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Micro-focused and bulk X-ray spectromicroscopy method details 

 

X-ray microprobe analyses were performed at the Advanced Light Source XFM 

beamline 10.3.2 [1]. Thirty micron-thick thin sections were mounted with silicon vacuum 

grease onto a Peltier-cooling stage with a window film installed in front of the samples. 

N2 gas flowed in front of the window to avoid frost buildup. All data were collected in 

fluorescence mode at -20oC and ambient pressure using a Canberra 7-element Ge solid 

state detector and processed using a suite of LabVIEW custom software available at the 

beamline.  

µXRF Mapping: Arsenic and iron spatial distribution in the samples was determined 

using micro-focused X-ray fluorescence (µXRF) elemental mapping with a 12 keV 

incident beam, using a 50 ms/pixel dwell time, a 2 ´ 2.5 µm beam spot size, and a pixel 

size of 3 ´ 3 µm (Figure 3A), 7 ´ 7 µm (Figure 3B), or 10 ´ 10 µm (Figure 3C). Maps were 

deadtime-corrected. Decontamination was not required.  

µXANES: In sample regions of interest, arsenic and iron speciation were determined 

using arsenic K-edge and iron K-edge micro-focused X-ray absorption near edge 

structure (µXANES) spectroscopy. Spectra were calibrated using sodium arsenate 

(E0=11875 eV) and elemental iron (E0=7110.75 eV), respectively. All spectra recorded in 

the range 11770-12177 eV (As) and 7011-7416 eV (Fe) were deadtime-corrected, 

deglitched, calibrated, pre-edge background subtracted, and post-edge normalized using 
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a suite of custom LabVIEW software available at the beamline. If counts were low, spectra 

were collected at 2 adjacent spots and merged.  

Bulk XAS: Bulk XANES spectra were collected at SSRL beamline 7.3. Filter 

membranes were sealed and mounted on sample holders with Kapton tape. Data were 

collected in fluorescence mode using a cryostat sample holder at 10 K and a Canberra 30 

element Ge solid state detector. Spectra collected in the range 11635-12877 eV (As) and 

6880-8126 eV (Fe) were calibrated to a reference gold (E0=11919 eV) foil (As) or iron 

(E0=7112 eV) foil (Fe) in SixPak (Webb 2005), and normalized and plotted in Athena.  

Least-square linear combination fitting: LSQ LC fitting of experimental XANES 

spectra (micro and bulk) was performed using custom LabVIEW software for arsenic in 

the range of 11770-12177 eV using a library of 68 standard arsenic compounds, and for 

iron in the range of 7011-7416 eV using a library of 79 standard iron compounds. The best 

LCF was obtained by minimizing the normalized sum of squares residuals 

(NSS=0=perfect fit), according to the formula NSS = 100 × {∑(µexp – µfit )2 / ∑ (µexp)2 

}where µ represents the normalized absorbance. Some spectra were corrected for over-

absorption induced distortion using µ corrected = µ exp / (1 + a (1 - µ exp)) where the 

parameter a was adjusted. The error on the percentages of species found via LC fitting is 

estimated to ± 10%. 2D scatter valence plots were generated from Fe and As XANES data 

using a Matlab code available at beamline 10.3.2. For iron valence plots, kappa and mu 

represent normalized absorption values at 7113 and 7117.5eV respectively. For arsenic 
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valence plots, kappa and mu represent normalized absorption values at 11870.8 and 

11889.9 eV respectively. Standards are plotted as black empty squares and sample data 

points are in color. 
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Figure S1. Mean fern arsenic concentrations (A) and fern aboveground biomass (B) by treatment, 
normalized to soil arsenic concentrations, at final harvest, 58 weeks after fern transplanting into arsenic-
contaminated soils. n = 24. Symbols represent mean values per treatment, and error bars represent 
standard error of the mean. Means with the same letter are not significantly different (P<0.05). 

