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Abstract: Acid-volatile sulfides (AVS) are strongly associated with the bioavailability of some divalent
metals such as cadmium, copper, lead, nickel and zinc. However, the global spatial variability of AVS
for aquatic systems is unknown. The specific goals of this study were to: (1) summarize all available
AVS monitoring data from all types of freshwater and saltwater waterbodies (streams/creeks, rivers,
lakes/ponds/reservoirs and estuarine/marine areas) and (2) compare AVS concentrations from these
various types of waterbodies considering both soil type classification and biomes. AVS measurements
were reported from 21 different countries. A total of 17 different soil types were reported for all
waterbody types and both podzols and luvisols were found in all waterbody types. Nine different
biomes were sampled for all waterbody types. The temperate broadleaf and mixed forest biome was
sampled for AVS in all waterbody types. Mean AVS concentrations ranged from 0.01 to 503 µmoles/g
for 140 different waterbody types and the 90th centile for all these waterbodies was 49.4 µmoles/g. A
ranking of waterbody type means from low to high AVS measurements showed the lowest mean
value was reported for streams/creeks (5.12 µmoles/g; range from 0.1 to 39.8 µmoles/g) followed
by lakes/ponds/reservoirs (11.3 µmoles/g; range from 0.79 to 127 µmoles/g); estuarine/marine
areas (27.2 µmoles/g; range from 0.06 to 503 µmoles/g) and rivers (27.7 µmoles/g; range from 1.13 to
197 µmoles/g). The data provided in this study are compelling as it showed that the high variability
of AVS measurements within each waterbody type as well as the variability of AVS within specific
locations were often multiple orders of magnitude differences for concentration ranges. Therefore, a
comprehensive spatial and temporal scale sampling of AVS in concert with divalent metals analysis
is critical to avoid possible errors when evaluating the potential ecological risk of divalent metals
in sediment.

Keywords: acid-volatile sulfides; divalent metals; bioavailability; soil types; biomes

1. Introduction

Acid-volatile sulfides (AVS) are defined as the sulfides that are evolved and collected
from sediments when treated with hydrochloric acid [1]. AVS are considered to be complex
and variable components represented by varying groups of sulfur components [2]. AVS
in sediment have been reported to be strongly associated with the bioavailabilty of some
divalent metals such cadmium, copper, lead, nickel and zinc [3,4]. Sediment is likely
non-toxic if the concentration of AVS exceeds concentrations of simultaneously extracted
metals (SEM), but if concentrations of SEM exceed AVS, the sediment may or may not be
toxic [3,4]. Therefore, accurate and representative measurements of AVS in sediment are
critical for any ecological risk assessment for single or multiple divalent metals because
this allows the bioavailable fraction is determined.

AVS levels are controlled by many correlated biological, geological, chemical and
hydrological factors. Microbial decomposition of organic matter and various mineral
phases are responsible for AVS in sediments [2,5]. Microhabitat and nutrient characteristics
impact the colonization of microfauna that are responsible for subsurface reductions in
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sulfates [1]. Ulrich et al. [6] reported that microfauna prefer sandy substrate interbedded
with organic rich sediment such as clay. Microbial sulfate reduction occurs because sand
particles provide the preferred substrate physical habitat, and an organic rich interface
provides nutrient stimulation.

Regional bed rock lithology along with parent soil material are also important factors
influencing the presence and abundance of AVS in the sediment of aquatic ecosystems.
Sulfur is widely distributed as native deposits near volcanoes and hot springs and is a
component of sulphide minerals such as galena, pyrite and sphalerite and is also found in
meteorites [7]. Significant deposits exist in salt domes along the Gulf Coast of the USA and
in large evaporate deposits in eastern Europe and western Asia. Gray and Murphy [8] have
reported low concentrations of sulfur in igneous soils due to gas-phase loss from these
elements in magma.

Chemical factors such as anoxic organic rich sediments from fine grain depositional
areas can result in higher concentrations of AVS in the aquatic environment [9]. In contrast,
lower AVS concentrations are found in oxic sediments with low concentrations of organic
matter. Seasonally related temperature, which influences organic matter degradation, is also
a key parameter impacting AVS concentrations in sediment [10]. Leonard et al. [11] have
reported that AVS concentrations in lake sediments are directly correlated with the temper-
ature of the overlying lake water. Other investigators have also reported large fluctuations
in the sediment concentrations of AVS in lakes with a seasonally anoxic hypolimnion [12].

Hydrological factors such as stream flow can also be a factor in determining ambient
concentrations of AVS as low-flow low-gradient waterbodies with high organic matter dom-
inated by depositional areas would be expected to have higher concentrations of AVS [1].
Lower concentrations of AVS would be expected in high gradient streams dominated by
oxic sediments with larger grain sediment material.

Griethuysen et al. [13] have reported that there is a lack of data on the spatial variabil-
ity of AVS for aquatic systems. Therefore, summarizing AVS concentrations from various
areas of the world to determine spatial differences is clearly a research need based on the
importance of AVS for determining the bioavailability of metals in sediment. The specific
goals of this study were to use a literature review approach to: (1) summarize all available
AVS data from all types of freshwater and saltwater waterbodies (streams/creeks, rivers,
lakes/ponds/reservoirs and estuarine/marine areas); and (2) compare AVS concentra-
tions from these various types of waterbodies considering both soil type classification
and biomes.

2. Materials and Methods

AVS studies in the literature with monitoring data were located using a general Google
search. Key words used for the search were acid-volatile sulfides, AVS and sediment. There
were no date restrictions on the data used. When relevant titles were found, the documents
were downloaded directly from journal websites via the University of Maryland Libraries
system, which allowed access to journal articles without payment. After the documents
were obtained, they were evaluated to determine if AVS measurements were provided
either within the document or in supplementary material.

References were reviewed for key information that would be used in the main
manuscript historical AVS summary, as shown in Tables 1–4 as described below. Sev-
eral of the variables needed for this table such as waterbody type, soil type and biome were
dependent on the location of the sample sites. The references were searched for coordinates
and/or maps of sample sites as well as any descriptions in the text or direct contacts with
the authors of the papers that would help to determine the site locations.
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Table 1. Summary of historical acid-volatile sulfides (AVS) sediment data from streams and creeks.

Location Water
Body/Type Soil Type a Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmole/g)
(Min-Max, Mean) References

SW
Missouri,

USA

Turkey Creek,
(ag/urban

stream)
Acrisols

Temperate
Broadleaf and
Mixed Forest

Yes

Six sites
sampled twice

in one year
(0–3 cm depth)

6 sites, Mar 1995:
(1.93–33.2, 11.5) b

6 sites, Jun 1995:
(1.03–2.85, 1.70) b

[14]

Sweden SW Swe-
den/Wadable Cambisols/Podzols

Temperate
Broadleaf and
Mixed Forest

Yes 3 sites :
(0.004–2.07, 0.693)

Denmark E Den-
mark/Wadable Cambisols/Luvisols

Temperate
Broadleaf and
Mixed Forest

Yes 6 sites (0.058–1.69, 0.739)

England S England &
Wales/Wadable

Gleysols/Cambisols
/Luvisols

Temperate
Broadleaf and
Mixed Forest

Yes 16 sites :
(0.007–31.5, 4.38)

Finland S Fin-
land/Wadable Podzols/Histosols Boreal

Forests/Taiga Yes 5 sites (0.004–3.18, 0.928) [1] c

Belgium S Bel-
gium/Wadable Cambisols

Temperate
Broadleaf and
Mixed Forest

Yes 6 sites (0.020–44.0, 8.23)

France N
France/Wadable

Luvisols/Cambisols
/Podzols

Temperate
Broadleaf and
Mixed Forest

Yes 12 sites :
(0.004–25.3, 5.21)

Germany W & S Ger-
many/Wadable

Cambisols/Luvisols
/Rendzinas

Temperate
Broadleaf and
Mixed Forest

Yes 9 sites (0.007–5.08, 0.795)

