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Abstract: Silvopasture systems combine tree and livestock production to minimize market risk and
enhance ecological services. Our objective was to explore and develop a method for identifying
driving factors linked to productivity in a silvopastoral system using machine learning. A multi-
variable approach was used to detect factors that affect system-level output (i.e., plant production
(tree and forage), soil factors, and animal response based on grazing preference). Variables from a
three-year (2017–2019) grazing study, including forage, tree, soil, and terrain attribute parameters,
were analyzed. Hierarchical variable clustering and random forest model selected 10 important
variables for each of four major clusters. A stepwise multiple linear regression and regression tree
approach was used to predict cattle grazing hours per animal unit (h ha−1 AU−1) using 40 variables
(10 per cluster) selected from 130 total variables. Overall, the variable ranking method selected more
weighted variables for systems-level analysis. The regression tree performed better than stepwise
linear regression for interpreting factor-level effects on animal grazing preference. Cattle were more
likely to graze forage on soils with Cd levels <0.04 mg kg−1 (126% greater grazing hours per AU), soil
Cr <0.098 mg kg−1 (108%), and a SAGA wetness index of <2.7 (57%). Cattle also preferred grazing
(88%) native grasses compared to orchardgrass (Dactylis glomerata L.). The result shows water flow
within the landscape position (wetness index), and associated metals distribution may be used as
an indicator of animal grazing preference. Overall, soil nutrient distribution patterns drove grazing
response, although animal grazing preference was also influenced by aboveground (forage and tree),
soil, and landscape attributes. Machine learning approaches helped explain pasture use and overall
drivers of grazing preference in a multifunctional system.

Keywords: grazing; silvopasture; random forest; hierarchical clustering; classification and regression
tree; multiple linear regression

1. Introduction

Silvopastoral systems combine agroforestry and pasture/livestock to maximize ecosys-
tem services and mitigate risk by diversifying markets. It is a complex system, with factors
such as soil, topography, tree species, and forage species interacting to influence net pri-
mary productivity, as well as ecosystem services [1–4]. Topography, characterized by
terrain features, controls the spatial distribution of soil water and associated nutrients,
thus affecting the quality and quantity of forage production, as well as grazing preference

Soil Syst. 2021, 5, 41. https://doi.org/10.3390/soilsystems5030041 https://www.mdpi.com/journal/soilsystems

https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com
https://orcid.org/0000-0002-6786-0553
https://orcid.org/0000-0002-3218-8939
https://doi.org/10.3390/soilsystems5030041
https://doi.org/10.3390/soilsystems5030041
https://doi.org/10.3390/soilsystems5030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/soilsystems5030041
https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com/article/10.3390/soilsystems5030041?type=check_update&version=1


Soil Syst. 2021, 5, 41 2 of 16

spatially and temporally. Classical statistical analysis often fails to capture the effect of
nonlinear factors and their interaction once the number of variables increases in the model.
A multi-variable approach that is not affected by interactions and linearity requirements
can help to identify important variables in system-level analyses. Therefore, this study
aims to develop a framework for identifying the driving factors affecting net productivity
in silvopastoral systems.

The primary focus of statistical analysis is to make population inferences using the
samples, while machine learning is used for its predictive capability of algorithms [5]. To
better understand factors and their interactions in complex systems such as silvopastures,
machine learning may be useful, but it is not widely used in agricultural data analysis.
Machine learning automates the process of data classification, clustering, and dimension
reduction by allowing data to learn from itself [6]. Machine learning, which is a subset
of artificial intelligence [7], allows the selection of a few important subsets of variables,
a process known as feature selection [8]. Studies on how selected variables improve the
predictability of the machine learning algorithms [9] may help develop more accurate
prediction capability of different machine learning classifiers while minimizing the comput-
ing time and storage space requirement. Studies on how each of those selected variables
improves the system-level statistical inference are, however, a less explored area. With
fewer selected variables, exploration of such statistical relationships becomes easier.

Separating machine learning and statistical inferences into two distinct groups is still
a debate [10], as the methodology employed in machine learning approaches uses some
statistical measure during feature selection. However, with the increased volume, speed,
and processing capability of big data, techniques are needed to use those data in inferential
statistics. There are some concerns on using machine learning predicted value as observed
data for downstream statistical analysis [11], but less a concern on selecting important
variables [9]. Once important variables are selected, they can be interpreted based on
machine learning output or using some conventional statistical approach. A commonly
used approach is to fit a model using linear regression and analyze and interpret the output.
The main limitation of linear regression, however, is the assumption of linearity between
dependent and independent variables. Additionally, the intercorrelation of independent
variables makes multiple linear regression (MLR) output interpretations difficult [12].
Ref [13] discussed that much of the MLR use is inappropriate.

In a silvopasture system, ref [14] used a machine learning algorithm called random
forest (RF) to build a model between topography and soil nutrient distribution. Topography
was characterized by 12 terrain attributes derived from a 1 m digital elevation model (DEM),
and nutrient contents were spatially mapped for the study site. The relationship between
topography and nutrient distribution is just one component of the complex silvopasture
system. The overall productivity of the system depends on topography and additional
interacting factors such as tree species, grass species, and animal grazing preference.

The aim of this paper is to use the predictive capability of machine learning for
systems-level statistical interpretations. In this paper, we present a novel approach called
“variable rankings” to select few important variables using the machine learning RF method.
Then, we develop machine learning approach classification and regression tree (CART)
and MLR model to predict animal grazing preference using the selected variables and
compare the model output with the analysis of variance (ANOVA) for the interpretation.
We hypothesize that the machine learning model will have a better cause-effect relationship
with the animal grazing preference compared to the linear regression model. Therefore,
the objective of this paper is to develop machine learning approaches to select important
variables in a silvopasture system and to explore how system components interact to affect
animal response in such systems.

