure 5).

Table 6. Pearson’s Correlation of Vegetation Indices (VI).

FieldFlat FieldUnd

Fruit Yield Bare Spots Fruit Yield Bare Spots

Normalized Difference Vegetation Index (NDVI) 0.07 0.04 0.23 0.46
Transformed Difference Vegetation Index (TDVI) 0.18 0.10 0.29 0.55
Optimized Soil Adjusted Vegetation Index (OSAVI) 0.15 0.04 0.19 0.40
Non-Linear Index (NLI) 0.11 0.01 0.16 0.34
Modified Simple Ratio (MSR) 0.25 0.11 0.26 0.50
Green Ratio Vegetation Index (GRVI) 0.25 0.12 0.22 0.44
Green Difference Vegetation Index (GDVI) 0.04 0.04 0.07 0.25
Enhanced Vegetation Index (EVI) −0.06 −0.29 −0.09 0.04
Modified Soil Adjusted Vegetation Index (MSAVI2) 0.08 −0.01 0.13 0.34
First Principal Component (PC1) −0.08 −0.06 −0.18 −0.21
Second Principal Component (PC2) −0.40 −0.32 −0.39 −0.64
Third Principal Component (PC3) 0.12 0.07 0.01 −0.08
Fourth Principal Component (PC4) −0.00 0.25 −0.08 −0.10
PC2 classified 0.24 0.40 0.40 0.68

As previous research suggested, the second principal component showed significantly
greater correlation values with yield and bare spots than the other principal components.
PC2 showed moderately strong negative correlation with both yield and bare spots. In
FieldUnd, correlation with PC2 and bare spots showed a significantly stronger relationship
than the other VIs and PCs, whereas correlation with bare spots and yield were similar
in FieldFlat.

Because PC2 demonstrated the strongest relationship to crop vigor (rUnd = 0.40,
rFlat = −0.39), Jenks optimization method was used to classify the PC2 raster into two
classes with natural breaks in the histogram [74]. The two natural breaks coincided with the
PC2 bare vs. vegetation. When fruit yield was classified bare vs. vegetation, the correlation
coefficient of PC2 with bare spots improved to rUnd = 0.68, rFlat = 0.40. Xu and Su (2017)
mentioned that limitations to VI yield mapping exist in horticulture due to heterogeneous
canopies of soils, weeds, and cover crops [75]. While PC2 distinguished bare soil and
vegetation, the spatial resolution of the multispectral image did not permit us to investigate
its ability to distinguish types of vegetation.

3.5. Separability of Key Soil Properties among Theoretical Combinations (Scenarios)

A bare spot scenario derived from the classified VI was compared to the four scenarios
in FieldUnd to ascertain whether the integration of bare spots delineated from satellite
imagery improved the separability of key soil properties. The bare spot scenario was not
compared in FieldFlat due to lack of a sufficient number of sample points located within
bare spots.

Tukey–Kramer’s test showed that the greatest number of significantly different yield-
determining properties were observed between scenario ElevLowECHigh and scenario
ElevHighECLow in both fields (Tables 7 and 8). In FieldUnd, six key soil properties were
distinguished (pH at both depths, Fe, coarse sand, medium sand, and very fine sand at the
mineral depth). Other attributes such as pH and medium sand content showed separa-
bility among multiple scenarios, suggesting that site-specific management based on the
combination of sensors may separate distinct soil attributes.
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Table 7. Separability of key yield-determining properties among four distinct scenarios of combina-
tions of Veris Shallow ECa and elevation in experimental field FieldUnd. Values followed by different
letters indicate significant differences according to Tukey–Kramer’s test (p > 0.05). Properties high-
lighted in gray are those separated by the optimal combination of ElevLowECHigh and ElevHighECLow

or by the bare spot classification of the SPOT-6 satellite image.