Italy N
Italy/Wadable NA d NA d Yes 2 sites (0.008–0.012, 0.010) Burton

et al. [1] c

E
Wisconsin,

USA

East River
(ag stream) Luvisols

Temperate
Grasslands,

Savannas and
Shrublands

Not reported 1 site sampled
once e

1 site:
(mean = 8.8) [15]

S
Michigan,

USA

River Raisin
(rural stream) Luvisols

Temperate
Broadleaf and
Mixed Forest

Not reported

1 site sampled
once

(0–10 cm
depth)

1 site:
(mean = 1.12) [16]

Pittsburg,
California,

USA

Kirker Creek,
small mostly
urban creek

Luvisols

Mediterranean
Forests,

Woodlands,
and Scrub

Yes

14 sites with
composite
samples

collected once
for 2 years

14 Sites:
(0.071–23.7, 5.34) [17]

Sacramento,
California,

USA

Arcade
Creek/Urban

creek Luvisols

Temperate
Grasslands,

Savannas and
Shrublands

Yes

11 sites with
composite
samples
collected

once/year for
3 years

Arcade Sites:
(0.012–3.92, 0.751) [18]

Salinas,
California,

USA

Alisal, Gabilon
and Natividad
Creeks/Urban
with some ag

Mediterranean
Forests,

Woodlands,
and Scrub

13 sites with
composite
samples
collected

once/year for
3 years

Salinas sites:
(0.019–2.10, 0.781)

N Illinois,
USA

Big Bureau
Creek

(ag stream)
Phaeozems

Temperate
Grasslands,

Savannas and
Shrublands

Yes

12 sites with
composite
samples
collected

once/year for
3 years

Sites 1–12:
(0.230–1.19, 0.458) [19]
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Table 1. Cont.

Location Water
Body/Type Soil Type a Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmole/g)
(Min-Max, Mean) References

Santa
Maria,

California,
USA

Santa Maria
River, Osco
Flaco Creek,
Orcutt Creek

/(intensive ag)

Luvisols

Mediterranean
Forests,

Woodlands,
and Scrub

Yes

12 sites with
composite
samples
collected

once/year for
3 years

Sites 1–12
(0.07–25.8, 5.91) [20]

Roseville /
Pleasant
Grove,

California,
USA

Upper Pleasant
Grove

Creek/(urban
stream)

Lower Pleasant
Grove

Creek/(ag
creek)

Luvisols
Fluvisols

Mediterranean
Forests,

Woodlands,
and Scrub

Yes

21 sites with
composite
samples
collected

once/year for
10 years

18 Urban Sites:
(0.028–12.4, 2.78)

3 Agricultural Sites:
(3.08–5.68, 4.65)

[21]

SE Nether-
lands

Beekloop
/Headwater

stream
Podzols

Temperate
Broadleaf and
Mixed Forest

Not reported

4 sites sampled
once with 3

replicates per
site

Sites L1–4:
(13.1–62.6, 39.8) [22]

N Nether-
lands

Freshwater
Stream Fluvisols

Temperate
Broadleaf and
Mixed Forest

Not reported

1 site sampled
once or

monthly for a
year

Freshwater stream:
(0.657–7.64, 2.89) b [23]

a Soil types are listed in order of the greatest probability for the most sample sites in a study. b These data were
extracted from a data plot (not a data table) and therefore may be less precise than the original data. c All sample
sites in this study were reported to be high quality (as indicated by biological indicators) wadable streams with no
evidence of nearby point source chemical or organic inputs. All sites in this study had one composited sample,
sampled one time. d Insufficient information about site locations to establish soil type or ecoregion. e Control
sediment but not sieved.

Table 2. Summary of historical acid-volatile sulfides (AVS) sediment data from rivers and canals.

Location Water
Body/Type Soil Type a Ecoregion

Depositional
Areas

Targeted?

# of Sites Sampled
& Frequency

AVS (µmole/g)
(Min-Max,

Mean)
References

W Montana,
USA

Upper Clark
Fork River &

reference
trib/(mountain
river with ag &
urban zones)

Luvisols
/Kastanozems

Temperate
Grasslands,

Savannas and
Shrublands

Not reported

1 reference &
5 additional sites

sampled once from
composite grab

samples in
Aug 1993

(0–6 cm depth)

RC (reference):
(mean = 1.9)
Upper Clark

Fork:(0.5–22.0,
8.8)

[24]

W Montana,
USA b

Upper Clark
Fork River &

reference
trib/(mountain
river with ag &
urban zones)

Luvisols
/Kastanozems

Temperate
Grasslands,

Savannas and
Shrublands

Yes

1 reference & 5
additional sites

sampled once from
grab samples in

Sep 1991
(0–6 cm depth)

CF06 (reference):
(mean = 6.7)
Upper Clark

Fork:(0.3–19.1,
9.1)

[25]

N Belgium,
E of

Antwerp

Lowland
riverine

sediments

Podzols
/Podzoluvisols

Temperate
Broadleaf and
Mixed Forest

Not reported
17 sample sites

(3 replicates each)
sampled once

Sites 1–17:
(0.763–205, 76.3) [26]

N Belgium,
Flanders
Region

Lowland
riverine

sediments

Podzols
/Podzoluvisols

/Luvisols

Temperate
Broadleaf and
Mixed Forest

Not reported
28 sample sites

(3 replicates each)
sampled once

Sites 1–28:
(0.004–357, 28.3) [27]
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Table 2. Cont.

Location Water
Body/Type Soil Type a Ecoregion

Depositional
Areas

Targeted?

# of Sites Sampled
& Frequency

AVS (µmole/g)
(Min-Max,

Mean)
References

Flanders
Region, N
Belgium

Rivers Scheldt,
Dender, Leie, &

IJzer c

Podzols
/Podzoluvisols

/Luvisols
/Fluvisols
/Regosols

Temperate
Broadleaf and
Mixed Forest

Not reported 44 sites sampled
once

44 Sites:
(2.28–132, 31.8) [28]

Rio Vista
California,

USA

Cache
Slough/Tidal

freshwater
river

Fluvisols
/Luvisols

Temperate
Grasslands,

Savannas and
Shrublands

Yes

12 sites with
composite samples

sampled twice a
year for 3 years

12 sites:
(0.40–2.14, 1.13) [29]

N Belgium

Nete/Scheldt
River

Basins/Lowland
riverine

sediments

Podzols
/Podzoluvisols

/Luvisols

Temperate
Broadleaf and
Mixed Forest

Not reported 3 sites sampled
once

3 Sites:
(24.9–321.3,

196.8)
[30]

S
Netherlands

Meuse & Rhine
Rivers

confluence
delta

(agr/urban)

Fluvisols
Temperate

Broadleaf and
Mixed Forest

Not reported 1 core sample for
AVS (top 0–9 cm)

1 core:
(1.49–7.06, 5.01) d [31]

Washington
State, USA

Hanford
Reach/Columbia

River
Regosols

Deserts and
Xeric

Shrublands
Not reported

4 sites sampled
2–3 times over

3 years

Hanford Reach
Sites:

(0.32–12.6, 4.68)
[32]

N Serbia Various rivers
& canals

Chernozems
/Fluvisols

/Phaeozems

Temperate
Broadleaf and
Mixed Forest

Yes

12 sites sampled
once in the spring

11 of the same sites
sampled in the

summer

Spring:
(3.10–14.1, 8.43)

Summer:
(3.19–16.0, 9.00)

[33]

SW
Netherlands

Meuse/Rhine
River Delta
(freshwater)

Fluvisols
Temperate

Broadleaf and
Mixed Forest

Yes

4 sites sampled
twice in Nov 1995

and once in
Jun 1996

Sites 1–4, Nov
1995:

(7.4–52.5, 21.9)
Sites 1–4,
Jun 1996:

(7.2–28.6, 13.6)

[10]

Netherlands Kromme River
(freshwater) Fluvisols

Temperate
Broadleaf and
Mixed Forest

Not reported
1 site sampled

monthly for a year
(0–10 cm depth)

Kromme River:
(6.87–38.4, 20.4) d [23]

a Soil types are listed in order of the greatest probability for the most sample sites in a study. b This study used
some of the same or similar sample sites as presented in Besser et al. [24] but were sampled during a different
year. c Sites specified by authors as being rivers. d These data were extracted from a data plot (not a data table)
and therefore may be less precise than the original data.

