Supporting Document

Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR study

Jerzy Mierzwa¹, Rose Mumbi¹, Avedananda Ray¹, Sudipta Rakshit¹*, Michael E. Essington²,

and Dibyendu Sarkar³

1 Department of Agricultural & Environ. Sciences, Tennessee State University, 3500 John A. Merritt. Blvd. Nashville, TN 37209, USA

2 Biosystems Eng. & Soil Science Department, University of Tennessee Knoxville, 2506 E.J. Chapman Dr. Knoxville, TN 37996, USA

3 Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA

*Corresponding author srakshit@tnstate.edu

Table S1. Hematite and suspension parameters used in the triple-layer surface complexation
modeling of antimony adsorption.

Parameter (Unit)	Value
$S_{\rm A}$, specific surface (m ² g ⁻¹)	24†
$n_{\rm s}$, =FeOH total site density (nm ⁻²)	1.0‡
$S_{\rm T}$, total site concentration (mmol L ⁻¹)	0.782‡
C_1 , inner-Helmholtz capacitance (F m ⁻²)	0.97§
C_2 , outer-Helmholtz capacitance (F m ⁻²)	0.2§
<i>a</i> , suspension density (g L^{-1})	2
Background electrolyte (M KCl)	0.001 and 0.01
†Elzinga and Kretzschmar (2013).	

‡Current study. Site density value was computed using $n_s = (S_T A_N)/(10^{18} a S_A)$, where A_N is the Avogadro constant.

§Sahai and Sverjensky (1997a).

Table S2. Aqueous speciation and proton and counter-ion adsorption reactions used in the

 triple-layer surface complexation modeling of antimony adsorption by hematite.

Reaction	log K or log K ^{int} †	Reference		
Aqueous Speciation				
$Sb(OH)_5^0 + H_2O = Sb(OH)_6^- + H^+$	-2.85	Accornero et al. (2008)		
$H_2O = H^+ + OH^-$	-14.00	Martell et al. (2004)		
Proton and Counter-Ion Adsorption				
$\equiv FeOH^0 + H^+ = FeOH_2^+$	5.70	Sahai and Sverjensky (1997a)		
$\equiv FeOH^0 = FeO^- + H^+$	-11.30	Sahai and Sverjensky (1997a)		
$\equiv FeOH^0 + H^+ + Cl^- = FeOH_2^+ - Cl^-$	8.51	Sahai and Sverjensky (1997b)		
$\equiv FeOH^0 + K^+ = FeO^ K^+ + H^+$	-8.68	Sahai and Sverjensky (1997b)		

[†]Common logarithm of the aqueous speciation or the intrinsic surface complexation equilibrium constants (25 °C).

Figure S1. The surface speciation of adsorbed Sb into inner-sphere $[=FeOSb(OH)4^0]$ and outersphere $[=FeOH2^+-Sb(OH)6^-]$ complexes (Model I) on hematite predicted by the TLM as a function of pH in 0.001, 0.01, and 0.1 M KCl ionic media.

Figure S2. The surface speciation of adsorbed Sb into inner-sphere [\equiv FeOSb(OH)₅⁻] and outersphere [\equiv FeOH₂⁺-Sb(OH)₆⁻] complexes on hematite (Model II) predicted by the TLM as a function of pH in 0.001 and 0.01 M KCl ionic media.

Figure S3. The surface speciation of adsorbed Sb into inner-sphere bidentate $[(\equiv FeO)_2Sb(OH)_3^0]$ and outer-sphere $[\equiv FeOH_2^+ - Sb(OH)_6^-]$ complexes (Model III) on hematite predicted by the TLM as a function of pH in 0.001, 0.01, and 0.1 M KCl ionic media.