Property Unit ElevLow ECLow ElevLow ECHigh ElevHigh ECLow ElevHigh ECHigh Bare
Soil attributes 0–0.05 m depth

Total C % 9.69 a 13.1 a 9.24 a 13.9 a 6.93 a
Total N % 0.42 ab 0.54 ab 0.39 ab 0.58 a 0.23 b

pH – 4.72 abc 4.89 ab 4.38 c 4.61 bc 5.13 a
P mg kg−1 61.4 a 81.5 a 51.7 a 39.9 a 101 a
K mg kg−1 99.0 ab 120 ab 117 ab 163 a 60.0 b
Ca mg kg−1 371 a 395 a 367 a 332 a 359 a
Mg mg kg−1 89.9 ab 137 ab 79.1 b 171 a 66.8 b
Al mg kg−1 880 b 906 b 831 b 763 b 1281 a
Fe mg kg−1 1339 a 1995 a 1052 a 2003 a 1173 a

P/Al ratio – 0.070 a 0.088 a 0.057 a 0.49 a 0.086 a
Soil attributes 0.05–0.05 m depth

Total C % 1.13 a 1.16 a 1.05 a 1.53 a 1.16 a
Total N % 0.07 a 0.06 a 0.06 a 0.07 a 0.07 a

pH – 5.13 ab 5.25 a 4.91 b 4.92 b 5.14 ab
P mg kg−1 78.1 a 61.8 a 38.3 a 71.1 a 68.6 a
K mg kg−1 30.2 a 34.9 a 40.1 a 45.5 a 28.7 a
Ca mg kg−1 276.3 ab 330.6 ab 235 b 359 a 290 ab
Mg mg kg−1 6.20 a 8.60 a 5.40 a 8.80 a 7.90 a
Al mg kg−1 1742 a 1624 a 1749 a 1639 a 1657 a
Fe mg kg−1 110 ab 216 a 60.2 b 152 ab 159 ab

Total sand g kg−1 824 a 819 a 892 a 888 a 874 a
Total silt g kg−1 154 a 159 a 81.2 a 84.7 a 101 a
Total clay g kg−1 22.4 a 21.6 a 26.7 a 27.5 a 25.5 a

Very coarse sand g kg−1 4.70 a 8.10 a 15.2 a 10.7 a 17.1 a
Coarse sand g kg−1 75.4 ab 34.1 b 152 a 113 ab 116 ab

Medium sand g kg−1 216 bc 143 c 395 a 391 a 293 ab
Fine sand g kg−1 342 a 399 a 261 a 307 a 330 a

Very fine sand g kg−1 185 ab 235 a 68.9 b 66.4 b 118 ab
Fruit yield g m−2 717 a 632 a 671 a 543 ab 193 b

TWI – 6.70 a 5.54 a 6.60 a 6.94 a 6.40 a
Slope deg 1.50 b 1.22 b 0.31 b 4.79 a 2.99 ab

Furthermore, Tukey–Kramer’s test in FieldUnd showed that the integration of classified
bare spots significantly separated properties in the 0–0.05 m depth which could not be
separated by the four theoretical scenarios. The bare spot scenario was most distinct from
the scenario ElevHighECHigh. Results suggest a number of soil properties are separated
between the ElevHighECHigh scenario and bare spots (Total N, pH, K, Mg, and Al in the
0–0.05 m depth). These findings indicate that FieldUnd, where bare spots were larger and
more contiguous, would benefit from bare spot delineation with satellite imagery to reduce
the use of chemicals and other site-specific management practices that could increase the
profitability of wild blueberry production (Figure 6). Based on the classified image, 75.5 m2

or 8.5% of FieldUnd was bare and 29.3 m2 or 10.7% of FieldFlat was bare. The percentages of
bare spots was low compared to other studies which reported bare spots to be as high as
50% of blueberry fields [13,14].
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Table 8. Separability of key yield-determining properties among four distinct scenarios of com-
binations of Veris Shallow ECa and elevation in experimental field FieldFlat. Values followed by
different letters indicate significant differences according to Tukey–Kramer’s test (p > 0.05). Prop-
erties highlighted in gray are those separated by the optimal combination of ElevLowECHigh and
ElevHighECLow.