Table 3. Summary of historical acid-volatile sulfides (AVS) sediment data from ponds, lakes and reservoirs.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS
(µmoles/g)
(Min-Max,

Mean)

References

Washington
State, USA

Steilacoom
Lake/Urban
recreational

lake

Cambisols
Temperate
Coniferous

Forest

Not
reported

11 sites with
measured

concentrations
sampled once

Steilacoom
Lake:

(0.30–4.16,
1.97)

[34]
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Table 3. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS
(µmoles/g)
(Min-Max,

Mean)

References

NE
Minnesota,

USA

Fish Lake,
Caribou

Lake, and
Pike Lake

Podzoluvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

3 sites sampled
once and

analyzed with
3–4 different

methods/labs

Fish Lake:
(1.3–1.87,

1.63)
Caribou

Lake:
(5.35–8.4,

6.40)
Pike Lake:

(16.51–16.74,
16.6)

[35]

W
Montana,

USA

Milltown
Reservoir in
Clark Fork

River System

Milltown
Reservoir:
Luvisols

Temperate
Grasslands,
Savannas

and
Shrublands

6 sites sampled
once from

composited
grabs

(0–6 cm depth)

Milltown
Reservoir:
(0.2–47.0,

18.5)

Michigan,
USA

Primarily
lake sites in
the upper

peninsula of
Michigan

Upper
Peninsula:
Podzols

/Histosols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

8 sites sampled
once from

composited
grabs

(0–6 cm depth)

Upper
Peninsula:
(0.1–65.0,

10.2)

[24]

W
Michigan,

USA

Primarily
lake sites in
the lower

peninsula of
Michigan

Lower
Peninsula:
Luvisols
/Podzols

/Histosols

Temperate
Broadleaf

and Mixed
Forest

8 sites sampled
once from

composited
grabs

(0–6 cm depth)

Lower
Peninsula:

(14.0–471.0,
127.1)

W
Montana,

USA b

Milltown
Reservoir in
Clark Fork

River System

Luvisols

Temperate
Grasslands,
Savannas

and
Shrublands

Yes

6 sites sampled
once from

composited
grabs

(0–6 cm depth)

Milltown
Reservoir:

(0.6–23.3, 9.4)
[25]

NE
Minnesota,

USA

Pequaywan
& West

Bearskin
Lakes (large,

isolated
lakes)

Podzoluvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

2 sites sampled
once c

2 sites:
(3.6–42, 22.8) [15]

S Michigan,
USA

Maple Lake
(rural) Luvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

1 site sampled
once

(0–10 cm depth)

1 sites:
(mean = 1.18) [16]

S Ontario,
Canada

Lake Tock
(isolated)

Lake Little
Wren

(isolated)

Podzols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

One core
sampled (0–15

cm depth)
One core

sampled (0–15
cm depth)

Lake Tock:
(0.021–12.6,

1.74) d

Lake Little
Wren:

(0.165–2.47,
0.787) d

[36]
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Table 3. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS
(µmoles/g)
(Min-Max,

Mean)

References

NE
Minnesota,

USA

Caribou
Lake, Fish
Lake, and
Pike Lake

Podzoluvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

3 sites sampled
approximately

once a month for
16 months

(3/90–9/1991) at
depths of 0–15,

15–30, and
30–45 cm e

Caribou Lake:
(<0.1–9.8, 3.8) d

Fish Lake:
(0.1–6.0, 2.6) d

Pike Lake:
(1.3–36.2, 12.7) d

[11]

N Ohio
Coast, USA

W edge of
the central

basin of Lake
Erie

(16 m depth)

Luvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

1 core site
sampled in Nov

1977 with
sediment depth
of 0–39 cm and

sectioned

1 site:
(0.49–14.9,
5.74) d, f

[37]

NE Spain

Control
sediment site
from a large

pool near
Alava Spain

Cambisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

1 control
sediment site
(Alava, Spain)

Control site:
(mean = 6.7) [30]

Priest Rapids
Dam

/Columbia
River

Xerosols
6 sites sampled
2–3 times over 3

years

Priest Rapids
Dam:

(1.73–21.4,
8.81)

Washington
State, USA

McNary Dam
/Columbia

River
Kastanozems

Temperate
Grasslands,
Savannas

and
Shrublands

Not
reported

6 sites sampled
2–3 times over 3

years

McNary Dam
Sites:

(0.075–3.22,
1.11)

[32]

Ice Harbor
Dam/Snake

River
Regosols

3 sites sampled 2
times over 2

years

Ice Harbor
Dams:

(0.033–2.43,
1.16)

NE
Minnesota,

USA

West
Bearskin

Lake (large
isolated lake)

Podzols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

1 Sample from 3
replicates

Mean of 3
Reps:
(3.90)

[38]

N Nether-
lands

Lake
Ketel/Large

FW
man-made

lake

Histosols

Temperate
Broadleaf

and Mixed
Forest

Yes (most
sediment
< 63 um)

4 sites (10 reps
per site) sampled

once

Sites A–D:
(0.7–14.7, 4.7) [39]

Netherlands Freshwater
Lakes

Fluvisols
/Histosols
/Podzols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

4 sites sampled
once

Freshwater
lakes:

(15.1–52.0,
25.8)

[23]

E Nether-
lands

Shallow
floodplain

lake
(agr/urban)
on the River

Waal

Fluvisols

Temperate
Broadleaf

and Mixed
Forest

No
24 sites sampled

from 0–5 cm
depth

24 sites:
(0.2–40.6,

15.3)
[13]
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Table 3. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS
(µmoles/g)
(Min-Max,

Mean)

References

E Nether-
lands

Shallow
floodplain

lake
(agr/urban)
on the River

Waal g

Fluvisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

Monthly samples
(unknown n)

collected (0–2 cm
depth) for
14 months
(2003–04)

Lake Deest 3:
(0.44–15.6,

4.76) d
[40]

NE Coast
of China

Meiliang Bay
and Wuli

Lake
/Extensions
of Taihu Lake

(large FW
lake)

Cambisols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

7 sites sampled
once

7 sites:
(0.32–1.22,

0.861)
[41]

E China

Lake Dongbu
near Wuhan

on the
Yangtze

River (indus-
trialized)

Gleysols

Temperate
Broadleaf

and Mixed
Forest

Not
reported

3 core sites from
different trophic

conditions of
subdivided lake

sampled
monthly in 2001

(means of
5–31 cm depths

reported for each
site)

Hypertrophic
site I:

(1.4–19.5,
7.53)

Eutrophic
site II:

(0.9–7.6, 3.57)
Mesotrophic

site III:
(0.9–2.5, 1.6)

[42]

a Soil types are listed in order of the greatest probability for the most sample sites in a study. b This study used
some of the same or similar sample sites as presented in Besser et al. [24] but were sampled during a different
year. c Control sediment with no mention of being sieved. d These data were extracted from a data plot (not a data
table) and therefore may be less precise than the original data. e Only the 0–15 cm data presented here. Average
concentrations of AVS in all three lakes varied inversely with the depth of the sediment. f Only the 0–10 cm data
presented here. Highest AVS values in the top 5 cm depth. g This study also reports data from a floodplain lake
(Deest 4) that was evaluated above in Van Griethuysen et al. [13] but not reported here.