2. Materials and Methods
2.1. Site and Experiment Description

The study was located on a 4.25-hectare silvopasture site (Figure 1) at the University of
Arkansas Agricultural Research and Extension Center in Fayetteville, AR (36.09◦ N, 94.19◦
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W). Information on previous site history is described by [15–17]. Briefly, soil in most of the
experimental area is mapped as Captina silt loam (fine-silty, siliceous, active, mesic Typic
Fragiudults), Pickwick silt loam (fine-silty, mixed, semiactive, thermic Typic Paleudults),
Johnsburg silt loam (fine-silty, mixed, active, mesic Aquic Fragiudults), and Nixa cherty
silt loam (loamy-skeletal, siliceous, active, mesic Glossic Fragiudults; Soil Survey Staff,
2019b). A dissimilar inclusion is also present at this site that is lower in elevation and was
not captured in the mapping unit [14]. Sixteen rows of three tree species, Northern red
oak (Quercus rubra L.), eastern black walnut (Juglans nigra L.), and pecan (Carya illinoinensis
Wangenh. K. Koch), were established in 1999–2000 at 15 m row spacing. The eastern black
walnut trees were replaced with three tree species; American sycamore (Platanus occidentalis
L.), cottonwood (Populus deltoides W. Bartram ex Marshall), and pitch/loblolly pine (Pinus
rigida/Pinus taeda) in 2014. Tree row alleys (4.57 m wide) were planted with two forage
species; a cool-season species (orchardgrass (Dactylis glomerata L., var. Tekapo)) in fall
2015 and a native warm-season mix (8:1:1 big bluestem (Andropogon gerardii Vitman), little
bluestem (Schizachyrium scoparium (Michx. Nash) and indiangrass (Sorghastrum nutans L.))
in spring of 2016. Poultry litter fertility treatment (fertilized at 84 kg N ha−1 vs. a zero
rate (control)) was employed per forage treatment in the spring of 2017, 2018, and 2019.
A low elevation area with high soil moisture content within the site was delineated as
aquic (wet) treatment while the rest of the area was designated as udic (dry) treatment.
The site was grazed by heifers (Bos taurus L.) at 2.2 animal units (AU) (2017 and 2018) and
2.4 AU (2019) per hectare during the summer. In summary, this three-year (2017–2019)
silvopastoral grazing study evaluated grass treatments (orchardgrass and a native grass
mix), tree species (cottonwood, oak, pecan, pine, and sycamore), soil fertility (poultry litter
and a control), and soil moisture regimes (udic and aquic).
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Figure 1. Study site with tree species labels (oak, pine, cottonwood, sycamore, and pecans) and area
representing the individual tree polygons. Tree polygons extend southbound to identify grass species
treatments (planted in tree alleys) associated with each individual tree.

2.2. Sampling and Processing for Silvopasture Variables

Soil water content (0.33, 1, 3, and 15 bar) and temperature measurements were
recorded every 4 h and logged on a Decagon EM50 data logger (METER Group, Pullman,
WA) from May to July in 2017–2019. There were 34 sensors total at the site (17 locations
and 2 depths). These data were processed to obtain daily average measurement values.
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Photosynthetically active radiation (PAR) and leaf area index (LAI) were measured every
10 to 15 days using an AccuPAR LP-80 ceptometer (METER, Pullman, WA) throughout the
study period. Soil samples (per grass treatment, fertility, and soil moisture regime) were
collected in triplicate at the 0 to 15 cm depth each year during the study period (2017–2019).
Total C and N were determined using the combustion method, while soil organic matter
was determined using the weight loss on ignition (LOI) method. Other soil parameters; soil
texture (modified hydrometer method; sand, silt, and clay in percentage), pH and EC (1:10
soil:water extract), soil nutrient concentration (Mehlich-3 method using 1:10 soil:extractant;
P, K, Mg, S, Ca, Na, B, Mo, Ni, Al, Se, Fe, As, Cu, Zn, Mn, Pb, Cr, Ti, Cd, and Co) were
analyzed on soil samples following appropriate procedures as described in [18,19]. On
each plot, soil bulk density was measured using a 4.8 cm diameter core [20].

A grazing exclosure of 4 m2 area was secured per treatment combination (and repli-
cated thrice) to measure accumulated forage, which was measured by clipping 0.75 m2

of uncut forage to a 6 cm stubble height four times during the grazing season. Outside
the exclosure (grazed area), available forage was also measured on each sampling date.
Forage nutrient content and quality parameters (C, N, lignin, acid detergent fiber (ADF),
neutral detergent fiber (NDF), hemicellulose, total ash, water-soluble carbohydrate, forage
nutrients, and metals (P, K, Mg, S, Ca, Na, B, Mo, Ni, Al, Se, Fe, As, Cu, Zn, Mn, Pb,
Cr, Ti, Cd, and Co)) were determined in both available and accumulated forage biomass
as described in [21,22]. Nutrient removal (N, P, and K removal) by forage (both avail-
able and accumulated forage) was calculated based on nutrient content and forage yield
measurement.

Tree parameters such as diameter at breast height (DBH; diameter at 137 cm above soil
level) and tree height measured for each individual tree during 2017–2019 were averaged
for the analysis. Each heifer and its grazing activity were recorded using GPS collars
(Model 3300LR, Lotek Wireless Inc., Newmarket, ON) during the summer grazing period
(2017–2019). These point data represent a grazing event for each 15 min when animals’
heads are down for more than 75% of the time during this interval.

Study site terrain attributes; elevation (m), aspect (◦), flow accumulation (FlowAccum,
n), slope-length factor (LSFactor, m); midslope position (MidSlope, index), multi-resolution
ridge top flatness index (MRRTF, index), multi-resolution valley bottom flatness index
(MRVBF, index), normalized height (NormHt, index), slope percent (SlopePer, %), slope
height (SlopeHt, m), system for automated geoscientific analysis wetness index (SAGAWI,
index), valley depth (ValleyDep, m), soil depth (soildepth, cm), and altitude above channel
network (VDistChn, m) were derived from 1m × 1 m DEM as described in Adhikari
et al. (2018). [14] used these 1m × 1 m raster images of terrain parameters to classify four
similarly behaving areas within the study sites called topographic functional units (TFU),
as well as to help explain soil microbial linkages to production zones [23,24].

