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Density and Mass Function for Regular Rotating Electrically
Charged Compact Objects Determined by Nonlinear
Electrodynamics Minimally Coupled to Gravity
Irina Dymnikova

A.F. Ioffe Physico-Technical Institute of the Russian Academy of Sciences, Polytekhnicheskaja 26,
194021 St. Petersburg, Russia; igd.ammp@mail.ioffe.ru

Abstract: We address the question of the electromagneticdensity and the mass function for regular
rotating electrically charged compact objects as determined by dynamical equations of nonlinear
electrodynamics minimally coupled to gravity. The rotating electrically charged compact objects
are described by axially symmetric geometry, in which their electromagnetic fields are governed by
four source-free equations for two independent field components of the electromagnetic tensor Fµν,
with two constraints on the integration functions. An additional condition of compatibility of four
dynamical equations for two independent field functions imposes the constraint on the Lagrange
derivative LF = dL/dF, directly related to the electromagnetic density. As a result, the compatibility
condition determines uniquely the generic form of the electromagnetic density and the mass function
for regular rotating electrically charged compact objects.

Keywords: mass function; regular electrically charged rotating black hole; electromagnetic
spinning soliton

1. Introduction

Axially symmetric metrics, which describe regular rotating compact objects, are most
frequently constructed from spherical metrics by applying the Newman–Janis complex
coordinate translation [1]

(r, t)→ (r, u); u = t−
∫ dr

g(r)
; r → r + ia cos θ; u→ u = ia cos θ. (1)

The Newman–Janis algorithm was proposed in 1965, and commented by authors as “There
is no clear reason for this operation to yield a new solution. . . ” [1]. However, the new
solution was obtained in the same 1965 year, called the Kerr–Newman solution [2]

ds2 =
(2mr− q2)− Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 2a(2mr− q2) sin2 θ

Σ
dtdφ

+

(
r2 + a2 +

(2mr− q2)a2 sin2 θ

Σ

)
sin2 θdφ2; (2)

Σ = r2 + a2 cos2 θ; ∆ = r2 − 2mr + a2 + q2. (3)

It originates from the Reissner–Nordström solution and describes a rotating body with the
specific angular momentum a, mass m, charge q, and the electromagnetic potential [2]

Ai = −(q/r)Σ[1; 0, 0,−a sin2 θ]. (4)

Soon later Carter found that coupling of the parameter a with the mass m in the angular
momentum J = ma, and with the charge q in an asymptotic magnetic momentum µ = qa,
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results in the same gyromagnetic ratio q/m, as measured by a distant observer, as required
by the Dirac equation for a spinning particle [3].

In addition, Carter discovered the global causality violation in the spacetime of a
charged spinning structure without horizons (r± = m±

√
m2 − (a2 + q2)) when a2 + q2 >

m2. In this case, gφφ < 0 for 2mr < q2, which leads to the existence of closed time-like
curves in the interior region r < q2/2m, which can be extended over the whole manifold [3].

The clear reason why the Newman–Janis operation yields a new solution was found
by Gürses and Gürsey [4]. They developed the general formalism for the transition from a
spherical to an axially symmetric solution and have shown that the Newman–Janis algo-
rithm works for spherical metrics of the Kerr–Schild class, written below in the geometrical
units c = G = 1 [5]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2M(r)

r
; M(r) = 4π

∫ r

0
ρ(x)x2dx (5)

where ρ(r) is the density andM(r) is the mass function.
In the spherically symmetric case, the electromagnetic stress-energy tensors, which

generate the Kerr–Schild metrics (5), have the algebraic structure [6]

T0
0 = T1

1 (6)

where T0
0 = Tt

t = ρ and T1
1 = Tr

r = −pr, so that the radial pressure pr and the density ρ are
related by the equation of state pr = −ρ, which is the basic generic feature of the spherical
solutions of the Kerr–Schild class [6].