Table 4. Summary of historical acid-volatile sulfides (AVS) sediment data estuarine and
marine waterbodies.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmoles/g)
(Min-Max, Mean) Reference

SE Coast
of Brazil

Sergipe River
Estuary & 2

estuarine
tributaries

Acrisols Mangroves Not reported

3 sites, 1 core
each, 21 total
samples from
various core

depths

Sal River:
(13.7–23.7, 17.2)
Sergipe River:

(1.90–13.6, 6.16)
Poxim River:

(2.20–18.0, 7.65)

[43]

SE New
York State,

USA

Estuarine
(mostly fresh)
marsh/stream
system in the
Hudson River

Cambisols
Temperate

Broadleaf and
Mixed Forest

Not reported

17 sites sampled
once (system
considered a

superfund site
with heavy

metals)

17 sites:
(0.09–75.5, 15.4) b [44]
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Table 4. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmoles/g)
(Min-Max, Mean) Reference

Persian
Gulf Coast,

Iran

Marine
sediments of

the urban
portion of
Asaluyeh

Harbor

Regosols
/Solonchaksc

Deserts and
Xeric

Shrublands

No but mean
sand content of
all samples <

50%

10 urban sites
sampled in

Autumn 2014 &
Spring 2015

11 industrial sites
sampled in

Autumn 2014 &
Spring 2015

Urban Autumn:
(0.017–1.70, 0.44)

Urban Spring:
(0.04–1.74, 0.29)

Industrial Autumn:
(8.22–19.74, 11.62)
Industrial Spring:
(1.07–18.89, 6.34)

[45]

SW Spain

Guadalete
River Estuary

Site A:
Harbor/Port

Site B: Salt
marsh

drainage
Site C: Agr
drainage

Cambisols

Mediterranean
Forests,

Woodlands,
and Scrub

Not reported
but Sites B & C

mostly
< 63 um grain

size

3 sites with
2 replicates cores
per site, sampled

Feb 2001

Site A, (0–32 cm):
(0.594–2.36, 1.24)
Site B, (0–22 cm):
(0.512–1.29, 0.786)
Site C, (0–39 cm):
(1.14–20.2, 7.89)

[46]

SW Spain

Guadalete
River Estuary

Site
G1/Harbor/Port

Sites G2–G3,
S1–S7/Ag &
salt marsh

Cambisols

Mediterranean
Forests,

Woodlands,
and Scrub

Not reported
but most
samples
< 63 um

10 sites with
3 replicates per
site, sampled

twice
(Aug 2002 &

Mar 2003)

Site G1:
(1.05–6.95, 2.67)

Sites G2–G3, S1-S7:
(0.65–22.4, 4.40)

[47]

Shenzhen
Bay,

SE China

Urban
mangroves

influenced by
the Fengtanghe
& Shenzhenhe

Rivers

Gleysols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported

16 sites sampled
once with

3 replicates per
site

Sites 1–16
(0–10 cm depth):

(0.189–10.2, 3.79) b

Sites 1–16
(10–20 cm depth):
(0.216–10.3, 2.17) b

[48]

S New
York State,
& S Con-
necticut,

USA

Black Rock
Harbor (N

Long Island
Sound) &
estuarine

Hudson River

Cambisols
/Podzols

Temperate
Broadleaf and
Mixed Forest

Not reported 2 sites sampled
once

2 sites:
(12.6–175, 93.8) [3]

S Connecti-
cut & S
Road

Island,
USA

Central Long
Island Sound &
Ninigret Pond,
RI (saltwater

pond)

Podzols
/Cambisols

Temperate
Broadleaf and
Mixed Forest

Not reported 2 sites sampled
once

2 sites:
(1.3–15, 8.15) [49]

SE China
Coast

Pearl River
Estuary (indus-

trialized)
Gleysols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported
6 sites sampled
once in Jul 2002
(0–10 cm depth)

6 sites:
(<0.01–3.89, 1.59) [50]

NE China
Coast

Laizhou Bay
(industrial-

ized)

Solonchaks/
Cambisols
/Gleysols

Flooded
Grasslands &
Shrublands No

18 sites sampled
once in Oct 2011
(0–5 cm depth)

18 sites:
(1.22–7.60, 2.99) [51]

Zhangzi Island
(in coastal sea) Cambisols c

Temperate
Broadleaf and
Mixed Forest

7 sites sampled
once in Nov 2011
(0–5 cm depth)

7 sites:
(0.71–11.03, 4.05)

NE China
Coast

Jinzhou Bay
(industrial-

ized/coastal)
Gleysols c

Temperate
Coniferous

Forest
Not reported 7 sites sampled

once in Sep 1992
7 sites:

(3.02–44.7, 33.9) [52]
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Table 4. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmoles/g)
(Min-Max, Mean) Reference

SE Canada
Coast

Belledune
Harbor (small
marine port)

Podzols c
Temperate

Broadleaf and
Mixed Forest

Not reported 10 sites sampled
once in Aug 1990

10 sites:
(5.54–102, 48.2) [52]

Maryland,
USA

Bear Creek
(urban

estuarine river)
Acrisols

Temperate
Coniferous

Forest
Not reported 14 sites sampled

once in Feb 1992
14 sites:

(0.40–304, 78.9)

S St.
Thomas,

US Virgin
Islands

CBM Marina
(coastal)

IBY Marina &
Boatyard
(coastal)

Not available Not available No

4 sites sampled
once (1997–1999)
3 sites sampled

once (1997–1999)

CBM sites:
(0.24–1.30, 0.67)

IBY sites:
(25.0–33.0, 29.0)

[53]

SE China
Coast

Various coastal
sites around

the entire
Leizhou

Peninsula

Luvisols
/Gleysols c

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported

100 surface
samples (0–5 cm
depth) collected

May 2012

100 sites:
(0.109–55.6, 4.45) [54]

SE China
Coast

Bohai &
Laizhou Bays,
industrialized
coastal sites in
the Bahai Sea

Solonchaks c
Flooded

Grasslands &
Shrublands

Not reported
but most sites

are > 50%
silt/clay

55 surface
sediment sites

(0–2 cm depth) at
five sampling
locations in

Aug-Sep 2012

55 sites:
(0.05–5.8, 0.73) [55]

SE China
Coast

Jiulong River
Estuary,

mangrove
forest &

associated
mudflat

sediments with
heavy metals

pollution

Vertisols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported
but sediments
at all sites were

composed
mostly of silt

and clay

6 sites core
sampled (Aug

2003) inside
mangrove forest

& on adjacent
mudflat

(0–60 cm depth,
3 repli-

cates/sample)

Mangrove
forest/mud flat:
(0.24–16.10, 4.76)

b, d

[56]

SE China
Coast

Zhangjiang
River Estuary,

mangrove
forest &

associated
mudflat

sediments

Acrisols/Gleysols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported

7 sites sampled
(Oct 2004) inside
mangrove forest,
at forest fringe, &

on adjacent
mudflat

(0–5 cm depth,
3 repli-

cates/sample)

Mangrove forest:
(0.512–4.96, 1.99) b

Forest fringe:
(1.16–6.44, 3.50) b

Mud flat:
(2.65–12.2, 7.13) b

[57]

SE Brazil
Coast

Iguacu River &
Guanabara Bay,

eutrophic
estuarine
systems

Acrisols Mangroves Not reported

Iguacu River
(Feb 2000), 1 core

0–40 cm depth
Guanabara Bay

(Feb 2000), 1 core
0–40 cm depth

Iguacu River:
(33–314, 182)

Guanabara Bay:
(48–245, 139)

[58]

S San
Diego,

California,
USA

Tijuana
Estuary (urban

influenced)
Luvisols

Mediterranean
Forests,

Woodlands,
and Scrub

Not reported
3 sample sites

sampled 3 times
in Feb 1996

Storm drain outfall:
(22.6–41.5, 29.6) [59]

S San
Diego,

California,
USA

Tijuana
Estuary (urban

influenced)
Luvisols

Mediterranean
Forests,

Woodlands,
and Scrub

Not reported
3 sample sites

sampled 3 times
in Feb 1996

Marsh:
(31.2–41.0, 37.0)

Tidal stream:
(4.3–15.3, 9.2)

[59]
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Table 4. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmoles/g)
(Min-Max, Mean) Reference

Baltimore,
Maryland,

USA

Patapsco River
Estuary (indus-

trialized)
Acrisols

Temperate
Coniferous

Forest
Not reported

14 sites sampled
in Middle harbor

and 9 sites
sampled in

Curtis
Bay/Creek, both

sites sampled
twice in 2014

(0–2 cm depth)

Middle Harbor-Jul:
(0.02–515.6, 121.4)

Middle
Harbor-Sep:

(0.01–185.6, 77.5)
Curtis Bay/Cr-Jul:
(106.2–859.4, 502.7)
Curtis Bay/Cr-Sep:
(1.54–443.1, 173.9)