2.3. Data Preprocessing for Analysis

Individual trees in the study site were assigned a unique ID. Each tree ID was corre-
lated with the treatment information (tree species, forage species, fertility, wetness) based
on its location within the study site. Forage grass treatments were planted between the
tree alleys; hence non-overlapping tree polygons were created (Figure 1). Soil and forage
parameter values that were collected at each treatment combination level (tree species,
forage species, fertility, wetness) were also assigned to each tree ID based on their treat-
ment information. A data set without treatment information but with the geo-referenced
location was assigned to each treatment combination after evaluating their position with
respect to the tree polygons. Terrain attribute values were extracted per tree polygon
using “raster” [25] packages in R [26]. Terrain attributes per tree polygons were averaged
for numeric variables, while the most frequent value (mode) was used to extract TFU
information per polygon.

For each year, the number of grazing data points were counted per polygon with
the collar ID (individual animal) information. Each collar GPS point represents a 15 min
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grazing interval. Collar GPS data recorded outside of the study area and/or with a dilution
of precision greater than four was removed in preprocessing, as was all tilt data with tilt
percentage less than 70% in the previous five minutes. Thereafter, the total number of
grazing events per polygon was converted to total grazing hours per hectare per AU using
polygon area and number of animals (collar ID) information. A combined data set (tree,
forage, soil, terrain attributes, and grazing events) containing a total of 130 variables was
then created. Tree species, forage species, fertility (poultry manure), wetness, and TFU
were categorical variables, while the remaining 125 variables were numerical.

2.4. Machine Learning Approach to Identify Important Variables in a Silvopasture System
2.4.1. Grouping Similar Variables Using Hierarchical Variable Clustering

Silvopasture systems are diverse and complex, where several interacting factors
influence the system output. Clustering variables with similar information allows for the
identification of important variables to further explore how each of those factors influences
the system output. Hierarchical variable clustering (HVC) involves calculating dissimilarity
between variables and applying a clustering algorithm iteratively until similar variables
group together. The goal is to maximize intra-cluster similarity and minimize inter-cluster
similarity. This measure of similarity is defined by the first principal component of the
cluster and its correlation/association with the variables within the cluster [27]. Variables
are then assigned to those clusters with the highest association values. The algorithm
stops once there is no more change in the variable partition to the clusters. Dendrograms
visualize the hierarchy of the clusters and help to decide/choose the final number of
clusters. The cluster stability is evaluated by bootstrap resampling and then applying the
Rand index [28] that penalizes false positive and false negative decisions on the generated
clusters.

Variable clustering was performed using the “ClustOfVar” [27] package in R. The
approach in this package uses the HVC algorithm for both quantitative and qualitative
variables to group them in clusters based on their similarity and association within the
cluster. For qualitative variables, correlation ratios of the variable with the first principal
component of the cluster were used, while for quantitative variables, squared Pearson
correlation coefficients were used. After the clustering algorithm was applied to all 130
variables, a cluster dendrogram was produced. Dendrograms help visualize how each of
the variables was grouped and linked together. Four major clusters (Figure 2) were selected
based on visual inspection of the cluster dendrogram [27]. Finally, variables per cluster,
as well as the score of each variable loading with the cluster (indicating the strength of
association), were generated (Table 1).
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1 
 

 Figure 2. A flow chart of the model building steps used in this study. Each shaded box shows the comparison of two
approaches. Hierarchical variable clustering vs. random forest-based variable rankings approach was compared first.
Animal grazing preference was then modeled (multiple linear regression vs. classification and regression tree) using the
variables selected from the variable rankings method.

Table 1. Variables† selected per cluster using hierarchical clustering methods. Four clusters were decided based on
dendrogram visualization. A total of 130 (5 categorical + 125 numerical) variables were classified into one of four clusters.
The score is the squared loadings described in [27], and the value indicates how strongly each variable is associated with the
cluster.

Cluster 1 Score Cluster 2 score Cluster 3 Score Cluster 4 Score

SPECIES 0.82 soil_Cd 0.86 bio_P_Removal 0.88 bio_NDF 0.90
SAGAWI 0.77 soil_Cr 0.85 bio_Mg 0.83 avl_Ca 0.90
NormHt 0.63 soil_Pb 0.79 bio_P 0.80 Forage_spp 0.87
SlopePer 0.61 soil_Ti 0.70 avl_P_Removal 0.74 avl_Cu 0.87
SlopeHt 0.60 soil_Cu 0.69 bio_NRemoval 0.68 avl_Na 0.82

soildepth 0.59 soil_As 0.69 avl_Ni 0.68 avl_Mo 0.77
area_m2 0.57 soil_Fe 0.66 bio_Mo 0.67 bio_Hemi 0.73
MRVBF 0.57 soil_Al 0.62 avl_NRemoval 0.66 avl_S 0.69

X1b 0.55 Sand 0.61 bio_K_Removal 0.65 bio_Ca 0.66
Hillshade 0.55 soil_Mo 0.57 bio_Cu 0.65 bio_S 0.60

VWC1 0.50 soil_Ca 0.55 avl_Co 0.63 avl_Mg 0.55
TreeHeight 0.48 soil_Se 0.55 avl_Fe 0.61 bio_Na 0.55

Wetness 0.44 pH 0.48 bio_N 0.60 avl_Zn 0.55
DBH 0.44 soil_Mn 0.45 avl_K_Removal 0.56 bio_Mn 0.51

Elevation 0.43 Silt 0.42 Fertilizer 0.56 bio_Lignin 0.50
soil_Co 0.39 soil_Zn 0.40 avl_Pb 0.56 bio_Cd 0.46

VDistChn 0.35 X15b 0.40 avl_Mn 0.56 Carb 0.43
Clay 0.35 soil_P 0.35 avl_Ti 0.54 bio_Pb 0.28

bio_Cr 0.33 soil_S 0.33 avl_Al 0.54 avl_Lignin 0.28
bio_As 0.32 soil_Ni 0.23 avl_Yield 0.54 bio_Ash 0.24