The Kerr–Schild metrics belong to the special class of algebraically degenerated so-
lutions to the Einstein equations, which have the linear form. The stress-energy tensor
satisfies ∂µTµ

ν = 0 [4], which yields the coordinate-dependent equation of state for the
transversal pressure, p⊥ = −ρ− rρ′/2, where p⊥ = −Tθ

θ = −Tφ
φ .

The electromagnetic field behaves thus as an intrinsically anisotropic medium due to
the generic algebraic structure of its stress-energy tensor. In the axially symmetric spacetime,
the relation (6) is not valid, but the equation of state for the radial pressure, pr = −ρ is
obligatory, and the relation between p⊥ and ρ is described by the more complicated
coordinate-dependent equation of state, as we shall see below.

Anisotropy exhibited by the structure of stress-energy tensors has been revealed for
collisionless N-body systems of neutral particles when they behave as non-ideal fluids and
can be applied for a wide class of astrophysical matter sources (for a recent review [7]). An
intrinsically-relativistic kinetic mechanism for the generation of non-isotropic relativistic
kinetic equilibria has been reported in [8]. In Schwarzschild geometry, a non-ideal fluid is
characterized by a temperature anisotropy carried by the tangential component Tφφ of its
stress-energy tensor, which determines the transversal pressure [7].

In Kerr geometry, a non-ideal fluid formed by relativistic collisionless neutral particles
can generate non-isotropic equilibrium configurations presented by stress-energy tensors,
which exhibit pressure and temperature anisotropies [9]. The structure of stress-energy
tensors differs substantially from the spherical case due to the existence of the Killing tensor,
characterized by the Carter invariant K. The non-isotropic character of Tµν appears as the
direct unique consequence of the dependence of the kinetic distribution function on the
invariant K for the relativistic equilibrium solution in the Kerr metric. In the paper [7], two
kinds of deviations from the ideal fluid are revealed : (i) all the diagonal terms of the tensor
Tµν are different from each other, and (ii) Tµν has also non-zero off diagonal components.

Geometry of rotating compact objects is described by the Gürses–Gürsey metric, which
has, in geometrical units c = G = 1, the form [4]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 +Σdθ2− 4a f sin2 θ

Σ
dtdφ+

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (7)
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Σ = r2 + a2 cos2 θ; ∆ = r2 + a2 − 2 f (r); f (r) = rM(r). (8)

The Boyer–Lindquist coordinates r, θ, φ, are connected with the Cartesian coordinates by
x2 + y2 = (r2 + a2) sin2 θ; z = r cos θ. The signature of the metric is [ −+++]. The mass
function M(r) comes from the original spherical solution of the Kerr–Schild class (5).
For regular solutionsM(r) increases monotonically fromM(r) = (4π/3)ρ(0)r3 → 0 as
r → 0 to the Reissner–Nordström mass functionM(r) = m− q2/2r → m as r → ∞, which
ensures the causal safety on the whole spacetime manifold of a spinning structure without
horizon since gφφ > 0 everywhere due to f (r) ≥ 0 [6].

In the axially symmetric spacetime, the surfaces r = constant are the confocal ellipsoids

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (9)

which at r = 0 reduces to the equatorial disk

x2 + y2 ≤ a2, z = 0 (10)

confined by the ring [10]
x2 + y2 = a2, z = 0 (11)

which in the Kerr–Newman geometry comprises its ring singularity [2].
Horizons in the spacetime with the metric (7) are defined by the equation ∆(r) = 0

which gives
r+,− =M(r)±

√
M2 − a2; r± =M(r±) (12)

where r+ is the event horizon, r− < r+ is the internal horizon, and r± is the double horizon
of the extreme black hole with a = adh. Normalizing distances to GM, the mass function
to the total mass m, and the spherical electromagnetic density ρ̃(r) to the scale of the
interior de Sitter vacuum ρ̃0, we introduce the characteristic parameter xg = rg/r0, where