[60]

N Portugal
Coast

Douro River
Estuary (indus-

trialized)
Cambisols

Temperate
Broadleaf and
Mixed Forest

Not reported

5 sample sites
with 2 replicate

cores per site
sampled during
4 seasons in 1998

Site II:
(1.30–2.80, 2.00)

Site III:
(0.09–2.00, 1.17)

Site IV:
(0.15–0.75, 0.37)

Site V:
(0.004–0.370, 0.189)

[61]

W Coastal
Region Regosols c

Mediterranean
Forests,

Woodlands,
and Scrub

11 sites sampled
in Jul 2010

(top 0–5 cm

W Region:
(0.015–31.3, 3.31)

N Egypt
Coast

Middle Coastal
Region

Regosols
/Solonchaks c

Flooded
Grasslands &
Shrublands

Not reported
7 sites sampled

in Jul 2010
(top 0–5 cm)

Middle Region:
(0.038–0.110, 0.058) [62]

E Coastal
Region

Solonchaks
/Regosolsc

Deserts and
Xeric

Shrublands

2 sites sampled
in Jul 2010

(top 0–5 cm)

E Region:
(0.029–0.119, 0.074)

SE Coast
of Brazil

Three rivers of
the Santos-

Cubatao sys-
tem/estuarine

rivers

Gleysols Mangroves Not reported

3 sites sampled
once or twice

(winter and/or
summer)

3 sites:
(0.04–31.9, 1.86) [63]

Ravenna,
NE Italy

Pialassa Piom-
boni/Estuarine

man-made
lagoon

Cambisols
Temperate

Broadleaf and
Mixed Forest

Not reported 50 sites sampled
once

Pialassa Piomboni:
(0.03–8.8, 3.1) [64]

SE Coast of
Australia

Lane Cove
Estuary Planosoles

Temperate
Broadleaf and
Mixed Forest

Not reported
One reference
site sampled

once

Reference site:
(mean < 0.5) [65]

SW Coast
of India

Vembanad
Lake System

Estuary

Kastanozems
/Fluvisols
/Regosols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported

12 sites sampled
over 3 years

during the pre,
post and

monsoon periods

Pre-monsoon:
(0.27–103.2, 1.01) b

Monsoon:
(0.74–3.31, 1.65) b

Post-monsoon:
(0.10–328, 0.78) b

[66]

SE Brazil
Coast

Sao Paulo
River Estuary
(heavy metals

present)

Vertisols Mangroves Not reported

7 sites sampled
in Jun (rainy

season) &
Sep 2014

June samples:
(1.66–2.02, 1.83)

September
Samples:

(1.43–1.72, 1.63)

[67]

SE
Australia

Coast

Various
estuarine sites
surrounding

Sydney,
Australia

Podzols/Acrisols
Temperate

Broadleaf and
Mixed Forest

Not reported
but ranged

from silty to
sandy

35 sites analyzed
with 2 different
AVS methods

Purge & Trap
Method:

(0.6–229, 70.1)
Screening Method:

(0.5–178, 54.6)

[68]



Soil Syst. 2022, 6, 71 12 of 29

Table 4. Cont.

Location Water
Body/Type Soil Type a Predominate

Biome Type

Depositional
Areas

Targeted?

# of Sites
Sampled &
Frequency

AVS (µmoles/g)
(Min-Max, Mean) Reference

Netherlands

Marine Sites
(1–100 km
offshore)

Estuarine Sites

NA
Fluvisols

Temperate
Broadleaf and
Mixed Forest

Not reported

8 sites sampled
once

7 sites sampled
once

Coastal sites:
(<0.1–8.0,

2.51)Estuarine sites:
(1.3–22.6, 13.2)

[23]

SE Coast
of China

Maluan Bay/
Industrialized
Estuarine Bay

Vertisols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Yes
8 sites sampled

once with 3
replicates each

8 sites, ML1-ML8:
(1.76–8.33, 4.80) b [69]

SE China
Coast

Pearl River
estuary

(industrialized)
Gleysols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported
but

<0.063 mm
fractions were
prevalent at all
sampling sites

6 core sites
sampled during
2 seasons (spring
sites sampled to

14 cm depth,
winter sites

sampled to 16 cm
depth)

5 sites Apr 2005:
b, e

(<0.01–27.5, 5.10)
5 sites Dec 2005: b, e

(<0.01–12.8, 2.65)

[70]

Coastal
Lagoon

Maryut (indus-
trialized)

Solonchaks
/Regosols

Mediterranean
Forests,

Woodlands,
and Scrub

13 stations
including 3 drain

sites (0–20 cm
depth all sites)

Maryut Lagoon:
(4.75–80.8, 21.9)

N Egypt
Coast

Coastal
Lagoon

Burullus (agr
influenced)

Solonchaks
/Regosols

Flooded
Grasslands &
Shrublands

Not reported
but most sites >
50% silt/clay

20 stations
including 8 drain

sites

Burullus Lagoon:
(1.50–15.5, 4.91) [71]

Coastal
Lagoon

Manzalah (in-
dustrialized)

Solonchaks
Flooded

Grasslands &
Shrublands

9 stations
including 2 drain

sites

Manzalah Lagoon:
(7.95–89.4, 26.1)

W Taiwan
Coast

Ell-Ren River
(estuarine,
agr/urban)

Gleysols

Tropical and
Subtropical

Moist
Broadleaf

Forest

Not reported
but most sites >
50% silt/clay

2 core sites
sampled in Jul
1998 (0–40 cm

depth)

Site A (upstream):
b(14.7–43.9, 29.8)

Site B (dnstream): b

(2.09–18.4, 6.41)

[72]

NE China
Coast

Laizhou Bay
(industrial-

ized)
Solonchaks

Flooded
Grasslands &
Shrublands

Not reported

35 estuarine river
sites & 18 bay
sites sampled

(May-Jun) 2012
(0–5 cm depth)

33 estuarine river
sites & 18 bay
sites sampled
(Sep-Oct) 2012
(0–5 cm depth)

Summer rivers:
(0.25–182.7, 26.96)

Summer bay sites: c

(0.86–20.5, 4.98)
Autumn

rivers:(0.93–167.0,
21.83)

Autumn bay sites:
c(0.70–10.0, 3.61)

[73]

a Soil types are listed in order of the greatest probability for the most sample sites in a study. b These data were
extracted from a data plot (not a data table) and therefore may be less precise than the original data. c These are
coastal sample stations so relevance of terrestrial soil type uncertain. d Only the 0–40 cm data is presented here
because of some missing data in 40–60 cm depths. Highest AVS values for all sites in 20–35 cm depth range. e

Only 5 of 6 sites reported due to an inconsistency in maximum core depth of samples.

Copies of the relevant raw AVS data were transferred to Excel spreadsheets for later
analyses (see Data availability statement). In order to have consistent units for all data
analysis, AVS data were provided in µmoles/g.

AVS sediment data were organized by waterbody type for each reference in Tables 1–4.
Waterbody type categories were freshwater streams/creeks (Table 1), rivers (Table 2),
lakes/ponds/reservoirs (Table 3) and esturarine/marine areas (Table 4). These four tables
contain the following information: (1) location; (2) waterbody type; (3) soil type; (4) biome
types; (5) were depositional areas targeted? (6) number of sites sampled and frequency;
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(7) AVS concentrations in µmoles/g including minimum, maximum and mean values; and
(8) reference.

A total of 26 soil types were identified for the various references in Tables 1–4 [74].
These soil types were as follows: fluvisols, gleysols, regosols, lithosols, arenosols, rendzi-
has, rankers, andosols, verisols, solonchaks, solonetz, yermosols, xerosols, kastanozems,
chernozems, phaeozoms, greyzems, cambisols, luvisols, podzoluvisols, podsols, planosols,
acrisols, nitosols, ferralsols and histosols. In some cases, more than one soil type was used
for a reference.

