

Supplementary Materials

Variation in the Molecular Structure and Radiocarbon Abundance of Mineral-Associated Organic Matter across a Lithosequence of Forest Soils

Katherine Heckman ^{1,*}, Heather Throckmorton ², William R. Horwath ², Christopher W. Swanston ¹ and Craig Rasmussen ³

Table S1. Full regression models. HF = heavy fraction.

HF %N =
$$-0.000767 + 0.0582872$$
(HF %C) + 0.0018483 (HF δ^{15} N) + 0.0196685 (Fe_{PY})

HF %C, $p < 0.0001$; HF δ^{15} N, $p = 0.0053$; Fe_{PY}, $p = 0.0175$

HF %N = $0.0383344 + 1.1654402$ (Biomass N mg g⁻¹)

Biomass N, $p = 0.0028$

HF %C = $1.2578155 - 0.235704$ (log(depth)) + 0.117679 (Al_{PY})

log(depth), $p < 0.0001$; Al_{PY}, $p = 0.0116$

HF Δ^{14} C = $1.1349763 - 1.002719$ (depth) - 0.004121 (Fe_D)

Depth, $p < 0.0001$; Fe_D = 0.0036

HF Δ^{14} C = $1.1200545 - 0.002031$ (depth) - 0.002987 (SSA)

Depth, $p = 0.0012$; surface area = 0.0001

Figure S1. Pyrolysis GC/MS compound class abundance: Relative compound class abundance averaged across density fractions and sites (n = 8), as determined by pyrolysis GC/MS analysis. Letters indicate significant differences as determined by Tukey HSD, $\alpha < 0.05$.