rg = 2Gm is the Schwarzschild radius and r0 =
√

3
8πGρ̃0

is the de Sitter radius, so that
the characteristic parameter xg depends on both the mass of an object and on the density
of its interior de Sitter vacuum. As follows from ∆ = r2 + a2 − 2rM(r) = 0, with taking
into account (12), a = adh = M(r±) = r±. As a result, for each value of the parameter
xg, there exists the value of the angular momentum adh characterizing the double horizon,
which presents the boundary between black holes and solitons. The scale of the interior de
Sitter vacuum is fixed as a fundamental scale for a limiting density ([11,12] and references
therein), and the relation of adh with xg gives its relation with the mass of an object. In
Figure 1, we show the dependence of horizons on the parameter xg for several values of a
(Left), and on the angular momentum a for several values of xg (Right) [13].
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Figure 1. Horizons dependently on xg for given a (Left) and on a for given xg (Right).
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Regular axially symmetric solutions have been typically obtained by choosing an
attractive spherical mass function (the favored choice [14–17]), applying the Newman–Janis
algorithm, and calculating the electromagnetic field from a modified potential (4).

Regular spherical models for electrically and magnetically charged black holes and
magnetic monopoles have been presented in [18–30].

In regular solutions for rotating charged black holes and soliton-like objects [31–42], ge-
ometrical singularity is successfully removed by applying regular spherical mass functions
in the Newman–Janis algorithm, but there remains inconsistency concerning the Lagrange
dynamics directly related to the behavior of the electromagnetic field [37], calculated from
the electromagnetic potential “postulated as an ad hoc result” in the Newman–Janis algo-
rithm [43]. As a result, one obtains an approximate solution for electromagnetic tensor Fµν,
which does not satisfy the whole system of the field equations [37].

For the electrically charged spherical objects, the problem with the Lagrange dynamics
was posed in [22] as the existential problem with the conclusion of the non-existence of reg-
ular solutions with the non-zero electric charge, due to non-Maxwellian behavior of fields
in their centers. Detailed analysis of this case has shown that regular spherical solutions for
electrically charged objects exist and have the obligatory de Sitter centers [23] required by
the algebraic structure of their electromagnetic stress-energy tensors (6). Regularity leads
to the vanishing of the field unvariant F at the de Sitter center and at infinity. The non-
monotonic behavior of the invariant F inevitably leads to a branching of the Lagrange
density L(F) [44,45].

Regular models of a soliton-like spinning object go back to the early models of the
electron as an extended particle. The basic necessary condition for its existence required
introducing an additional non-electromagnetic cohesive force to balance the Coulomb
repulsion [46–48]. Analysis of physical reasons for the models of the additional force [49]
led to the appearance of the Dirac nonlinear electrodynamics [50,51], which admits spherical
solutions describing extended charged particles [52]. Generalization of the Dirac nonlinear
electrodynamics [53] admits solutions describing spinning charged particles with the
behavior typical for solitons: attainability of a particle interior for another particle [53].
Contemporary models based on the spin dynamics have been developed in [54,55] (for a
review [56]).

Independently, nonlinear electrodynamics was proposed by Born and Infeld, as mo-
tivated by the fundamental aim to describe electromagnetic field and particles in the
frame of one physical entity, which is the electromagnetic field. Another aim appealed
to the principle of finiteness: “a satisfactory theory should avoid letting physical quan-
tities become infinite” [57]. In quantum electrodynamics, based on the conception of a
point charge, infinities originate from its infinite self-energy. Born and Infeld obtained
finite total energy for the field around a point charge by imposing an upper limit on the
electric field strength, but geometry remained singular [57] (Later, it was shown that non-
linear electrodynamics theories appear as the low-energy effective limits in certain class of
string/M-theories [58–60]).

Both the aims, formulated by Born and Infeld, can be achieved in nonlinear electrody-
namics minimally coupled to gravity (NED-GR), which describes, in a self-consistent way
and without additional assumptions concerning coupling between electromagnetic field
and gravity, regular electrically charged black holes and electromagnetic solitons replacing
naked singularities. Their electromagnetic fields are governed by the source-free NED-GR
equations for the electromagnetic tensor Fµν, while their stress-energy tensors for these
fields generate the gravitational fields as the source terms in the Einstein equations [6,23,61].