A total of 14 biomes were also used for each reference in Tables 1–4 [75]. Biomes are
defined as a biogeographical unit consisting of a biological community that has formed in
response to a shared regional climate [76]. The biomes for each reference were as follows:
tropical and subtropical moist broadleaf forest; tropical and subtropical dry broadleaf forest;
tropical and subtropical coniferous forest; temperate broadleaf and mixed forest; temperate
coniferous forest; boreal forest/taiga; tropical and subtropical grasslands, savannas and
shrublands; temperate grasslands, savannas, and shrublands; flooded grasslands and
savannas; montane grasslands and shrublands; tundra; Mediterranean forest, woodlands
and scrub; desert and xeric scrublands; and mangroves.

The AVS data were placed in the following four waterbody categories (Tables 1–4) for
the statistical analysis described below: streams/creeks, rivers, lakes/ponds/reservoirs
and estuarine/marine areas. The approximate locations of the various study areas are
presented in Figures 1–4.
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Figure 4. Map showing generalized locations where sediment AVS was sampled from various
studies in China and Australia. Number symbols on the map are associated with individual or
multiple studies and references. The following numbers and associated references are: 34 [41], 35 [42],
36 [48,50,70], 37 [51], 38 [52], 39 [54], 40 [55], 41 [56,57,69], 42 [65,68], 43 [72] and 44 [51,55,73].

SigmaPlot was used to calculate the AVS mean (with standard deviation), range and
90th centile for each of the four different waterbody type categories of data: streams/creeks,
rivers, lakes/ponds/reservoirs and estuarine/marine areas [77]. The AVS concentrations
were ranked from low to high and a regression plot was produced with a probability scale
on the y axis and a log scale on the x axis (AVS concentration). The a and b factors of
the regression equation were used in the following equation to calculate the 90th centile:
10(( probit% − (a + 5))/b) where: probit % = the probit transformed percentage (i.e., if a 90th
centile was desired then the probit transformed percentage equal to 90% was used).
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3. Results
3.1. General Overview

A total of 120 references containing AVS monitoring data were reviewed (primarily
peer-reviewed papers). Sixty-eight of these references were included in Tables 1–4 along
with the descriptive statistics in Table 5. After careful review, 52 of these references were
excluded from the tables for any of the following reasons: (1) samples were manipulated
in some way (other than homogenization or removal of large debris) before AVS analysis;
(2) sulfides were not specifically reported as AVS; (3) sample site locations (coordinates)
were not provided; (4) AVS was not reported in µmoles/g; (5) raw data were not provided;
(6) AVS was not measured in a natural waterbody and (7) analytical methods for AVS
were not provided in the primary document or easily found in supporting references. A
summary of the results by waterbody type and in all sites is presented below.

Table 5. Descriptive statistics and centile calculation for five different categories of studies with AVS
field data results (µmole/g dry weight).

Study Category N, Mean, SD Min, Max Values 90th Centiles

Streams/Creeks 21, 5.12, 8.56 0.010, 39.8 27.2
Rivers 16, 27.7, 48.7 1.13, 197 82.2

Lakes/Ponds/Reservoirs 29, 11.3, 23.3 0.787, 127 27.8
Estuaries/Marine 74, 27.2, 67.8 0.058, 503 68.2
All Waterbodies 140, 20.7, 53.6 0.010, 503 49.4

3.2. Waterbody Types
3.2.1. Streams/Creeks

AVS mean values from 21 streams/creeks ranged from 0.010 to 39.8 µmoles/g as
presented in Tables 1 and 5. The mean of the mean values was 5.12 µmoles/g with a
standard deviation of 8.6. The 90th centile for all streams/creeks combined in Table 5 and
Figure 5 was 27.2 µmoles/g. There was clearly an outlier value of 0.01 µmoles/g in the
90th centile distribution in Figure 5 that influenced the final 90th centile calculation.

The geographic distribution of AVS measurements in streams/creeks showed that
these data were collected in 10 different countries (Table 1; see Figures 1–4). Half of these
values were reported in the United States. Other countries where AVS measurements were
conducted with number of locations sampled were as follows: Netherlands (two), Sweden
(one), Denmark (one), England/Wales (one), Finland (one), Belgium (one), France (one),
Germany (one) and Italy (one).

A total of nine different soil types were reported in the various streams/creeks sampled
for AVS measurements (Table 1). For some locations more than one soil type was reported.
The soil types with corresponding number of locations were as follows: luvisols (eleven),
cambisols (six), podzols (four), acrisols (two), fluvisols (two), gleysols (one), histosols (one),
rendzinas (one) and phaeozems (one). The mean AVS concentrations of 11.7 µmoles/g in
streams and creeks were higher in podzols when compared with other soil types, as show
in Table 6. The AVS mean concentrations ranged from 3.3 to 6.6 µmoles/g for acrisols,
cambisols, luvisols, gleysols and fluvisols. The AVS mean concentrations in histosols,
rendzems and phaezems were less than 0.93 µmoles/g.
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Figure 5. Regression of AVS field study means data for streams/creeks against a probability scale
showing the 90th centile rank.

Table 6. Summary of AVS mean concentrations (µmoles/g) by soil type and waterbody type.

Soil Type Streams/Creeks Rivers Lakes, Ponds,
Reservoirs

Estuarine/Marine
Areas

Acrisols 6.6 - - 99.2
Cambisols 3.3 - 3.2 9.9

Podsols 11.7 83.8 28.3 55
Luvisols 3.3 35.6 32.4 20.1
Gleysols 4.4 - 4.2 9.6
Histosols 0.93 - - -

Rendzinas 0.80 - - -
Phaezems 0.46 8.7 - -
Fluvosols 3.8 14.6 15.3 4.2

Kastanozems - 6.6 1.1 -
Podzoluvisols - 83.8 8.7 -

Regosols - 18.2 1.16 4.4
Cheronozems - 8.7 - -

Histosols - - 41.9 -
Xerosols - - 8.8 -

Solonchaks - - - 8.9
Verisols - - - 3.3

Planosols - - - <0.05

Four different biome types were reported for the streams/creeks where AVS measure-
ments were conducted (Table 1). The most dominant biome reported at 11 locations was
the temperate broadleaf and mixed forest biome. The Mediterranean forest woodlands and
scrubs biome was found at five locations while the temperate grasslands, savannas and
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Shrublands biome was found at three locations. The boreal forest/taiga biome was found
at one location. The temperate broadleaf and mixed forest biome had the highest AVS
mean value of 7.0 µmoles/g followed by the Mediterranean forest woodland and scrub
(3.9 µmoles/g), the temperate grasslands, savannas and Shrublands (3.4 µmoles/g) and
the boreal forest /tiaga (0.93 µmoles/g) (Table 7).

Table 7. Summary of AVS mean concentrations (µmoles/g) by biome and waterbody type.

Biome Streams/Creeks Rivers Lakes, Ponds,
Reservoirs

Estuarine/Marine
Areas

Temperate
Broadleaf and
Mixed Forest

7 41.2 12.5 30.9

Boral
Forest/Tiago 0.93 - - -

Temperate
Grasslands,

Savannas and
Shrublands

3.4 5.5 7.8 -

Mediterranean
Forest Woodland

and Scrub
3.9 - - 11.8

Desert and Xeric
Shrubland - 4.7 - 3.8

Temperate
Coniferous

Forest
- - 1.97 164.7

Mangroves - - - 44.7
Tropical and
Subtropical

Moist Broadleaf
Forest

- - - 7.8

Flooded
Grasslands and

Shrublands
- - - 11.1

Depositional areas were targeted for AVS sampling in streams/creeks in 14 of the
21 locations sampled (Table 1). For the other seven locations, the authors did not provide
any information on targeting depositional areas.

3.2.2. Rivers

The AVS mean values ranged from 1.13 to 197 µmoles/g for 16 rivers as presented in
Tables 2 and 5. The mean of the mean values was 27.7 µmoles/g with a standard deviation
of 48.7. The 90th centile for all the AVS measurements for rivers was 82.2 µmoles/g (Table 5
and Figure 6). There was one data point (197 µmoles/g) in this distribution that appeared
to be an outlier when compared with other values (Figure 6).