LOI 0.29 avl_Hemi 0.21 avl_Ash 0.54 bio_C 0.22
bio_Se 0.28 avl_ADF 0.20 avl_P 0.48 bio_B 0.21

LSFactor 0.28 CN 0.19 avl_Cr 0.44 bio_Ti 0.17
soil_B 0.26 X0.33b 0.13 bio_Zn 0.40 bio_Al 0.15
TFU 0.26 grz_hr_ha 0.12 bio_Yield 0.32 bio_Fe 0.14
EC 0.19 soil_Na 0.12 LAI 0.27 avl_As 0.11

avl_N 0.18 X3b 0.00 bio_Co 0.27 bio_ADF 0.10
N 0.18 soil_Mg 0.00 PAR 0.25 avl_Se 0.06

MidSlope 0.17 soil_K 0.00 avl_Cd 0.23
Aspect 0.17 avl_C 0.21

ValleyDep 0.16 Density 0.15
Suagr 0.15 bio_Ni 0.12

FlowAccum 0.14 Temp 0.07
C 0.10 avl_B 0.02

CO2 0.09
MRRTF 0.08
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Table 1. Cont.

Cluster 1 Score Cluster 2 score Cluster 3 Score Cluster 4 Score

avl_K 0.07
bio_K 0.06

avl_NDF 0.01
† Variable description: SAGAWI = system for automated geoscientific analysis wetness index (index); SPECIES = tree species (cottonwood,
oak, pecans, pine, sycamore); NormHt = normalized height (index); MRVBF = multi-resolution valley bottom flatness index (index);
soildepth = soil depth (cm); SlopeHt = slope height (m); VDistChn = altitude above channel network (m); Elevation = elevation (m);
SlopePer = slope percent (%); ValleyDep = valley depth (m); Hillshade = hillshade (◦); MidSlope = midslope position (index); LSFactor
= slope-length factor (m); Aspect = aspect (◦); FlowAccum = flow accumulation (number of pixels, n); MRRTF = multi-resolution ridge
top flatness index (index); TFU = topographic functional units (1–4); Wetness = wetness (aquic, udic); area_m2 = area coverage by each
tree polygon (m2); DBH= diameter at breast height (m); TreeHeight = tree height (m); Fertilizer = fertility treatment with poultry litter
(fertilized, control); grz_hr_ha = animal visits (h ha−1 AU−1); Carb = forage carbohydrate (g kg−1); Forage_Spp = forage grass species
treatment (native warm-season mix, cool-season orchardgrass); LAI = leaf area index (index); PAR = photosynthetically active radiation
(µmol m−2 s−1); sugar = forage water-soluble carbohydrates (g kg−1); avl_Cr = forage mass chromium (mg kg−1 dry matter); avl_Fe =
forage mass iron (mg kg−1); avl_Al = forage mass aluminum (mg kg−1); avl_Pb = forage mass lead (mg kg−1); avl_Ni = forage mass nickel
(mg kg−1); avl_B = forage mass boron (mg kg−1); avl_Ti = forage mass titanium (mg kg−1); avl_As = forage mass arsenic (mg kg−1); avl_Ca
= forage mass calcium (mg kg−1); avl_Lignin = forage mass lignin (%); avl_Hemi = forage mass hemicellulos (%); avl_NDF = forage mass
neutral detergent fiber (%);avl_Co = forage mass cobalt (mg kg−1); avl_Cd = forage mass cadmium (mg kg−1); avl_Yield = available forage
mass yield measured every 10 days during the grazing season (kg ha−1); avl_NRemoval = total N removed from soil by forage mass yield
(kg ha−1); avl_P_Removal = total P removed from soil by forage mass yield (kg ha−1); avl_K_Removal = total K removed from soil by
forage mass yield (kg ha−1); avl_ADF = forage mass acid detergent fiber (%); avl_C = forage mass carbon (%); avl_Zn = forage mass zinc
(mg kg−1); avl_Cu = forage mass copper (mg kg−1); avl_P = forage mass phosphorus (mg kg−1); avl_S = forage mass sulfur (mg kg−1);
avl_K = forage mass potassium (mg kg−1); avl_N = forage mass nitrogen (%); avl_Mg = forage mass magnesium (mg kg−1); avl_Mo =
forage mass molybdenum (mg kg−1); avl_Ash = forage mass ash (%); avl_Se = forage mass selenium (mg kg−1); avl_Na = forage mass
sodium (mg kg−1); avl_Mn = forage mass manganese (mg kg−1); bio_Cr = accumulated bimass chromium (mg kg−1 dry matter); bio_Fe
= accumulated biomass iron (mg kg−1); bio_Al = accumulated bomass aluminum (mg kg−1); bio_Pb = accumulated biomass lead (mg
kg−1); bio_Ni = accumulated biomass nickel (mg kg−1); bio_B = accumulated biomass boron (mg kg−1); bio_Ti = accumulated biomass
titanium (mg kg−1); bio_As = accumulated biomass arsenic (mg kg−1); bio_Ca = accumulated biomass calcium (mg kg−1); bio_Lignin =
accumulated biomass lignin (%); bio_Hemi = biomass hemicellulos (%); bio_NDF = accumulated biomass neutral detergent fiber (%);bio_Co
= accumulated biomass cobalt (mg kg−1); bio_Cd = accumulated biomass cadmium (mg kg−1); bio_Yield = accumulated biomass yield
collected inside grazing exlosure areas every 10 days during the grazing season (kg ha−1); bio_NRemoval = total N removed from soil by
accumulated biomass yield (kg ha−1); bio_P_Removal = total P removed from soil by accumulated biomass yield (kg ha−1); bio_K_Removal
= total K removed from soil by accumulated biomass yield (kg ha−1); bio_ADF = accumulated biomass acid detergent fiber (%); bio_C =
accumulated biomass carbon (%); bio_Zn = accumulated biomass zinc (mg kg−1); bio_Cu = accumulated biomass copper (mg kg−1); bio_P
= accumulated biomass phosphorus (mg kg−1); bio_S = accumulated biomass sulfur (mg kg−1); bio_K = accumulated biomass potassium
(mg kg−1); bio_N = accumulated biomass nitrogen (%); bio_Mg = accumulated biomass magnesium (mg kg−1); bio_Mo = accumulated
biomass molybdenum (mg kg−1); bio_Ash = accumulated biomass ash (%); bio_Se = accumulated biomass selenium (mg kg−1); bio_Na
= accumulated biomass sodium (mg kg−1); bio_Mn = accumulated biomass manganese (mg kg−1); soil_Co = soil cobalt (mg kg−1 soil);
VWC1 = volumetric water content (m3/m3 soil); soil_Mg = soil magnesium (mg kg−1); X1b = gravimetric water conent at 1 bar (g g−1);
soil_Ni = soil nickel (mg kg−1); soil_B = soil boron (mg kg−1); CN = soil carbon:nitroen (ratio); Temp = soil temp at 0–15 cm (◦C); EC = soil
electrical conductivity (dS m−1); soil_S = soil sulfur (mg kg−1); soil_K = soil potassium (mg kg−1); X15b = gravimetric water content at 15
bar (g g−1); soil_Na = soil sodium (mg kg−1); Sand = sand (%); Silt = silt (%); Clay = clay (%); X3b = gravimetric water content at 3 bar (g
g−1 soil); X0.33b = gravimetric water content at 0.33 bar (g g−1 soil); CO2 = soil respiration CO2 (umol cm−1 s−1); Density = bulk density
(kg m−3); soil_Cd = soil cadmium (mg kg−1); soil_Ti = soil titanium (mg kg−1); soil_Cr = soil chromium (mg kg−1); soil_Pb = soil lead (mg
kg−1); soil_Cu = soil copper (mg kg−1); soil_As = soil arsenic (mg kg−1); soil_Fe = soil iron (mg kg−1); soil_Se = soil selenium (mg kg−1);
soil_Al = soil aluminum (mg kg−1); soil_Ca = soil calcium (mg kg−1); soil_Mo = soil molybdenum (mg kg−1); pH = soil pH; soil_Zn = soil
zinc (mg kg−1); LOI = soil organic matter measured using loss in ignition method (%); N = soil nitrogen (%); C = soil carbon (%); soil_P =
soil phosphorus (mg kg−1); soil_Mn = soil manganese (mg kg−1).

