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Abstract: We single out a class of Lagrangians on a group manifold, for which one can introduce
non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure
without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of
this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is
written in terms of an exponential of the Hamiltonian vector field.
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1. Introduction

The Euler–Poisson equations represent a very interesting example of a Hamiltonian
system on the group manifold SO(3), in which the number of conjugate momenta is less
than the number of coordinates, and it is endowed with a non-canonical Poisson structure.
Generalization of these equations to other group manifolds are known as the Poincaré–
Chetaev equations, and represent an active field of research [1–4]. They were suggested
by Poincaré in the Lagrangian-like form in [5], while their Hamiltonian character was
recognized by Chetaev in [6,7]. For the case of SO(3), the Euler–Poisson equations can
be obtained using Dirac’s formalism for constrained systems [8–10], by performing the
Hamiltonization of the Lagrangian variational problem for a rigid body considered as
a system with kinematic constraints [11,12]. Since this works adequately for the SO(3)
manifold, it is interesting to see whether it can be applied for other group manifolds and,
more generally, for an arbitrary curved manifold. This is the goal of the present work.
We show how the Poincaré–Chetaev equations for a certain class of Lagrangians on a
curved manifold can be obtained following Dirac’s formalism. As compared with [5–7],
this work does not assume that the surface is a group manifold. As we will show, Dirac’s
formalism can be successfully applied to this case. As compared with [11], in the present
work we consider an arbitrary k-dimensional surface of the n-dimensional configuration
space instead of SO(3).

Let us start from a little more detailed description of the problem.
Consider a mechanical system with non-singular Lagrangian L(qA, q̇A), defined on

configuration space with the coordinates qA(t), A = 1, 2, . . . n. Suppose the “particle” qA

was then forced to move on a k-dimensional surface S given by the algebraic equations
Gα(qA) = 0. Then, the equations of motion are known to follow from the modified
Lagrangian, where the constraints are taken into account with help of auxiliary variables
λα(t) as follows [10,13]:

L(qA, q̇A)− λαGα(qA). (1)

While we will discuss the case of an arbitrary surface S, the most interesting applications
arise when the surface is a group manifold [1–3,14–16]. Then, in tangent space to the
manifold S there is the natural basis composed by vector fields of the Lie algebra of the
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group, say, Xi, with the Lie bracket [Xi, Xj] = cij
kXk. Then for any trajectory qA(t) ∈ S, we

can write q̇A = XA
iηi.

Let us outline and compare three different possibilities to construct a Hamiltonian
formulation for the theory (1).

(A) The first possibility is to work with unconstrained variables. Let xi be local coordi-
nates on S, then (1) is known to be equivalent to the variational problem with the following
unconstrained Lagrangian: L̃(xi, ẋi) ≡ L(qA(xi), q̇A(xi)). Denoting the conjugate momenta
for xi by pi, we immediately obtain the Hamiltonian equations ẋi = {xi, H}, ṗi = {pi, H},
with the canonical Poisson bracket {xi, pj} = δi

j. In the case of the group manifold S,
this calculation at first glance completely ignores its group structure. However, Poincaré
noticed long ago [5] that this is not the case. In the present context, his observation
can be resumed as follows. In the phase space, one can pass to non-canonical variables,
(xi, pi)→ (xi, ηi(x, p)), in which the Poisson structure stores information about the group
structure of the manifold. The same observation turns out to be important in the semiclas-
sical description of a spinning electron [17,18] and of a photon [19]. Poincaré performed
his calculations in terms of velocities, adjusting infinitesimal variations of ẋi and ηi, and
obtained his equations in the Lagrangian-like form

d
dt

∂L̃
∂ηi

= cij
k ∂L̃

∂ηj
ηk + f i. (2)

Then, Chetaev in [7] recognized the Hamiltonian character of these equations, pointing out
the Hamiltonian and Poisson brackets. In particular, for the SO(3) manifold, the resulting
Hamiltonian equations are just the Euler equations of a rigid body [15].

Note that the original problem here is a mechanical system (1) with kinematic (that
is, velocity independent) constraints. So, we expect that the Poincaré–Chetaev equations
should be obtained by direct application of Dirac’s procedure for constrained systems to
this theory. This will be one of our tasks in the present work.