AVS measurements for rivers were reported from four different countries (Table 2).
Most of the AVS measurements (a total of six) were reported from locations in the United
States. The number of locations sampled for other countries were as follows: four locations
in Belgium; three locations in the Netherlands, two locations in Serbia and one location in
the Netherlands/Belgium.
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was found at five locations, while the desert and xeric shrublands biome was found at one 
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Eight different soil types were reported for the various AVS measurements in rivers
(Table 2). The number of different locations by soil types were as follows: luvisols (eight),
fluvisols (seven), podzols (six), podzoluvisols (four), kastanozems (four), regosols (two),
chemnozems (two) and phaeozems (one). Both podzols and podzoluvisols were reported to
have the highest mean concentrations of AVS in rivers (83.8 µmoles/g) (Table 6). This result
was similar to the result from streams discussed above where podsols also had the highest
concentrations of AVS. Luvisols were reported to have the second highest concentrations
of AVS (35.6 µmoles/g). AVS mean concentrations ranged from 6.6 to 18.2 µmoles/g for
kastanozens, fluvisols, regosols, chernozems and phaozems.

For rivers and with AVS measurements, there were three different biome types re-
ported (Table 2). The most dominant biome type found at ten locations was temperate
broadleaf and mixed forest. The temperate grasslands, savannas and shrubland biome
was found at five locations, while the desert and xeric shrublands biome was found at one
location. The highest mean river biome concentration was reported from the temperate
broadleaf and mixed forest biome (41.2 µmoles/g) (Table 7). The mean AVS values for the
temperate grassland, savanna and shrublands biome (5.5 µmoles/g) and the desert and
xeric shrublands biome (4.7 µmoles/g) were similar.

Information on whether the depositional areas were sampled in rivers and with
concurrent AVS measurements showed that four of the sixteen locations targeted deposition
areas (Table 2). For the other twelve locations, the authors did not provide any information
on the sampling depositional areas.

3.2.3. Lakes/Ponds/Reservoirs

The AVS mean values ranged from 0.787 to 127 µmoles/g for 29 lakes, ponds and
reservoirs (Tables 3 and 5). The mean of the mean values was 11.3 µmoles/g with a
standard deviation of 23.3. The 90th centile for all the AVS measurements for lakes, ponds
and reservoirs was 27.8 µmoles/g (Table 5 and Figure 7). There was one high value in the
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90th centile calculation (127 µmoles/g) that appeared to be an outlier when compared with
other AVS concentrations (Figure 7).
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From a geographic perspective, the AVS data for lakes, ponds and reservoirs were
reported from a total of five different countries (Table 3). Most of these lentic sites were
located in the United States (18). For the other countries, the number of locations were as
follows: Netherlands (four); China (four); Canada (two) and Spain (one).

A total of 10 different soil types were reported for the AVS measurements in lakes,
ponds and reservoirs (Table 3). The number of different locations by soil types were
as follows: podzols (six), luvisols (five), podzoluvisols (5), histosols (four), cambisols
(three), fluvisols (three), gleysols (three), xerosols (one), kastanozems (one) and regosols
(one). Histosols, luvisols and podzols had the highest AVS concentrations ranging from
28.3 to 41.9 µmoles/g for lakes, ponds and reservoirs (Table 6). As reported above for
both stream/creeks and rivers, podzols had some of the highest, but not the highest,
concentrations of AVS values in this waterbody type. The lowest AVS mean concentrations
(less than 1.2 µmoles/g) were reported kastanozems and regosols.
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There were three different biomes reported for AVS measurements in lakes, ponds
and reservoirs (Table 3). The temperate broadleaf and mixed forest biome was reported
in twenty-three locations while the temperate grassland, savannas and shrubland biome
was reported in five locations and the temperate coniferous forest biome was reported in
only one location. The mean AVS measurements by biome were as follows: temperate
broadleaf and mixed forest (12.5 µmoles/g), temperate grassland, savannas and shrublands
(7.8 µmoles/g) and temperate coniferous forest (1.97 µmoles/g) (Table 7).

For sixteen of the AVS studies conducted in lakes, ponds and reservoirs, the authors
did not report any information concerning the sampling of the depositional areas (Table 3).
There were two studies where depositional areas were sampled and one study where the
authors reported that the depositional areas were clearly not sampled.

3.2.4. Estuarine/Marine Areas

The mean AVS values ranged from 0.058 to 503 µmoles/g for 74 estuarine/marine
locations (Tables 4 and 5). The mean of the mean values was 27.2 µmoles/g with a standard
deviation of 67.8. The 90th centile for all the AVS measurements for estuarine/marine
areas was 68.2 µmoles/g (Table 5 and Figure 8). There was one high value of 503 µmoles/g
that appeared to be an outlier in the 90th centile calculation for estuarine and marine
areas (Figure 8).
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AVS measurements for estuarine/marine areas were reported from thirteen different
countries (Table 4). The countries with the greatest number of locations sampled were
China (twenty-two locations) and the United States (thirteen locations). The number of
locations sampled for the other countries were as follows: Brazil (seven), Egypt (six), Spain
(five), Iran (four), Portugal (four), Australia (three), India (three), Tiawan (two), Canada
(one) and Italy (one).
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A total of 10 different soil types were reported from AVS measurements in estuarine
and marine areas (Table 4). The most dominant soil types for the various locations were
gleysols (seventeen locations), solonchaks (fifteen locations), cambisols (fifteen locations)
and acrisols (fifteen locations). For the other six soil types, the number of different locations
were as follows: regosols (twelve locations), polzols (five locations), luvisols (four locations),
vertsols (four locations), fluvisols (four locations) and planosoles (one location). The soil
types for estuarine and marine areas with the highest mean AVS concentrations were
acrisols (99.2 µmoles/g) and podsols (55 µmoles/g) (Table 6). As reported for the other
three waterbody types, podsols had some of the highest AVS mean concentrations. Luvisols
were reported to have the third highest mean concentrations of AVS (20.1 µmoles/g). For
the other seven soil types, the AVS mean concentrations were less than 9.9 µmoles/g.

There were a total of seven different biomes reported for AVS measurements in
estuarine and marine areas (Table 4). The temperate broadleaf and mixed forest biome
was most dominant as this biome was found in eighteen estuarine and marine locations.
The number of locations for the other biomes were as follows: tropical and subtropical
moist broadleaf forest (sixteen), Mediterranean forest woodlands and scrub (ten), flooded
grasslands and shrublands (eight), mangroves (eight), temperate and coniferous forest
(six) and desert and xeric shrublands (five). The highest AVS mean concentration of
164.7 µmoles/g was reported from the temperate and coniferous forest biome (Table 7).
Mean AVS concentrations for the other biomes were as follows: mangroves (44.7 µmoles/g),
temperate broadleaf and mixed forest (30.9 µmoles/g), Mediterranean forest woodland
and scrub (11.8 µmoles/g), flooded grasslands and shrublands (11.1 µmoles/g), tropical
and subtropical moist broadleaf forest (7.8 µmoles/g) and desert and xeric shrublands
(3.8 µmoles/g).

With the exception of one study [69], there was no information provided by the authors
suggesting that depositional areas were targeted for AVS sampling in estuarine/marine
areas (Table 4).

3.2.5. All Waterbodies

Mean AVS values ranged from 0.058 to 503 µmoles/g for 140 waterbodies (Table 5).
The mean of the mean values was 20.7 µmoles/g with a standard deviation of 53.6. The
90th centile for all AVS measurements for all sites was 49.4 µmoles/g (Table 5 and Figure 9).
As reported above for estuarine/marine areas, there appeared to be one high outlier data
point (503 µmoles/g) in the all-waterbodies 90th centile calculation in Figure 9. In addition,
there also appeared to be a very low AVS value of 0.010 µmoles/g in Figure 9 that could be
considered an outliner as previously discussed for streams in Figure 5.