Property Unit ElevLow ECLow ElevLow ECHigh ElevHigh ECLow ElevHigh ECHigh

Soil attributes 0–0.05 m depth
Total C % 9.3 ab 12.9 a 4.72 b 12.1 a
Total N % 0.45 ab 0.70 a 0.24 b 0.59 a

pH – 4.58 a 4.64 a 4.51 a 4.28 a
P mg kg−1 40.6 a 70.4 a 26.4 a 24.9 a
K mg kg−1 96.4 ab 99.8 ab 56.8 b 134 a
Ca mg kg−1 456.9 a 376 a 378 a 386 a
Mg mg kg−1 77.9 ab 113 a 36.3 b 124 a
Al mg kg−1 990.6 ab 1232 a 899 ab 792 b
Fe mg kg−1 454.7 ab 766 a 211 b 775 a

P/Al ratio – 0.040 a 0.058 a 0.031 a 0.031 a
Soil attributes 0.05–0.15 m depth

Total C % 1.09 ab 1.37 a 0.87 b 1.19 ab
Total N % 0.08 ab 0.10 a 0.07 b 0.08 ab

pH – 5.08 a 5.05 a 4.96 b 4.90 ab
P mg kg−1 27.2 ab 33.0 a 9.60 b 19.1 ab
K mg kg−1 43.2 ab 46.5 ab 30.8 b 55.2 a
Ca mg kg−1 233.3 a 217 ab 147 b 269 a
Mg mg kg−1 7.9 a 8.1 a 5.00 a 7.2 a
Al mg kg−1 1920.7 a 2057 a 1983 a 2101 a
Fe mg kg−1 219.1 ab 324 a 87.3 b 277 a

Total sand g kg−1 898.1 ab 868 b 910 a 890 ab
Total silt g kg−1 76.9 ab 104 a 60.6 b 85.7 ab
Total clay g kg−1 25.0 a 28.5 a 29.2 a 24.4 a

Very coarse sand g kg−1 26.4 a 31.7 a 30.6 a 32.5 a
Coarse sand g kg−1 143.4 b 126 b 278 a 195 ab

Medium sand g kg−1 334.3 ab 224 b 443 a 336 a
Fine sand g kg−1 330.0 a 373 a 135 b 247 ab

Very fine sand g kg−1 63.9 ab 113 a 24.6 b 79.6 ab
Fruit yield kg ha−1 3893 a 5487 a 3359 a 4755 a

TWI – 4.41 a 6.04 a 4.97 a 5.90 a
Slope deg 0.78 a 0.59 a 0.44 a 1.10 a

In FieldFlat, many (15) soil properties were distinguished between combinations
ElevLowECHigh and ElevHighECLow. Notably, total C and total N were distinct at both
depths. Certain properties (K at both depths, P at the mineral depth) were distinguished be-
tween combinations ElevHighECLow vs. ElevHighECHigh, demonstrating some separability
among these scenarios as well.

In both fields the scenario ElevLowECHigh showed significantly greater very fine sand
content, total silt content, and yield-determining soil nutrients. The findings suggest this
theoretical combination may be favorable to wild blueberry growth in these two studysites.
Sand partitioning illustrated that finer textured soils were more favorable for wild blueberry
yield. Further research to investigate crop response to fertilization between the identified
scenarios is recommended.
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Figure 6. Theoretical combinations of field scenarios in (a) FieldFlat and (b) FieldUnd. The classified
bare spots serve as a third scenario in FieldUnd where bare spots were larger and more contiguous.

All presented growing condition scenarios have been delineated to the size sufficient
for the implementation of site-specific soil treatment plots to define optimum soil treatment
conditions in each case. Since it is clear that at least two scenarios illustrate radically
different production environments in a single field. It is reasonable to suspect different soil
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management needs in these areas. Once established, such treatments could be applied to
corresponding MZs while pursuing discrete prescription variable rate treatments. Alter-
natively, optimum management scenarios could be linked to high-density field elevation,
shallow depth apparent soil electrical conductivity data as well as their combinations to
derive continuous soil management prescription maps.