Electromagnetic spinning solitons, which are lumps of a nonlinear electromagnetic
field, related by electromagnetic and gravitational interaction, are qualified as physical
solitons in the spirit of the Coleman lumps [62] as non-singular non-dissipative particle-like
objects, keeping themselves together by their own self-interaction.

For rotating regular electrically charged objects, the axial symmetry of geometry
(7) transforms the de Sitter center r = 0 into the de Sitter equatorial disk (10), which
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is the fundamental generic ingredient of regular rotating electrically charged NED-GR
objects, uniquely determined by the algebraic structure of electromagnetic stress-energy
tensors [6,61]. As a result, their electromagnetic mass, m = 4π

∫ ∞
0 ρ̃em(r)r2dr, is intrinsically

related to gravity and breaking of spacetime symmetry from the de Sitter group [23],
characteristic for all regular objects with the de Sitter interiors [63,64] (for a review [11]).
The generic relation of the mass of electromagnetic spinning solitons [65] with the breaking
of spacetime symmetry suggests the existence of the relation of the Higgs mechanism
with gravity and spacetime symmetry [66] due to intrinsic involvement of the de Sitter
vacuum as the false vacuum state p = −ρ of Higgs scalar fields, which supply fermions
with masses via their spontaneous symmetry breaking from a false vacuum state [67–69]
(for a review [70]).

In nonlinear electrodynamics, minimally coupled to gravity, the electromagnetic field
of regular rotating electrically charged objects is described by four dynamical equations
for two independent components of the electromagnetic tensor Fµν, restricted by the neces-
sary and sufficient condition of their compatibility, imposed on the Lagrange derivative
LF = dLdF, and by two constraints imposed on the integration functions in general so-
lutions [71]. As a result, three independent dynamical equations uniquely define three
basic field functions: two independent components of Fµν and the Lagrange derivative
LF, which is directly related with the spherical electromagnetic density ρ̃(r) and the mass
functionM(r).

General solutions for two independent field components have been found in our
recent paper [71]. The aim of this paper is to show that NED-GR determines uniquely the
electromagnetic density ρ̃(r) and the mass functionM(r), and to obtain the electromagnetic
density and mass function from the compatibility condition.

In Section 2, we present the basic NED-GR equations and the general solutions for the
electromagnetic tensor Fµν, needed for derivation and further analysis of the electromag-
netic density. In Section 3, we apply the general solutions in the compatibility condition
and obtain the electromagnetic density ρ̃(r) and the mass functionM(r). Section 4 con-
tains conclusions.

2. Basic Equations

In the axially symmetric geometry, non-zero field components F01, F02, F13, F23 are
related by

F31 = a sin2 θF10; aF23 = (r2 + a2)F02. (13)

The stress-energy tensor of an electromagnetic field Fµν, calculated in the standard
way [72,73], has the general form [6]

8πTµ
ν = 2LFFναFµα − 1

2
δ

µ
νL (14)

where L is the Lagrangian, and LF is its derivative, LF = dL/dF.
The condition (6) is not satisfied in the axially symmetric geometry where [71]

8πT0
0 = −2LF

Σ

[
(r2 + a2)F2

10 + F2
20

]
− L

2
; 8πT1

1 = −2LFF2
10 −

L
2

. (15)

However, the equation of state pr = −ρ remains valid and characterizes the algebraic
structure of stress-energy tensors of electromagnetic fields.