2.4.2. Variable of Importance Using Random Forest Model

Random forest [29] is a non-parametric, machine learning approach where ensembles
of classification and regression tree predictions are averaged to make the final prediction
model [30]. The CART is a recursive binary split method of input space. In the case
of regression predictions, CART decides the best split node by minimizing the sum of
squared deviations between each response and the mean predicted value for the node.
This approach is useful when there are large numbers of explanatory variables because of
its capacity to handle nonlinear relationships and interactions among predictor variables.
Individual trees are grown by randomly resampling (with replacement) the training data
(called bootstrap sample), as well as using the subset of explanatory variables at a time,
which is called the random subspace method. Bagging [30] is the process of the aggregating
model developed by the bootstrap sample. Out-of-bag (OOB) mean square error (MSE)of
the RF model is the mean prediction error calculated from the training data set when each
particular observation was not present in the bootstrap sample.
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The random forest algorithm uses two criteria to assess the importance of the selected
variables. First, important variables in the models are ranked by an estimate of the decrease
in predictive accuracy when the variable is not included in the prediction model. The
second measure is ranking variables by their contribution to node (splitting node) purity
by using the random subset of variables. Averaged over all regression trees, a decrease
in residual sum of square (RSS) by the variables in question allows measurement of this
indicator.

The RF models were developed to predict each of the 125 quantitative variables
(response variable, y) separately using the R package “randomForest” [31]. For each of the
RF model response variable (y), the remaining 129 variables (130 variables less response
variable) were used as explanatory variables.

yi = X−i (1)

where yi is the ith response variable and X−i is the matrix of 129 variables other than the ith
response variable. Random forest parameters: nTree (number of trees to grow each time)
was set to 500, and mTry (number of variables needed at each node/split) was set to 43.

Each RF model produced important variables based on increases in MSE and increases
in node purity. Variables were ranked highest to lowest based on these two criteria. A
column with the average ranking of these two criteria was also developed. Next, the twenty
most important variables for each model were selected using: (1) MSE ranking, (2) node
purity ranking, and (3) average ranking of MSE and node purity. Each RF model then
grouped response variables into one of the four clusters. Finally, for each group (cluster),
the 10 most frequently occurring ranked variables were selected (Figures 2 and 3). Variables
selected using this new approach, “variable ranking” was compared with the standard
hierarchical clustering output.
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2.5. Animal Grazing Preference Modeling Using Variables Selected by RF-Based Variable Ranking
Method

Selected variables based on the averaged ranking method were used to predict animal
grazing preference. Summer active grazing hour per ha per AU (labeled as “grz_hr_ha”)
was averaged for all 3 years (2017, 2018, and 2019) for this study. The random forest
variable selection method described previously resulted in 10 variables per cluster that
were important for system-level analysis. These 40 variables (10 per cluster) were selected
to model grazing preference using two approaches: MLR method and the CART method.
Outputs from these two methods were compared for the grazing preference interpretation.
For MLR, a stepwise regression using both backward and forward selection methods
was employed to select important variables using the “MASS” package [32] in R. A final
MLR model was thus summarized for each selected variable with its coefficient and
variance inflation ratio (VIF) to assess if some of these variables still contained redundant
information. For CART, a regression tree for the grazing hour was developed using all 40
variables selected by the average ranking method. The R package “rpart” [33] was used
for the CART model. The default parameter controls of the “rpart” package were used
to develop grazing hour prediction models, where a minimum number of observations
needed to attempt a split node was set to 20, the minimum number of observations in any
terminal node/leaf was set to 7, complexity parameter (for additional split, R2 value must
increase by) to 0.01, and 10-fold cross-validation was used. The algorithm develops fully
grown trees at first and then prunes the trees based on control parameters for the final
model output.