We emphasize that the transition to independent variables is not always desirable.
For instance, in the case of a rigid body, the qA variables are nine elements of the matrix
Rij, subject to the orthogonality conditions. That is, to describe a rigid body, we need to
know the evolution of qA and not xi. Furthermore, the description in terms of independent
variables often turns out to be local, which can lead to misunderstandings; see [20]. Finally,
solving equations for qA sometimes requires less effort than solving the same equations
rewritten through xi [21].

(B) The second possibility is to work with the original variables using Dirac’s
formalism [8–10]. We should pass to the Hamiltonian formulation, introducing the conju-
gate momenta pA to all original variables qA. The Hamiltonian equations are then obtained
with help of canonical Poisson bracket {qA, pB} = δA

B and of the Hamiltonian H(qA, pB, λα).
Then, the resulting equations depend on the auxiliary variables λα. The systematic method
to exclude them is as follows. Besides the original constraints Gα = 0, in the Hamiltonian
formulation arise certain higher-stage constraints Φα = 0, and the complete set of con-
straints form the second-class system, which should be taken into account passing from
the Poisson to Dirac bracket, say {qA, pB}D. When writing equations of motion with the
help of a Dirac bracket, it is known that the terms with λα in the Hamiltonian can simply
be omitted.

Once again, the underlying group structure in this formalism was at first sight ignored.
To recognize it, there are two difficulties. First, the Dirac brackets are constructed for the
excess number n of momenta, as compared to the dimension k of the Lie algebra. Therefore,
some reduction in the number of variables is needed. Second, to construct the Dirac bracket
explicitly, it is necessary to invert the matrix composed of Poisson brackets of the constraints.
For instance, in the case of SO(3) group this is the 12× 12 matrix. In the present work we
slightly adjust the Dirac procedure (for the case of kinematic constraints), which allows us
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to avoid these two problems. To further clarify this issue, let us discuss the third known
possibility to construct the Hamiltonian formulation.

(C) In the case of a rigid body arises a kind of intermediate formalism between (A)
and (B). Let us consider the SO(3) manifold with configuration-space variables being nine
elements of a 3× 3 matrix subjected to six constraints RT R = 1. Then, the Hamiltonian
equations are the Euler–Poisson equations, describing a free motion of an asymmetric
rigid body [1,11,22,23]

Ṙij = −εjkmΩkRim, IΩ̇ = [IΩ, Ω]. (3)

Here, I is the inertia tensor, and the momenta Ωi are the Hamiltonian counterparts of
angular velocity in the body. There are nine redundant coordinates Rij, but only three
independent momenta Ωi. So, if in case (A) we worked with independent set (xi, pj), and in
case (B) with redundant set (qA, pB), then now we have an intermediate situation: (qA, pj).
As was shown in [11], it is in this formalism that the Poincaré–Chetaev equations can be
obtained using Dirac’s method. However, in the calculations were used some specific
properties of the group SO(3). In Section 2 we show how to construct the intermediate for-
malism in a more general case of an arbitrary surface, but for a special class of Lagrangians.
Then, in Section 3 this formalism will be used to obtain the Poincaré–Chetaev equations
on SO(3).

2. Intermediate Formalism for a Special Class of Lagrangians

As we saw above, in the models formulated in n -dimensional configuration space
qA with the dynamics constrained to live in a k-dimensional submanifold Gα(qA) = 0,
we can be interested to know dynamics of all original variables qA(t). In this case, the
most economical would be Hamiltonian formulation on the intermediate phase-space
submanifold spanned by reducible variables qA and an irreducible set of momenta pi,
[i] = [A]− [α].

In accordance with this, in the configuration space with the coordinates qA(t),
A = 1, 2, . . . n, consider k-dimensional surface determined by functionally independent
functions Gα(qA) = 0. Without loss of generality, we assume that these equations can be
resolved with respect to the first n − k-coordinates. In accordance to this, the set qA is
divided into two subgroups, qα and qi. Greek indices from the beginning of the alphabet
run from 1 to n− k, while Latin indices from the middle of the alphabet run from 1 to k. So,

Sk = {qA = (qα, qi), Gα(qA) = 0, det
∂Gα

∂qβ

∣∣∣∣
S
= n− k, α = 1, 2, . . . , n− k}, (4)

and our variational problem is (1). Applying Dirac’s method to the Lagrangian (1), we
introduce conjugate momenta for all dynamical variables. Conjugate momenta for λα are
the primary constraints: pλα = 0. Since the Lagrangian L was assumed non-singular, the
expressions for pA can be resolved with respect to velocities:

pA =
∂L

∂q̇A ≡ f̃A(q, q̇), then q̇A = f A(q, p), det f̃AB 6= 0, where f̃AB ≡
∂ f̃A

∂q̇B . (5)