The stress-energy tensors, which generate geometry (7), can be presented as [4]

Tµν = (ρ + p⊥)(uµuν − lµlν) + p⊥gµν (16)
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in the orthonormal basis of the tangent space at each point, presented by the tetrad
[uµ, lµ, nµ, mµ], directly related to the spacetime metric [72]. For the metric (7) it is given
by [4]

uµ =
1√
±∆Σ

[(r2 + a2)δ
µ
0 + aδ

µ
3 ]; lµ =

√
±∆
Σ

δ
µ
1 ;

nµ =
1√
Σ

δ
µ
2 ; mµ =

−1√
Σ sin θ

[a sin2 θδ
µ
0 + δ

µ
3 ]. (17)

For black holes, the sign plus refers to the regions outside the event horizon and inside
the Cauchy horizon, where the vector uµ is time-like. The sign minus refers to the regions
between the horizons where the vector lµ is time-like. The vectors mµ and nµ are space-like
everywhere. In the geometry without horizons, the vector uµ is time-like.

The eigenvalues of the stress-energy tensor (16) in the co-moving references frame,
rotating with the angular velocity ω(r) = uφ/ut = a/(r2 + a2), define the density ρ, and the
principal pressures pr and p⊥ by

Tµνuµuν = ρ(r, θ); Tµνlµlν = pr = −ρ; Tµνnµnν = Tµνmµmν = p⊥(r, θ). (18)

The electromagnetic density and pressures obtained as the eigenvalues of the electromag-
netic stress-energy tensor (14) are given by [71]

8πρ =
1
2
L+ 2LFF2

10; pr = T1
1 = −ρ; 8πp⊥ = −1

2
L+ 2LF

F2
20

a2 sin2 θ
. (19)

Nonlinear electromagnetic field represents thus an anisotropic continuous medium.
Equation (19) yields the basic relation [6]

4π(p⊥ + ρ) = LF

(
F2

10 +
F2

20

a2 sin2 θ

)
. (20)

The weak energy condition (WEC) requires ρ ≥ 0 and pk + ρ ≥ 0 for the principal pres-
sures [74]. In the Equation (20) this depends on the sign of the Lagrange derivative LF.

The vectors of the electromagnetic field strengths E = {Fβ0}, H = {LF
∗F0β} and the

vectors of the electric and magnetic induction D = {LFF0β}; B = {∗Fβ0} are related by
Dα = εα

βEβ; Bα = µα
βHβ, where ε

β
α and µ

β
α are the tensors of the dielectric and magnetic

permeability. Their independent eigenvalues are given by [6]

εr
r =

(r2 + a2)

∆
LF, εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
, µθ

θ = (LF)
−1 (21)

Violation of WEC in (20) would involve the negative values of the dielectric and magnetic
permeability, which is incompatible with the basic requirements of electrodynamics of
continuous media [75]). Therefore the NED-GR electrically charged objects always satisfy
WEC [71].

In geometry with the metric (7), the eigenvalues of the stress-energy tensor (18) are
related with the electromagnetic density ρ̃ and with the master function f (r) = rM(r)
as [76]

ρ(r, θ) =
r4

Σ2 ρ̃(r) =
2( f ′r− f )

Σ2 ;

p⊥(r, θ) =

(
r4

Σ2 −
2r2

Σ

)
ρ̃(r)− r3

2Σ
ρ̃′(r) =

2( f ′r− f )− f ′′Σ
Σ2 (22)

As follows from (22), in the equatorial plane [6]

p⊥(r, θ) + ρ(r, θ) = p̃⊥(r) + ρ̃(r) = −rρ̃′(r)/2. (23)
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Regularity requires rρ̃′(r)→ 0 as r → 0 [23]. This gives the equation of state on the disk

p⊥ = −ρ; pr = −ρ; → p = −ρ; ρ = ρ̃0 (24)

which represents the rotating de Sitter vacuum in the co-rotating frame [6].
Simultaneously, the master function f (r) in (7) achieves for r → 0 the de Sitter

asymptotic [23]

f (r) =
r4

2r2
0

; r2
0 =

3
8πGρ̃0

. (25)

The equatorial de Sitter vacuum disk is the basic generic constituent of all regular rotating
electrically charged NED-GR compact objects [6,61].