AVS measurements were reported from a total of 21 different countries for all water-
body types as summarized above (Tables 1–4). The United States was the only country
where AVS sampling was conducted in all waterbody types. A total of 17 different soil
types were reported for all the waterbody types (Tables 1–4). Podzols and luvisols were
found in all waterbody types. Nine different biomes were sampled for AVS measurements
in all waterbodies sampled (Tables 1–4). The temperate broadleaf and mixed forest biome
was sampled for AVS in all waterbody types (Tables 1–4). In most cases, the authors for
the various monitoring studies in all waterbody types did not provide any information on
targeting depositional areas for AVS sampling. The exception was streams/creeks where
depositional areas were targeted for some of the sites sampled.
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Figure 9. Regression of AVS field study means data for all waterbodies against a probability scale 
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4. Discussion

There were a total of 140 locations sampled for AVS for all waterbody types based on
this historical review (Table 5). Approximately half of the locations sampled for AVS were
located in estuarine/marine areas; therefore, the available data is somewhat skewed for this
waterbody type. The numbers of locations sampled for AVS in rivers (only 16 locations) and
streams/creeks (only 21 locations) was less than the other two waterbody types. Therefore,
additional AVS monitoring in these lotic aquatic systems is recommended.

AVS measurements in 13 different countries were reported for estuarine/marine
locations and for streams/creeks AVS measurements were reported in 10 different countries.
For rivers and lakes/ponds/reservoirs, AVS data were only available from four to five
countries. Most of the AVS data were reported from waters in the United States, although
for estuarine/marine areas there were more sites sampled for AVS in China than in the
United States. In summary, the geographic extent of AVS data, particularly for rivers and
lentic systems (lakes, ponds, reservoirs) is limited and should be expanded to include
more countries.

The most dominant soil type generally reported for all waterbody types except the
estuarine/marine areas was luvisols. Luvisols are technically characterized by a surface
accumulation of humus overlying an extensively leached layer devoid of clay and iron-
bearing minerals [78]. Luvisols extend over 500 to 600 million hectares worldwide and are
dominant in temperate regions such as west/central Russia, the USA and central Europe
as well as the Mediterranean region and southern Australia [78]. Based on the geographic
distribution of AVS sampling sites, it is clear that the AVS data base is biased for luvisols.
Therefore, the possible relationship of luvisols and AVS becomes important. Based on our
analysis, for rivers, lakes/ponds/reservoirs and estuarine/marine areas, luvisol areas have
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some of the highest concentrations of AVS (Table 6). Naturally occurring sulfur in luvisols
may be contributing to the elevated AVS in these waterbodies [79].

The most dominant biome sampled for AVS among all waterbody types was the
temperate broadleaf and mixed forest biome. This biome is defined as temperate climate
habitat with broadleaf ecoregions with conifer and broadleaf trees mixed in coniferous forest
ecoregions [80]. The temperate broadleaf and mixed forest biome is particularly dominant
in central China, eastern North America, Caucasus, Himalayas, southern Europe, and the
Russian Far East [80]. The temperate broadleaf and mixed forest biome was reported to have
the highest concentrations of AVS for streams/creeks, rivers, and lakes/ponds/reservoirs,
but for estuarine marine areas the temperate coniferous forest biome had the highest AVS
concentrations (Table 7).

AVS is highly variable for all waterbody types combined with mean values ranging
from 0.010 to 503 µmoles/g. The variability of AVS within each waterbody type as well
as the variability of AVS within specific sampling locations is compelling based on the
data provided in this manuscript. For lotic water systems such as streams, the AVS
mean values ranged from 0.01 to 39.8 µmoles/g for all streams/creeks (Table 5). This is
a 3980 × difference between a low to high concentration. The variability is even more
extreme when evaluating site-specific stream data. For example, Burton et al. [1] reported
AVS concentrations ranging from 0.02 to 44 µmoles/g for six stream sites sampled in
Belgium. This represents a 2200 × difference between low and high values.

The same variability trend was also reported for other lotic water systems such as
rivers as the range of mean AVS values reported was 1.13 to 197 µmoles/g for all rivers in
Table 5 (174 × difference between low and high value). In a specific river study, De Jong
et al. [27] sampled 28 sites in the north Belgium Flanders region and reported lowland river
sediment AVS concentrations ranging from 0.004 to 357 µmoles/g (89,250 × difference
between low and high values). The variability of AVS measurements in rivers based on
this one specific study is even greater than that reported for streams as discussed above.

For lentic aquatic systems such as lakes/ponds/reservoirs, AVS mean concentrations
ranged from 0.787 to 127 µmoles/g (161 × difference between low and high values) (Table 5).
This is a similar value reported above for all rivers. A specific study by Besser et al. [24]
in a Michigan (US) lake showed AVS concentrations ranging from 0.1 to 65 µmoles/g
(650 × difference between the low and high value)

Variability of AVS measurements is also well documented for estuarine/marine ar-
eas that may be subjected to tidal cycles, with mean AVS values ranging from 0.058 to
503 µmoles/g (8672 × difference between low and high values). A specific study con-
ducted by the Maryland Department of the Environment 2021 in the Middle Harbor
Patapsco River estuary showed AVS concentrations ranging from 0.02 to 515.6 µmoles/g
(25,780 × difference between low and high value) based on sampling of 14 sites [60].

The variability issue of AVS for all waterbody types reported in this study becomes ex-
tremely important when attempting to determine the bioavailability and potential toxicity
of divalent metals such as cadmium, copper, lead, nickel and zinc in sediment. Comprehen-
sive representative spatial and temporal scale sampling with concurrent AVS measurements
in concert with metals analysis in a waterbody, such as a stream, is therefore critical to
avoid possible errors when evaluating the potential ecological risk of metals in sediment.
In other words, taking only a few samples from a single waterbody only once could be
misleading when attempting to determine the ecological risk of metals due to the high
variability of AVS. It is well documented that if the concentration of AVS exceeds the
concentrations of SEMs [1], the sediment is likely non-toxic to resident aquatic biota such
as benthic invertebrates, so representative sampling to correctly characterize AVS for a
waterbody is critical for determining a correct ecological risk decision for metals.

A ranking of waterbody types means from low to high AVS measurements showed
the lowest mean value was reported for stream/creeks (5.12 µmoles/g) followed by
lakes/ponds/reservoirs (11.3 µmoles/g), estuarine/marine areas (27.2 µmoles/g) and
rivers (27.7 µmoles/g) (Table 5). Based on a comparative summary of AVS by waterbody
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type it appears that streams/creeks may be more vulnerable to divalent metal toxicity
because their AVS values were lower when compared with rivers, lakes/ponds/reservoirs
and estuarine/marine areas. This does not exclude metal toxicity from these other water-
bodies, but SEMs would need to be higher and exceed these higher AVS concentrations
in order to be toxic. The lower AVS concentrations in streams/creeks compared with
other waterbody types may be related to hydrological factors such as stream flow and the
presence of larger grain sediment material [1].

5. Conclusions

Accurate ecological risk assessments of divalent metals such as cadmium, copper,
lead, nickel and zinc in sediments are critical for science-based regulatory decisions. The
bioavailability of these divalent metals and potential toxicity to resident biota is controlled
by the binding capability of AVS. Therefore, the bioavailable fraction of these divalent
metals as opposed to their total concentrations is a more accurate prediction of ecological
risk. The results from this global summary of AVS data from 21 countries by waterbody type,
soil type and biome provide valuable background data on concentration ranges that may
be found. AVS monitoring data for flowing waterbodies such streams/creeks and rivers
was somewhat limited compared with lentic systems such as lakes, ponds and reservoirs or
tidally influenced estuarine/marine areas. Therefore, additional AVS monitoring data for
these lotic waterbody types is recommended. The areas with higher AVS concentrations,
such as rivers and estuarine/marine areas, would likely be less vulnerable to divalent metal
toxicity in sediment compared to areas such as streams where lower AVS concentrations
have been reported. The extremely high variability of AVS concentrations reported both
within waterbody types and within specific locations (often multiple orders of magnitude
differences between the low and high values) highlights the need for extensive spatial
and temporal AVS sampling within a waterbody with concurrent metal measurements to
accurately assess the ecological risk of divalent metals. Failure to conduct these types of
representative field monitoring studies may lead to inaccurate predictions of the divalent
metal ecological risk to resident aquatic biota.
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