Deciphering and Predicting Microscale Controls on Radon Production in Soils, Sediments and Rock

Neha Mehta, and Benjamin D. Kocar, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology

Sequential Extractions:

S1: 1.0 gram composite shale sample was shaken with 16 ml of 1 M MgCl₂ (pH 7) on a rotary shaker for 1 h at room temperature. Thereafter, sample was centrifuged at 6000 rpm for 15 min and supernatant was filtered. The solid residue was rinsed with 10 ml of de-ionized water (18 M Ω), which after centrifugation was collected and added to the reagent solution to be analyzed.

S2: The residue was shaken with 25 ml of 1M CH₃COONa (pH 5) for 5 h at room temperature, centrifuged, and the supernatant filtered. Residue was rinsed with de-ionized water as in step S1 and added to reagent solution to be analyzed.

S3: To the residue, 20 ml of 0.04 M NH₂OH.HCL in 25% w/w CH₃COOH is added, whereafter the suspension shaken for 6 h at 96 °C, centrifuged, and supernatant filtered. Residue was rinsed with deionized water as in step S1 and added to reagent solution to be analyzed.

S4: To the residue, 3 ml of 0.02 M HNO₃ and 5 ml H₂O₂ (30% w/v) was added and allowed to react for 2h at 85 °C. A second aliquot of 3 ml of H2O2 (30% w/v) was added and allowed to react for 3 h at 85 °C. After cooling the solution to room temperature, 5 ml of 3.2 M of CH₃COONH₄ was added to solution and allowed to react for 30 min and filtered.

S5: The shale residue after the oxidizable extraction step (S4) primarily contains silicate minerals; residue composition was estimated from the difference between the whole-rock digestions and the sum of the sequential fractions (S1-S4).

1. Steady state calculation of Radon Production rate

Assumptions:

- 1) The volumetric distribution of ²²⁶Ra is uniform within the solid
- 2) Large scale diffusion and advection are neglected for this analysis
- 3) Secular Equilibrium conditions are assumed, i.e.

$$^{226}_{Ra}A = ^{222}_{Rn}A$$

Notation:

A= Specific activity of ²²⁶Ra, (Bq m⁻³ of solid volume)

S= surface area of solid, m² g⁻¹

M= Mass of the solid, grams

R1=recoil range of ²²²Rn, meters

Z= depth from the surface of the grain, meter

 ε_1 = probability of escape of recoiled ²²²Rn entering pore space, given by = $\frac{(R_1-Z)}{2R_1}$ (Fleischer, 1983; Semkow, 1989)

The rate of production of ²²²Rn **P** from direct recoil from ²²⁶Ra in solid can be given by:

$$\mathbf{P} = \frac{\left(\int_{0}^{R_{1}} ASM \varepsilon_{1} dZ\right)}{V_{p}} \qquad Bq m^{-3}$$
$$= \frac{\int_{0}^{R_{1}} ASM \frac{(R_{1} - Z)}{2R_{1}} dZ}{V_{p}}$$
$$= \frac{ASM}{4V_{p}R_{1}} [-0 + R_{1}^{2}]$$

_ ASMR ₁	г
- 4V _p	I

Bq m ⁻³ of pore sp	pace
-------------------------------	------

	Quartz	Microcline	Geothite	Thorite
Stoichiometric formula	SiO ₂	KAlSi ₃ O ₈	FeO(OH)	ThSiO ₄
Recoil energy of Rn decay event (keV)	86.2	86.2	86.2	86.2
Compound correction	1	1	1	1
Pure solid density (g cc ⁻¹)	2.34	2.56	3.65	5.35

Р

Table S1: Input parameters to SRIM code to calculate recoil range of Rn in different minerals. The densities are here of pure mineral and not bulk densities. Atomic number of Si=14, O=8, K=19, Al=13, Fe=26, Th=90 and Rn=86.

U	Exchangeable	Acid Soluble	Reductive	Oxidizable	Residue
Shale (ppm)	6±0.05	ND	5.0±0.5	7.0±1.0	1.0±0.02
Pegmatite (ppm)	139±5	4035±66	ND	3049±37	10974±241

Table S2: Extracted U during each sequential extraction step. The concentrations are reported as average of triplicates and errors denote the standard deviation.

Figure S1: Radium activity in pre-washing stage in granite.

Figure S2: Ra activity in pore fluid during pre-conditioning step in shale.

Figure S3: XRD pattern of pegmatite.

Figure S4: Micro-CT X-Ray imaging of shale. A chipped shale rock was used for the scanning.

Figure S5: Micro-CT X-Ray imaging of pegmatite.

Page: 1 of 1

Figure S6: XRD pattern of shale.