4. Conclusions

Results confirmed field heterogeneity of fruit yield in both study sites (CVUnd = 54.4%,
CVFlat = 56.5%) as well as a number of yield-determining soil attributes. However, yield
did not show strong spatial dependence. A greater sampling density may better capture
spatial dependence in yield and many chemical soil attributes (eg total C, total N, K).

Spatial variability of soils was best predicted with soil texture. Silt content and sand
partitioning proved to be better indicators of variability in soil texture than total sand or
total clay content. Total silt, coarse sand, medium sand, and very fine sand all showed
strong spatial dependence in FieldUnd, while sand partitioning (very coarse to very fine
sand) showed the strongest spatial dependence in FieldFlat. Physical soil attributes were
significantly correlated with both ECa and elevation, justifying the application of proximal
sensors for a site-specific management approach.

Vegetation indices (VIs) obtained from satellite data showed promise as a biomass
indicator, with the second principal component (PC2) showing the highest correlation
with yield and bare spots in both study sites. In place of a clustering method, a quadrant
analysis of the shallowest ECa depth vs. elevation provided four sensor combinations
(scenarios) for theoretical field conditions. These theoretical combinations may be used to
identify field conditions, rather than zones, requiring variable rate treatment. Prescription
maps may be developed based on nutrient input needs of blueberry in the identified field
conditions. ANOVA and Tukey–Kramer’s post hoc test showed the greatest separability of
soil properties in both fields were between the combinations of high ECa/low elevation
versus low ECa/high elevation. In addition, the bare spots classified with satellite imagery
in FieldUnd showed significantly distinct soil properties. Combining elevation, proximal
and multispectral data predicted within-field variation of yield-determining soil properties
and offered three theoretical scenarios in FieldUnd (high ECa/low elevation; low ECa/high
elevation; bare spots) on which to base site-specific management and two theoretical
scenarios (high ECa/low elevation; low ECa/high elevation) in FieldFlat. Future studies
should investigate crop response to fertilization between the identified scenarios. Future
research directions may also be highlighted.
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Figure A1. Sampling strategy and field layouts of (a) FieldFlat and (b) FieldUnd of selected wild
blueberry fields in Normandin, QC. The sensor track represents DUALEM ECa and RTK elevation
sensor track.

Table A1. Summary of ratio-based VIs calculated from the SPOT image to capture variations in fruit
yield density. The various spectral bands used in the equations are near-infrared (NIR) (760–890 nm),
red (R) (625–695 nm), green (G) (530–590 nm), and blue (B) (450–520 nm).

Name Formula Reference

Normalized Difference Vegetation Index (NDVI) NIR−R
NIR+R [76]

Transformed Difference Vegetation Index (TDVI) TDVI =
√

0.5 + NIR−R
NIR+R

[77]

Optimized Soil Adjusted Vegetation Index (OSAVI) NIR−R
NIR+R+0.16 [78]

Non-Linear Index (NLI) NIR2−R
NIR2+R

[79]

Modified Simple Ratio (MSR)
( NIR

R )−1(√
NIR

R

)
+1

[80]

Green Ratio Vegetation Index (GRVI) NIR
G [81]

Green Difference Vegetation Index (GDVI) NIR− G [82]

Enhanced Vegetation Index (EVI) 2.5 ∗ (NIR−R)
(NIR+6∗R−7.5∗B+1)

[83]

Modified Soil Adjusted Vegetation Index (MSAVI2) 2 ∗ NIR+1−
√
(2∗NIR+1)2−8(NIR−R)

2
[84]
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Figure A2. Ordinary kriging interpolated maps in study site FieldUnd of (a) elevation, (b) derived
slope, (c) derived topographic wetness index (TWI), (d) Veris soil ECa shallow depth, (e) Veris soil
ECa deep, (f) DUALEM PRP1.1, (g) PRP2.1, (h) HCP 1.0, and (i) HCP 2.0.
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Figure A4. Kriging-interpolated maps in FieldUnd of soil attributes (a) Al, (b) P, (c), pH, (d) total
Sand, (e) total Silt, (f) Very coarse sand, (g) Coarse sand, (h) Medium sand, (i) Fine sand, (j) Very fine
sand, (k) P:Al ratio.
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