Supplementary Materials ## Variation in the Molecular Structure and Radiocarbon Abundance of Mineral-Associated Organic Matter across a Lithosequence of Forest Soils Katherine Heckman ^{1,*}, Heather Throckmorton ², William R. Horwath ², Christopher W. Swanston ¹ and Craig Rasmussen ³ **Table S1.** Full regression models. HF = heavy fraction. HF %N = $$-0.000767 + 0.0582872$$ (HF %C) + 0.0018483 (HF δ^{15} N) + 0.0196685 (Fe_{PY}) HF %C, $p < 0.0001$; HF δ^{15} N, $p = 0.0053$; Fe_{PY}, $p = 0.0175$ HF %N = $0.0383344 + 1.1654402$ (Biomass N mg g⁻¹) Biomass N, $p = 0.0028$ HF %C = $1.2578155 - 0.235704$ (log(depth)) + 0.117679 (Al_{PY}) log(depth), $p < 0.0001$; Al_{PY}, $p = 0.0116$ HF Δ^{14} C = $1.1349763 - 1.002719$ (depth) - 0.004121 (Fe_D) Depth, $p < 0.0001$; Fe_D = 0.0036 HF Δ^{14} C = $1.1200545 - 0.002031$ (depth) - 0.002987 (SSA) Depth, $p = 0.0012$; surface area = 0.0001 **Figure S1.** Pyrolysis GC/MS compound class abundance: Relative compound class abundance averaged across density fractions and sites (n = 8), as determined by pyrolysis GC/MS analysis. Letters indicate significant differences as determined by Tukey HSD, $\alpha < 0.05$.