To find the Hamiltonian, we exclude the velocities from the expression H = pA q̇A − L +
λαGα + vα pλα

, obtaining

H = pA f A(q, p)− L(qA, f B(q, p)) + λαGα(qA) + vα pλα
. (6)

By vα we denoted the Lagrangian multipliers for the primary constraints. Preservation
in time of the primary constraints, ṗλα

= {pλα
, H} = 0 implies Gα = 0 as the secondary
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constraints. In turn, the equation dGα/dt = {Gα, H} = 0 implies tertiary constraints, that
should be satisfied by all true solutions

Φα ≡ GαB(q) f B(q, p) = 0, where GαB ≡
∂Gα(q)

∂qB . (7)

The Lagrangian counterpart of this constraint is q̇A∂AGα = 0, and means that for true
trajectories the velocity vector is tangent to the surface S. Compute

rank
∂Φα

∂pB
= rank (GαA f AB) = n− k, where f AB =

∂ f A(q, p)
∂pB

. (8)

This implies that the constraints Φα are functionally independent and can be resolved with
respect to some n− k momenta of the set pA. This implies also that the constraints Gβ

and Φα are functionally independent. Computing their Poisson brackets, we obtain the
matrix {Gα, Φβ} = GβA(q) f ABGαB. Rank of this matrix can be analyzed in the coordinates
adapted with the surface: q′α = Gα(qα, qi), q′i = qi. In these coordinates, the surface is just
the hyperplane q′α = 0, then G′αA = δαA, and the matrix of brackets turn into f ′βα(q′, p′).
It is (n− k)× (n− k) in the upper left block of the matrix f AB, the latter is the inverse of
the Hessian matrix f̃AB of our theory. We assume that for our Lagrangian this matrix is
non-degenerate

det f ′βα(q′, p′) 6= 0. (9)

This condition is satisfied, in particular, in the theories with a positive-definite Hes-
sian matrix, see Appendix A. Therefore, this may not be a very strong limitation for
the applications.

For such Lagrangians, our constraints Gβ and Φα are of second class. Then preservation
in time of the tertiary constraints gives fourth-stage constraints that involve λα, and can
be used to find them through qA and pA. At last, preservation in time of the fourth-stage
constraints gives an equation that determines the Lagrangian multipliers vα. We do not
write out these equations; we will not need them.

To proceed further, let us construct non-canonical phase-space coordinates with special
properties. The matrix GαB of Equation (7) is composed by (n− k) linearly independent
vector fields Gα, which are orthogonal to the surface S. The linear system GαBxB = 0
has a general solution (to avoid a possible confusion, we point out that in the similar
Equation (7), representing the tertiary constraints, f A are given functions of q and p) of the
form xB = ciGiB, where the linearly independent vectors Gi are fundamental solutions to
this system

Gi = ( Gi1(q), Gi2(q), . . . , Gi,n−k(q), 0, . . . , 1, 0 . . . , 0 ), GαBGiB = 0. (10)

By construction, these vector fields form the basis of space tangent to the surface S. Together
with Gα, they form the basis of space tangent to the entire configuration space. Using
the rows Gβ and Gj, we construct an invertible matrix GBA, and use it to define the new
momenta πB:

GBA(q) =
(

GβA
GjA

)
, πB = GBA(q)pA, then pA = G−1

AB(q)πB ≡ G̃AB(q)πB. (11)

Let us take qA and πA as the new phase-space coordinates. Their special property is that
both qA and πi have vanishing brackets with the original constraints Gα

{qA, Gα} = 0, {πi, Gα} = 0, (12)

the latter equality is due to Equation (10).
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Let us rewrite our theory using the new variables. Using the canonical brackets
{qA, pB} = δA

B, we obtain Poisson brackets of the new variables

{qA, qB} = 0, {qA, πB} = GBA(q), {πA, πB} = −cAB
D(q)G̃DE(q)πE, (13)

where appeared the Lie brackets of basic vector fields GA

cAB
D = [GA, GB]

D = GAE∂EGBD − GBE∂EGAD, (14)

cij
k = 0. (15)