The eigenvalues of the electromagnetic stress-energy tensor (19) define the general
form of the Lagrangian as

L = 2ρ− 4LFF2
10 (26)

On the disk, regularity requires p⊥ + ρ = 0, by virtue of (24), and Equation (20) gives
F2

10 = F2
20/a2 = 0 since LF 6= 0, and the Equation (26) leads to

F2
10 =

2ρ−L
4LF

= 0. (27)

For a general form of the Lagrangian L it is possible if and only if LF → ∞, which
corresponds to the strong field regime and provides the natural realization on the disk
([71] and references therein) of the underlying hypothesis of non-linearity replacing a
singularity [57].

A physical consequence of the fact that LF → ∞ on the disk, is that the dielectric
and magnetic permeability, given by Equation (21), behave as εr

r = εθ
θ = LF → ∞,

µr
r = µθ

θ = µ = (LF)
−1 → 0, respectively, and the de Sitter vacuum disk displays the

behavior of the perfect conductor and the ideal diamagnetic [6].
The field invariant is determined by two independent field components as [6]

F = 2

(
F2

20

a2 sin2 θ
− F2

10

)
. (28)

The Lagrangian given by the general formula (26), behaves as L → 2ρ̃(0) at approaching
the disk, and at r → ∞ it tends to L = 2ρ→ 0, since ρ→ 0 for compact objects with finite
mass. The field invariant F = 0 on the disk, by virtue of (20), which requires F2

10 = F2
20 = 0.

This also concerns the limit r → ∞, where ρ→ 0 and (p⊥ + ρ)→ 0 for compact objects.
The field invariant F evolves between two zero values, and its non-monotonic behavior

results in branching of a Lagrangian L(F) on a surface where the invariant F achieves its
minimum ([71] and references therein).

As a result, the Lagrange dynamics is presented by the non-uniform action [44,45,71]

I = Iint + Iext =
1

16π

[ ∫
Ωint

(R−Lint(F))
√
−gd4x +

∫
Ωext

(R−Lext(F))
√
−gd4x

]
(29)

where R is the scalar curvature and g is the determinant of the metric tensor. The electro-
magnetic Lagrangian L(F) should have the Maxwell limit in the weak field regime.

Each part of the manifold, Ωint and Ωext, is confined by the space-like hypersurfaces
t = tin and t = t f in, and by the time-like 3-hypersurface at infinity, where electromagnetic
fields vanish. The internal boundary between Ωint and Ωext is defined as a time-like
hypersurface Σc, at which the standard boundary conditions read [44]

∫
Σc

(
LF(int)Fµν(int) −LF(ext)Fµν(ext)

)√
−gδAµdσν = 0;
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Lint − 2LF(int)Fint = Lext − 2LF(ext)Fext. (30)

Variation in the action (29) gives in both regions, Ωint and Ωext, the source-free equations
for the electromagnetic field [6,22]

∇µ(LFFµν) = 0; (31)

∇µ
∗Fµν = 0; ?Fµν =

1
2

ηµναβFαβ; η0123 = − 1√−g
(32)

and the Einstein equations Gµ
ν = −8πTµ

ν with the electromagnetic tensor (14) as the source.
The field Equations (31) and (32), with taking into account Equation (13), present the

system of four equations for two independent field functions F10, F20 [61]

∂

∂r
[(r2 + a2) sin θLFF10] +

∂

∂θ
[sin θLFF20] = 0; (33)

∂

∂r
[a sin θLFF10] +

∂

∂θ
[

1
a sin θ

LFF20] = 0, (34)

∂F10

∂θ
− ∂F20

∂r
= 0, (35)

∂

∂θ
[a2 sin2 θF10]−

∂

∂r
[(r2 + a2)F20] = 0. (36)