3. Results
3.1. Grouping Variables Together Using Hierarchical Clustering Method

A total of 130 variables were clustered into four broad groups (Table 1). The majority
of variables were in cluster one, along with nearly all terrain features, indicating terrain
features are an important factor driving the majority of variability in the silvopasture data
set. Tree species and the terrain feature SAGAWI were most strongly correlated with this
cluster, along with other terrain features (normalized height, slope percent, slope height,
soil depth, MRVBF, and hillshade). Among other strongly correlated variables in this
group were tree coverage area as represented by area_m2, soil water content (at 1 bar), and
volumetric water content. In summary, this cluster represented terrain features, soil water
content, and tree species and tree area (coverage area) of the site. The second group (cluster
2) was composed primarily of soil parameters and was strongly correlated with soil metals
such as soil Cd, Cr, Pb, Ti, Cu, As, Fe, and Al (Table 1). Soil texture and soil pH were also
grouped within the second cluster.

The third and fourth groups were composed of forage parameters. Two sets of forage
samples, accumulated biomass (labeled as “bio”) and available forage mass (labeled as
“avl”), were distinctly separated within these two groups. Forage nutrient content (i.e.,
N, P, and K) and fertilizer application were strongly correlated in cluster three, while
forage structural parameters such as NDF, hemicellulose, lignin, and forage species were
correlated with cluster four.

3.2. Important Variables Using Random Forest Method

In general, strongly correlated variables for each cluster also appeared as important
variables based on RF models (Figure 3 and Table 1). For example, tree species, SAGAWI,
and NormHt variables that were strongly correlated with cluster one also appeared as
important variables (repeatedly appeared in RF models) for this cluster. The most strongly
related variables per cluster (Table 1), for example, tree species (SPECIES, cluster 1), soil Cd
(cluster 2), P removal by accumulated biomass (cluster 3), and NDF content of accumulated
biomass (cluster 4), were selected by both node purity and MSE method (Figure 3). How-
ever, there were differences in selected variables based on MSE and node purity method.
Variable selection using either MSE or node purity resulted in 8/10 same variables for
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cluster one (tree coverage area, elevation, normalized height, SAGAWI, slope height, soil
depth, tree species, and altitude above channel network; Figure 3A), 7/10 same variable
for cluster four (available forage Ca, Cu, Mg, and S content, accumulated biomass C,
hemicellulose, and NDF content; Figure 3D) and 6/10 same variables for cluster two (soil
Cd, Cr, Mn, Ni, Pb, and Zn content; Figure 3B). MSE and node purity method selected
only 3/10 same variables in cluster three (N removal by available forage, accumulated
biomass Cu content, and P removal by accumulated biomass; Figure 3C). The node purity
algorithm selects variables to minimize the sum of squares based on the splitting of each
node, while MSE selects variables based on predictive accuracy. To capture the importance
of both criteria, an averaged ranking (MSE ranking and node purity ranking) method was
also used to select the variables (Figure 3).

Using the average method (average of MSE and node purity ranking), the majority
of explanatory variables selected to model response variables in each cluster were from
the same cluster. For example, except for soil Al, all other selected variables for cluster 1
(Figure 3A) were from the same cluster (Table 1). Similarly, except clay and tree species,
all other variables selected for cluster 2 were from the same cluster. Tree species appeared
in both clusters (cluster 1 and cluster 2, Figure 3A,B), indicating it is one of the important
variables to explain several system-level processes and interrelationships. Variables selected
in cluster 3 were entirely from the same cluster. For cluster 4, except Cd content in available
forage mass, all other variables selected were from the same cluster. Although several of
the selected variables were from the same cluster, the RF variable ranking method showed
that variables that were weakly correlated with respective clusters (variables showing <0.5
scores in Table 1) were important enough to explain some system-level interrelationships.

3.3. Linear Regression-Based Interpretation of Selected Variables for Animal Grazing Preference

Summer grazing hour was highly variable with a mean of 77.7 and standard deviation
of 56 h ha−1 AU−1 but indicated grazing preference varied by tree species (Table 2).
However, stepwise linear regression was unable to determine the importance of tree
parameters (species, area coverage) on grazing pressure. Variables were grouped into
terrain attributes, soil parameters, and forage parameters (Table 2). Based on the linear
regression coefficient, grazing hour decreased (negative coefficients) with slope height, soil
Ni, soil Cr, soil Mn, and accumulated biomass Cu and P content. Similarly, grazing hour
increased (positive coefficients) with SAGA wetness index, normalized height, soil Cd, soil
Fe, and N removal, Fe, C, and Ca content of available forage mass.

For this study, based on a digital elevation model and random forest algorithm,
SAGAWI, ValleyDep, and SlopeHt were the main contributing terrain attributes ex-plaining
soil nutrient spatial distribution and dynamics. Similar important terrain at-tribute vari-
ables (SlopeHt, SAGAWI, and NormHt), as well as additional soil and for-age parameters,
were important for explaining animal grazing preferences.
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Table 2. Selected variables based on stepwise linear regression to model animal grazing hour,
grz_hr_ha (h ha−1 AU−1) with their coefficients and variance inflation factor (VIF). Variables with
VIF >10 were removed from the final model. At the bottom, mean, standard deviation and number
of observation is summarized for grz_hr_ha variable.

Variables Coefficient ANOVA-p > F VIF

Intercept −4025 -
SlopeHt −34 * 0.00 6.8

SAGAWI 12.0 * 0.00 3.8
NormHt 242 * 0.00 9.7
soil_Ni −28 * 0.30 2.5
soil_Cd 923 * 0.00 4.0
soil_Cr −1383 * 0.00 8.4
soil_Fe 29 * 0.01 4.2
soil_Mn −36 * 0.00 4.9
bio_Cu −73 * 0.00 4.3

avl_NRemoval 4 * 0.04 6.0
avl_Fe 11 * 0.70 5.2
bio_P −782 * 0.00 7.1
avl_C 90 * 0.00 4.6
avl_Ca 166 * 0.04 5.0

grz_hr_ha Mean 77.7
SD 58.0
N 415

Note: * indicates coefficients were significantly different from the intercept at p ≤ 0.05.