Therefore, the Lie bracket of the vector fields GA determines the Poisson structure of our
theory in the sector πA. The structure functions cij

k vanish for our choice of basic vectors
Gi of special form; see Equation (10). The Hamiltonian (6) reads

H = G̃ACπC f A(q, G̃π)− L(qA, f B(q, G̃π)) + λαGα(qA). (16)

At last, our second-class constraints in the new coordinates are

Gα(qA) = 0, Φα ≡ GαA(q) f A(q, G̃π) = 0. (17)

We now show that the variables πα can be excluded from all these expressions, which
gives final Hamiltonian formulation on the intermediate submanifold Φα = 0 (all solu-
tions of theory (1) lie in the phase-space submanifold Φα = 0, Gα = 0, hence the term
“intermediate”). To this aim, we construct the Dirac bracket

{A, B}D = {A, B} − {A, Ti}4−1
ij {T

j, B}. (18)

Here, Ti is the set of all constraints: Ti = (Gα, Φβ). Additionally, denoting symbolically the
blocks b = {G, Φ} and c = {Φ, Φ}, the matrices4 and4−1 are

4 =

(
0 b
−bT c

)
, 4−1 =

(
b−1Tcb−1 −b−1T

b−1 0

)
. (19)

This implies the following structure of the Dirac bracket:

{A, B}D = {A, B} − {A, G}4′{G, B}+ {A, G}4′′{Φ, B}. (20)

Taking into account Equation (12), we conclude that in the passage from Poisson bracket
(13) to the Dirac bracket, the brackets (13) of the basic variables qA and πi will not be
modified, retaining their original form. So, fortunately, we do not need to calculate the
explicit form of the matrix4−1 that appeared in (18). The constraint’s functions (17) are
Casimir functions of the Dirac bracket (18).

Let us confirm that the tertiary constraints Φα from (17) can be resolved with respect
to πα. To this aim we compute det(∂Φα/∂πβ) in the adapted coordinates, and show that it
is not zero:

det
∂(G′αA f ′A(q′, G̃′π′)

∂π′β
= det[G′αA f ′AD(q′, G̃′π′)G̃′Dβ] = det f ′αβ(q′, π′) 6= 0. (21)

Here, we used in adapted coordinates G′αA = (δαβ, 0) and G̃′Dβ = (δαβ, 0)T . It is not zero
for our class of Lagrangians (9).

The formulation of the theory in terms of Dirac brackets makes it much more transpar-
ent. Indeed, according to Dirac’s formalism, we now can omit all terms with constraints
in the Hamiltonian. Furthermore, we can use the constraints before the calculation of the
brackets. Therefore, resolving the constraints (17) for πα and excluding them from the
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formalism, we obtain the desired intermediate formulation of our theory in terms of qA

and πi.
In particular, excluding πα from Equation (13) we obtain the Poisson structure of the

intermediate formulation as follows:

{qA, qB}D = 0, {qα, πi}D = Giα(q), {qj, πi}D = δj
i,

{πi, πj}D = −cij
α[G̃αkπk + G̃αβπβ(qA, πi)], (22)

where πβ(qA, πi) is the solution to the tertiary constraints Φα = 0. In general, the brackets
are non-linear for both qA and πi. Their dependence on the choice of tangent vector fields
Gi to the surface S is encoded in three places: in the brackets {qα, πj}, in the matrix G̃, and
in the structure functions cij

α; see Equation (14).
In the Hamiltonian (16), we omit the term containing the constraints Gα, and exclude

πα. Let us denote the resulting expression by H0(qA, πj). Hamiltonian equations of
intermediate formalism are obtained with use of Dirac brackets:

q̇A = {qA, H0(qB, πj)}D, π̇i = {πi, H0(qB, πj)}D. (23)

The matrix GBA can equally be used to construct another coordinates

πα = GαB f B ≡ Φα, πi = GiB pB, (24)

which contain the constraints Φα as a part of new momenta. This change in variables is
equivalent to that used above, but turns out to be more convenient in the case of SO(3).

Being one of the classical problems in the theory of integrable systems and classical
mechanics, these issues could be of interest in the modern studies of various aspects related
with construction and behavior of spinning particles and rotating bodies in external fields
beyond the pole–dipole approximation [24–30].