Figure S2. Mean phosphorus concentrations in dry fern 
aboveground biomass by treatment at final harvest, 58 
weeks after fern transplanting into arsenic-contaminated 
soils. n = 24. Symbols represent mean values per treatment, 
and error bars represent standard error of the mean. Means 
with the same letter are not significantly different (P<0.05). 
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Figure S3. Temporal changes in 
mean arsenic concentrations in 
porewater collected from soil 0-
10 cm deep 15 cm from fern 
crowns starting 5 months after 
fern transplant into arsenic-
contaminated soils. Panels 
represent soil treatments. Error 
bars represent standard error of 
the mean. n = 6 plots/treatment.  Time (months) 
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Figure S4. Mean arsenic contained per fern, normalized per kilogram soil, plotted by decrease in soil 
arsenic concentrations in (A) 0-10 and (B) 10-20 cm depth, assuming all arsenic came from 1 depth, and 
(C) across 0-20 cm depth. The line indicates a 1-1 relationship between fern arsenic accumulation (Y 
axis) and soil arsenic depletion (X axis). Fern arsenic uptake is mean of 4 replicates, soil arsenic mean 
final arsenic (3 replicates) subtracted from mean initial arsenic (3 replicates).  
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Figure S5. Tricolor-coded micro- X-ray fluorescence maps of As, Fe, and Zn in (a, b) untreated 
(control) roots with rhizosphere soil and (c) untreated (control) soil aggregate. The tri-color shield 
indicates color in panels A to C. Within an image, brighter colors indicate higher fluorescence signal. 
(d) Selected arsenic K-edge bulk and micro XANES data: bulk spectra from powdered untreated 
(control) roots, rhizosphere soil, and bulk soil; micro spectra for 8 spots across root cross-section A; 5 
spots across root cross-section B; and 6 spots across aggregate cross-section C (spots 1-3 are on 
aggregate edge; spot 4 is approximately aggregate center). As(III) and As(V) standard spectra that 
were included in the best-fit results from LCF analysis are shown in panel D for reference. The 
complete library of XAS standards is available in the Supplemental Information. Vertical lines denote 
energies at 11872 and 11875 eV that were used to differentiate As(III) and As(V) species, respectively. 
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Figure S6. Valence scatter plots of arsenic (top) and iron (bottom) oxidation state in root 
and soil samples in Figure 3A (blue), Figure 3B (green), and Figure 3C (red). Standards 
are plotted as black empty squares. In the As plot, kappa and mu represent normalized 
absorption values at 11870.8 and 11889.9 eV respectively. In the Fe plot, Kappa and mu 
represent normalized absorption values at 7113 and 7117.5eV  
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Spectra As(III) % As(V)  % Normalized Sum 
of Squares

Bulk root 1 101.8 6.1 2.59E-04
Bulk root 2 75.5 26.3 2.90E-04

Bulk rhizosphere 1 48.6 52.5 4.04E-04
Bulk rhizosphere 2 48.3 50.4 4.25E-04

Bulk soil 9.9 102.9 4.20E-04

A1 71.5 29.1 1.81E-04
A2 71.2 30.8 6.41E-04
A3 57.7 42.6 8.26E-04
A4 55.0 46.1 5.76E-04
A5 54.1 46.9 1.05E-03
A6 30.4 70.5 5.06E-04
A7 31.7 71.0 1.56E-03
A8 12.8 89.8 1.51E-03

B1 70.3 31.8 4.93E-04
B2 67.6 34.3 3.40E-04
B3 64.0 38.3 7.75E-04
B4 61.5 40.3 5.42E-04
B5 42.9 60.1 1.47E-03

C1 64.8 37.7 8.15E-04
C2 53.4 46.9 4.60E-04
C3 49.1 52.0 7.11E-04
C4 40.0 61.0 6.08E-04
C5 38.4 63.8 4.75E-04
C6 27.9 73.9 3.44E-04

Table SI-1. Linear combination fits for As K-edge bulk and 
micro (A1-C6) XAS spectra in Figure 3D.

Table S1. Least-square linear combination fits for arsenic 
K-edge bulk and micro (A1-C6) XAS spectra in Figure 3D. 
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Figure S7. Standard spectra used in LC fitting of arsenic K-edge spectra shown in Figure 3D 
and Figure S5. 
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Figure S8. Standard spectra used in LC fitting of iron K-edge spectra, see results in Table S2. 