3.4. CART-Based Interpretation of the Selected Variables for Grazing Preference

Soil metals Cd and Cr, and terrain attributes SAGA wetness index and tree coverage
area were important variables for identifying factors affecting grazing preference, as
selected by the CART method (Figure 4). Soil Cd appeared decisive to split the whole
data set into two groups of animal grazing hour: 70 and 161 h ha−1 AU−1. Fewer grazing
hours (71 h ha−1 AU−1) were associated with soil Cd ≥ 0.035 mg kg−1, and the majority
of data (92% data) were under this group. The inference drawn from this result and the
linear regression model output (Table 2) were different. The positive coefficient of soil
Cd in linear regression suggested grazing hour increased with higher soil Cd, while the
CART model showed the opposite result. We further explored soil Cd and its relationship
with forage parameters (both accumulated forage biomass and available forage, data not
shown), and results suggested that forage yield, NDF, and ADF decreased with increasing
soil Cd contents at this site. Soil Cd itself was influenced by experimental factors (tree
species, fertilizer application, wetness, and grass treatments) and was usually higher in
the aquic (wet), un-fertilized areas where orchardgrass was grown (Table 3). Therefore,
animals preferred grazing native grasses (53.9 vs. 101 h ha−1 AU−1) and udic (dry) areas
(51.8 vs. 103.2 h ha−1 AU−1), where soil Cd content was significantly lower (Table 3).

Terrain attribute SAGA wetness index was another important variable selected by
the CART method to explain animal grazing preference (Figure 4). This variable ap-
peared repetitively on the CART node to delineate animal grazing preference. Higher
SAGAWI values infer pixels where water would accumulate following a rainfall event
indicating lower elevation area within the study site with comparatively more wetness. In
general, a higher value (more wetness) was associated with fewer animal grazing hours.
On average, sites with the SAGAWI ≥2.7 showed 138 h ha−1 AU−1 grazing hour com-
pared to 217 h ha−1 AU−1 when SAGAWI was less than 2.7. Again, compared to a linear
regression (Table 2) approach where SAGAWI showed a positive coefficient value, the
CART interpretations were different and more realistic.
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Table 3. Least square means of each selected variable as influenced by the experimental factor levels (tree species, ferilizer,
wetness, and grass treatments).

Factors Grazing
Hour Soil Cd Soil Cr

Tree
Cover-

age
SAGAWI Soil

Depth

Biomass
p Re-

moval

Biomass
Mg

Biomass
NDF

Forage
Mass Ca

h ha−1

AU−1 mg kg−1 mg kg−1 m2 Index cm mg kg−1 mg kg−1 % mg kg−1

Tree
Species

Cottonwood 76.4 b,c,† 0.07 a 0.11 a 57.2 c 4.66 a 96.2 a 6.26 a,b 1474 a 62.7 b 5440 a,b

Oak 68.5 b,c 0.05 b 0.09 b 105.0 b 3.99 c 85.4 c 6.48 a 1427 b 63.2 a 5258 c

Pecan 103.3 a 0.05 b 0.08 c 132.0 a 4.81 a 91.1 b 6.29 a 1382 c 63.1 a 5216 c

Pine 80.8 b 0.04 c 0.06 d 28.8 d 3.46 d 82.1 d 6.28 a 1457 a 62.6 b 5363 b

Sycamore 58.5 c 0.03 d 0.09 b 61.5 c 4.28 b 83.2 d 5.86 b 1441 a,b 62.5 b 5529 a

Fertilizer
Fertilized 71.1 b 0.04 b 0.08 b 76.8 a 4.29 a 87.9 a 4.65 b 1597 a 63.0 a 5222 b

Control 83.9 a 0.06 a 0.09 a 77.0 a 4.19 a 87.3 a 7.82 a 1275 b 62.6 b 5500 a

Wetness
Aquic 51.8 b 0.06 a 0.10 a 77.0 a 4.60 a 92.9 a 6.05 b 1419 b 62.7 a 5381 a

Udic 103.2 a 0.04 b 0.07 b 76.9 a 3.88 b 82.3 b 6.42 a 1453 a 62.9 a 5342 a

Grass
Treatments

Orchardgrass 53.9 b 0.06 a 0.09 a 77.3 a 4.07 b 87.4 a 6.56 a 1509 a 60.8 b 6015 a

Native grass 101.1 a 0.04 b 0.08 b 76.5 a 4.41 a 87.8 a 5.91 b 1363 b 64.8 a 4708 b

† Different letters indicate a significant difference at p ≤ 0.05 within a given column for each factor (Tree Species, Fertilizer, Wetness, and
Grass Treatment).

Soil Cr was another statistically significant variable selected by CART and stepwise
linear regression methods. Similar to soil Cd, higher soil Cr (≥0.09 mg kg−1) was associated
with fewer animal grazing hours (Figure 4; 38 vs. 79 h ha−1 AU−1). The linear regression
(Table 2) method also showed a negative slope coefficient for the soil Cr to predict animal
grazing hours. Similar to soil Cd, Cr was higher in wet, un-fertilized, and areas where
orchardgrass was grown (Table 3).

The tree coverage area represents the areal area coverage of each individual tree
within the study site. Higher area coverage represents larger trees compared to lower
area coverage. Area coverage appeared in the CART approach as an important variable
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(Figure 4); however, it did not appear in the stepwise linear regression method (Table 2).
Animals preferred grazing (160 vs. 75 h ha−1 AU−1) where trees were larger (tree coverage
140 m2 or more). Table 3 shows that tree coverage was not affected by any factor other than
tree species. Larger trees (greater diameter at breast height) within the sites were pecan
(132 m2), and animals preferred grazing (103 h ha−1 AU−1) on these sites. However, results
also indicated that smaller trees did not always result in fewer grazing hours. Pine trees,
for example, were the smallest trees on the study site (28.8 m2 tree coverage), and animals
preferred grazing there compared to sycamore (Table 3; 80.8 vs. 58.5 h ha−1 AU−1). Other
factors that appeared in the CART approach, such as silt content, soil depth, slope height,
and hemicellulose, were determinants for further variation in animal grazing preference.