Compatibility of this system has been studied in [61] by resolving it with respect to the
derivatives ∂F10/∂r, ∂F20/∂r, ∂F10/∂θ, ∂F20/∂θ, with the coefficients depending on F10 and
F20. Equality of the mixed second derivatives gives the uniform system of two algebraic
equations for F10 and F20, which has a non-trivial solution if and only if its determinant is
equal to zero. This yields the necessary and sufficient compatibility condition [61]

∂

∂r

(
1
LF

∂LF
∂θ

)
∂

∂θ

(
1
LF

∂LF
∂r

)
+

4a2 sin2 θ

Σ2
1
L2

F

[
r

∂LF
∂r

+ cot θ
∂LF
∂θ

]2

= 0. (37)

The general solution to the system (31) and (32) is given by [71]

F20(r, θ) =
r
LFΣ2

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
, (38)

F10(r, θ) =
1

2a2 sin3 θ LFΣ2

[
sin θ ΣΨ′(θ)− cos θ [Σ− 2a2 sin2 θ]Ψ(θ)

]

+
cos θ

LFΣ2

[ ∫
Φ(r)r2dr− r2

∫
Φ(r)dr

]
. (39)

Two integration functions Φ(r) and Ψ(θ) are restricted by two basic constraints, which
ensure the satisfaction of the full dynamical system (33)–(36) by solutions (38) and (39).

The 1-st constraint is given by the integro-differential equation [71]

Ψ′(θ) + (tan θ − cot θΨ(θ)− r sin θ tan θΣΦ(r) + sin θ tan θ
∫

Φ(r)r2dr

−a2 sin2 θ cos θ
∫

Φ(r)dr = − r tan θ

LF

∂LF
∂r

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
. (40)

The 2-nd constraint reads [71]
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d
dr

(
r2 sin θΦ(r)

)
= D1Φ(r) + D2

[
Ψ′(θ)− a2 sin θ sin 2θ

∫
Φ(r)dr

]

+D3Ψ(θ) + D4

∫
Φ(r)Σ(r, θ)dr (41)

D1 =
r sin θ(a2 cos2 θ − r2)

LFΣ2

[
r

∂LF
∂r

+ cot θ
∂LF
∂θ

]
; D2 =

r cot θ

LFΣ
∂LF
∂r

; (42)

D3 =
1
LF

∂LF
∂r

r
Σ2 sin2 θ

(
2a2 cos2 θ sin2 θ − Σ cos 2θ

)
+

cot θ

LF

∂LF
∂θ

(a2 cos2 θ − r2)

Σ2

+
r
LFΣ

[
cot θ

(
∂

∂r
∂LF
∂θ
− 2
LF

∂LF
∂r

∂LF
∂θ

)
+ r

(
∂

∂r
∂LF
∂r
− 1
LF

(
∂LF
∂r

)2
)]

; (43)

D4 =
r
LFΣ2

∂LF
∂r

(Σ + 2a2 cos2 θ) sin θ +
cot θ

LF

∂LF
∂θ

(a2 cos2 θ − r2) sin θ

Σ2

+
r sin θ

LFΣ

[
cot θ

(
∂

∂r
∂LF
∂θ
− 2
LF

∂LF
∂r

∂LF
∂θ

)
+ r

(
∂

∂r
∂LF
∂r
− r
LF

(
∂LF
∂r

)2
)]

. (44)

The integration functions Φ(r) and Ψ(θ) do not depend on the Lagrange density LF and
can be obtained in the Maxwell limit LF = 1, which gives Φ(r) = C1/r2; Ψ(θ) = C2 sin 2θ,
where C1 and C2 are the arbitrary constants. As a result, the general solution (38)-(39)
reads [71]

F10 = C1
2r cos θ

LFΣ2 + C2
(a2 cos2 θ − r2)

a2LFΣ2 ; F20 = C1
sin θ(r2 − a2 cos2 θ)

LFΣ2 + C2
r sin 2θ

LFΣ2 . (45)

Choice of the constants C1 = 0, C2 = −qa2, motivated by the known asymptotic solu-
tions [3,77], results in Φ(r) = 0; Ψ(θ) = −qa2 sin 2θ , and the general solution takes
the form

F01 = − q(r2 − a2 cos2 θ)

Σ2LF
; F02 =

qa2r sin 2θ

Σ2LF
; F31 = a sin2 θF10; aF23 = (r2 + a2)F02 (46)

which satisfies the full dynamical system (33)–(36), and coincides with the known solution
to the Maxwell–Einstein equations [3,77] in the weak field limit LF = 1.