3. Poincaré–Chetaev Equations on SO(3)

A rigid body can be defined as a system of n particles, where the distances and angles
between them do not change with time

(yN(t)− yK(t), yP(t)− yM(t)) = const. (25)

Here, yN(t) = (y1
N(t), y2

N(t), y3
N(t)) are position vectors of the particles with masses

mN , N = 1, 2, . . . , n. Introducing the center-of-mass coordinate y0(t), we can work
with the body’s points using their position vectors with respect to the center of mass,
xN(t) = yN(t)− y0(t). Then, according to Euler’s theorem, the position of any point at any
instant can be written through the initial position xN(0) with respect to the center of mass
as follows:

yN(t) = y0(t) + R(t)xN(0), (26)

where Rij(t) is an orthogonal matrix

RT R = 1, or RkiRkj − δij = 0. (27)

These algebraic equations are analogous of Gα = 0 of the general formalism. According
to (26), to describe the motion of a rigid body we need to know only the dynamics of this
3× 3 orthogonal matrix. Remarkably, equations of motion for Rij follow from its own
Lagrangian action [11]

S =
∫

dt
1
2

gijṘkiṘkj −
1
2

λij

[
RkiRkj − δij

]
, (28)
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with the universal initial conditions Rij(0) = δij. We emphasize that solutions to this
problem with other initial conditions do not correspond to the movements of a body. Mis-
understanding of this point leads to much confusion; see [20] for details. In the expression
(28), the mass matrix is taken to be diagonal gij = diagonal (g1, g2, g3), and is related with
the inertia tensor as follows: 2g1 = I2 + I3 − I1, 2g2 = I1 + I3 − I2, 2g3 = I1 + I2 − I3.

The variational problem (28) is of the form (1), so we can apply the intermediate
formalism of previous section to the present case. The detailed computations of the SO(3)
case were presented in [11], so here we only establish the relationship between these
calculations and the intermediate formalism developed above.

Denote the conjugate momenta of Rij by pij = ∂L/∂Ṙij. The Hamiltonian of the
theory reads

H =
1
2

g−1
ij pki pkj +

1
2

λij[RkiRkj − δij]. (29)

Applying the formalism of previous section and comparing it with the calculations of Sec-
tion XII of the work [11], we have the following table for identification of the basic quantities:

qA ∼ Rij, pA ∼ pij, f̃ A ∼ Ṙikgki, fA ∼ pikg−1
kj , (30)

πα = Φα ∼ P(ij) =
1
2
[RT pg−1 + (RT pg−1)T ]ij, (31)

πi ∼ Ω̂ij = −
1
2
[RT pg−1 − (RT pg−1)T ]ij ∼ Mn = −Inkεkij(RT p)ij. (32)

In the case of SO(3), the final results acquire a more simple form if we use the angular
momentum in the body Mn = (IΩ)n instead of the angular velocity in the body Ω̂ij.
Therefore the identification of new coordinates of the general scheme with the SO(3) case
is as follows: (qA, πα, πi) ∼ (Rij,P(ij), Mi). Making calculations of the previous section in
these coordinates, we obtain the following final Hamiltonian and the brackets

H0 =
1
2

I−1
ij Mi Mj; (33)

{Rij, Rab} = 0, {Mi, Mj} = −εijk((RT R)−1M)k, {Mi, Rjk} = −εikmR−1T
jm ; (34)

Using the orthogonality constraint on the right hand side of the brackets (34), we obtain
more simple expressions

{Rij, Rab} = 0, {Mi, Mj} = −εijk Mk, {Mi, Rjk} = −εikmRjm. (35)

By direct computations, it can be verified that they still satisfy the Jacobi identity and lead
to the same Equation (36). They were suggested by Chetaev [7] as having a possible Poisson
structure corresponding to the Euler–Poisson equations.

Denoting the rows of the matrix Rij by a, b, and c, the bracket (35) reads: {Mi, aj}D =
−εijkak, {Mi, bj}D = −εijkbk, {Mi, cj}D = −εijkck. Therefore, the Poisson structure of a
rigid body can be identified with semidirect sum of the algebra of s̄o(3) with three algebras
of translations.