In general, greater silt content (equal or greater than 52%) was linked to lower animal
grazing hours (Figure 4; 71 vs. 112 h ha−1 AU−1). Similarly, greater soil depth (equal to or
greater than 75 cm) was associated with less grazing (69 vs. 143 h ha−1 AU−1). Animal
grazing hour was greater (86 vs. 64 h ha−1 AU−1) under greater slope height (slope height
equal to or greater than 1.7). Finally, hemicellulose content greater than 29% was associated
with greater grazing (87 vs. 59 h ha−1 AU−1).

4. Discussion

The authors used a variable ranking method to select important variables for the
system-level analysis. Compared to cluster analysis, some of the selected variables (by
variable ranking method) came from different cluster groups. Although not all, most of the
strongly correlated variables (Table 1; variables with higher loading score) were selected
by our variable ranking approach (Figure 3). This result helped to conclude that the new
approach was comparable to HVC for variable selection and helpful to reduce a large
number of variables into a few important ones for system-level analysis.

Selected variables were used to develop a grazing preference model using a machine
learning approach CART and MLR. As discussed by [12,13], the limitation of MLR due to
linearity assumption and autocorrelation (correlation between independent variable) was
evident. We used variables with VIF <10 to select less correlated variables during MLR
(Table 2), still the interpretation of MLR output was different from the machine learning
approach (CART), probably due to linearity limitation. For example, with higher soil Cd
content and SAGAWI, animal grazing hours increased (Table 2) in MLR while it decreased
in CART (Figure 4). The interaction of SAGAWI with other variables was evident on
the CART model, as it appeared repeatedly with different coefficient values (Figure 4)
on different nodes. Factor-level analysis and comparison of model coefficient (MLR and
CART) with ANOVA showed that CART performed better than MLR for explaining the
relationship of selected variables with the response variable grazing preference.

Animal grazing was linked primarily with soil Cd, soil Cr, tree coverage area (areal
coverage), and the terrain feature SAGAWI. Cattle preferred grazing locations with lower
SAGAWI (drier areas), native forages, and lower soil Cd and Cr contents. A comparison
with ANOVA results (Table 3) also confirmed that these drier sites (with lower SAGAWI,
soil Cd, and soil Cr contents) had greater animal grazing hours.

In summary, cattle grazing preference is influenced by the interaction of plant, animal,
and environmental factors [34]. Cattle respond to these factors by selecting plants or
plant parts with the most desirable nutritive value [35]. We found soil metals Cd, Cr, and
terrain attributes SAGA wetness index to be the most important factors influencing animal
grazing preference in our study. [14] reported SAGAWI as one of the important terrain
attributes determining soil nutrient distribution on this site. Cattle grazing preference and
its relationship with the lower metal content of the site is related to the water movement
due to landscape position, as indicated by the SAGA wetness index. Greater soil metals
(Cd and Cr) were associated with lower elevation areas within the site. Several studies
report landscape hydrology as a function of terrain attributes [36–39] that ultimately drives
the nutrient and metal distribution. Soil Cd increased with SAGAWI (regression coefficient,
b = 0.009) and soil depth (b = 0.001), while it decreased with the elevation (b = −0.003)
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within the site (DNS). Soil Cr showed a similar relationship with SAGAWI, soil depth,
and elevation, indicating the occurrence of these metals was likely more of a function
of terrain attributes and concentration of these metals were higher on lower elevation
and depressional area. [40] also reported that higher soil Cd was associated with lower
elevation topographic areas within a Northern Great Plains study site. Forage yield (both
accumulated biomass and available forage mass) decreased with increasing soil Cd and
Cr content in our study (DNS); hence, lower animal grazing hours are expected with less
forage availability on these depression areas.

5. Conclusions

Silvopastoral system components, including grass and tree species, and their inter-
action with terrain-associated factors require a multi-variable approach to understand
system-level functionality. We hypothesize that the machine learning approach will help
to improve both variable selection and factor-level interpretation for a complex system
with multiple interacting variables. A three-year (2017–2019) silvopastoral grazing study
was used to evaluate a novel approach called “variable rankings” to select most important
variables using the machine learning RF method. Results showed that this new approach
was comparable to HVC for variable selection and was helpful in reducing a large num-
ber of variables into a few important ones for system-level analysis. Selected variables
were then used to develop an animal grazing preference model using machine learning
(CART) and MLR approach. Machine learning model CART showed a better cause-effect
relationship with the animal grazing preference compared to the MLR. Based on the CART
result, animal grazing was linked primarily by soil Cd, soil Cr, tree coverage area, and the
terrain feature SAGAWI. Cattle preferred grazing locations with lower SAGAWI (drier
areas), native forage mixture, and lower soil Cd and Cr contents. A comparison with
ANOVA results also confirmed that these drier sites (with lower SAGAWI, soil Cd, and
soil Cr contents) had greater animal grazing hours. A machine learning-based variable
ranking approach used in this study helped to subset important variables that can be
used for statistical inference. In conclusion, animal grazing preference was influenced by
tree species (larger pecan trees preferred), grass treatments (native grass preferred), soil,
and landscape attributes, and may help explain pasture use. Machine learning is a viable
approach for identifying systems-level drivers of a complex silvopasture system.
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Abbreviations

ADF, acid digestible fiber; AU, animal units; C, carbon; CART, classification and re-
gression tree; DBH, diameter breast height; DNS, data not shown; GPS, global positioning
system; HVC, Hierarchical variable clustering; LAI, leaf area index; LOI, loss in ignition;
MLR, multiple linear regression; MSE, mean square error; NDF, neutral detergent fiber;
OM, organic matter; OOB, out of bag; PAR, photosynthetically active radiation; RF, random
forest; RSS, residual sum of squares; SOC, soil organic carbon; VIF, variance inflation ratio;
VWC, volumetric water content.
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