Using the rule ż = {z, H0}D, we obtain the Euler–Poisson equations

Ṙij = −εjkm(I−1M)kRim, (36)

Ṁ = [M, I−1M]. (37)
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Here, the bracket [ , ] means the vector product of R3. Using the rows a, b, and c, Equation (36)
can be separated: ȧ = [a, I−1M], ḃ = [b, I−1M] and ċ = [c, I−1M]. Then, the entire system
(36), (37) breaks down into three. For instance, in the case of the row a we have

ȧi = [a, I−1M]i, Ṁj = [M, I−1M]j, (38)

{Mi, aj}D = −εijkak in accordance with (35). For this unconstrained Hamiltonian system we
can use the known formula of Hamiltonian mechanics to write solutions to the Equation (38)
in terms of an exponential of the Hamiltonian vector field [31]. Performing the same
function for the vectors b and c, we obtain the solution to Euler–Poisson Equations (36)
and (37) as follows:

Mi(t, M0k) = e
t[M0,I−1M0]j

∂
∂M0j M0i,

ai(t, M0k) = e
t([M0,I−1M0]j

∂
∂M0j

+[a0,I−1M0]j
∂

∂a0j
)
a0i,

bi(t, M0k) = e
t([M0,I−1M0]j

∂
∂M0j

+b0,I−1M0]j
∂

∂b0j
)
b0i,

ci(t, M0k) = e
t([M0,I−1M0]j

∂
∂M0j

+[c0,I−1M0]j
∂

∂c0j
)
c0i. (39)

This depends on three arbitrary constants M0k, and is therefore a general solution to the
Euler–Poisson equations (recall that initial conditions for the rotation matrix are universal:
Rij(0) = δij).

4. Conclusions

The most economical Hamiltonian formulation of the theory (1), in which we are
interested in knowing the dynamics of all variables qA, is achieved on an intermediate sub-
manifold of phase space determined by the constraints (7). We have developed the universal
method for Hamiltonian reduction of the dynamics to this submanifold. Roughly speaking,
this works as follows. For any theory of the form (1) with a positive-definite Lagrangian
L, we present the procedure to find (non-canonical) phase-space coordinates (qA, πi, πα)
with special properties. They are constructed with help of the matrix GαA ≡ ∂Gα/∂qA and
fundamental solutions of the linear system GαAxA = 0. The intermediate formulation of
the theory (1) is obtained by first rewriting the Hamiltonian formulation of unconstrained
theory L in terms of new coordinates, and then excluding the variables πα from all resulting
expressions with help of the constraint Φα = 0. In particular, the Poisson structure on
intermediate submanifold turns out to be the canonical Poisson bracket of original variables
(qA, pB), first rewritten in terms of new coordinates (qA, πB), and then restricted to this
submanifold.

The final result of the reduction is written out in Equations (22) and (23). As we
have shown in the last section, namely the intermediate formalism directly leads to the
Euler–Poisson equations of a spinning body.

An intermediate formulation for the theory (1) could be equally obtained by first
constructing the Dirac bracket (which is a degenerate Poisson structure on original phase
space (qA, pB)), and then reducing it on the submanifold Φα = 0; see [31]. We hope to
compare the two formalisms in a future publication.
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Appendix A

Properties of a positive-definite matrix. Symmetric real-valued n× n-matrix with the
elements Mij is called positive-definite (M � 0), if for any non-zero column Y we have
YT MY > 0. The following affirmations turn out to be equivalent [32]:
1A. M � 0.
1B. There exists n× n positive-definite matrix B such that M = B2 ≡ BT B.
1C. All principal minors of M are positive numbers. In particular, det M > 0.
1D. M is the Gram matrix of some set of p -dimensional linearly independent vectors, say
Zi. That is Mij = (Zi, Zj). If ZAi, A = 1, 2, . . . p is the matrix formed by the columns Zi, we
can write Mij = (ZT)iAZAj.
1E. All eigenvalues of M are positive numbers.

Additionally, there are the following properties:
2A. Diagonal elements of positive-definite matrix are positive numbers: Mii > 0 for any i.
Then trace M > 0.
2B. Positive-definite matrix is invertible, and its inverse is a positive-definite matrix.

Affirmation. Let rank QAi = k, where A = 1, 2, . . . p, i = 1, 2, . . . k, k < p, and MAB is
positive-definite. Then the matrix

Nij = (QT)iA MABQBj, (A1)

is non-degenerate, det N 6= 0.
Proof. Using 1B, we write M = BT B, then

Nij = (BQ)T
iA(BQ)Aj, (A2)

where, according to 2B, the matrix B is non-degenerate. Since the columns of QAj are
linearly independent, the matrix (BQ)Aj also is composed of linearly independent columns.
Then, (A2) means that Mij is the Gram matrix. According to 1D it is positive-definite. In
particular, det N > 0.
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