3. Density and Mass Function of Electromagnetic Field

Introducing the general solution (46) into the Equation (20) we obtain the intrinsic
relation of the Lagrange derivative LF with the density and pressure [6]

LF =
q2

4π(p⊥ + ρ)Σ2 . (47)

On the disk, where Σ = 0 due to r = 0, cos θ = 0, and (p⊥ + ρ) = 0 by virtue of (24),
the Equation (47) requires LF → ∞. This guarantees regularity of geometry in the strongly
nonlinear regime, as well as has the clear physical sense: it identifies the disk as the perfect
conductor (dielectric permeability ε = LF → ∞) and the ideal diamagnetic (magnetic
permeability µ = (LF)

−1 = 0). The behavior LF → ∞ provides also fulfillment of the
compatibility condition (37) on the disk [61].

Outside the disk, the function LF is continuous as a function of the space variables r
and θ [71]. Then

∂

∂r

(
1
LF

∂LF
∂θ

)
=

∂

∂θ

(
1
LF

∂LF
∂r

)
(48)
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and the compatibility condition (37) takes the form

[
∂

∂r

(
1
LF

∂LF
∂θ

)
]2 +

4a2 sin2 θ

Σ2
1
L2

F

[
r

∂LF
∂r

+ cot θ
∂LF
∂θ

]2

= 0. (49)

The derivatives of the function LF, calculated from (47), are given by (q2/4π cancels)

∂LF
∂r

= −LF

[
4r
Σ

+
1

(p⊥ + ρ)

∂

∂r
(p⊥ + ρ)

]
;

∂LF
∂θ

= LF

[
2a2 sin 2θ

Σ
− 1

(p⊥ + ρ)

∂

∂θ
(p⊥ + ρ)

]
; (50)

∂

∂θ

(
1
LF

∂LF
∂r

)
= −4ra2 sin 2θ

Σ2 − 1
(p⊥ + ρ)

∂2(p⊥ + ρ)

∂r∂θ

+
1

(p⊥ + ρ)2
∂(p⊥ + ρ)

∂r
∂(p⊥ + ρ)

∂θ
. (51)

Then, after some simple algebra, we express the compatibility condition (37) in terms of the
electromagnetic density and pressure (p⊥ + ρ)[

4ra2 sin 2θ

Σ2 − 1
(p⊥ + ρ)2

∂(p⊥ + ρ)

∂r
∂(p⊥ + ρ)

∂θ
+

1
(p⊥ + ρ)

∂2(p⊥ + ρ)

∂r∂θ

]2

+
4a2 sin2 θ

Σ2

[
4(r2 − a2 cos2 θ)

Σ
+

r
(p⊥ + ρ)

∂(p⊥ + ρ)

∂r
+

cot θ

(p⊥ + ρ)

∂(p⊥ + ρ)

∂θ

]2

= 0 (52)

A vanishing of the sum of two squared quantities in (52) yields two equations

r
(p⊥ + ρ)

∂(p⊥ + ρ)

∂r
+

cot θ

(p⊥ + ρ)

∂(p⊥ + ρ)

∂θ
= −4(r2 − a2 cos2 θ)

Σ
; (53)

1
(p⊥ + ρ)2

∂(p⊥ + ρ)

∂r
∂(p⊥ + ρ)

∂θ
− 1

(p⊥ + ρ)

∂2(p⊥ + ρ)

∂r∂θ
=

4ra2 sin 2θ

Σ2 . (54)

The relation of the Lagrange derivative LF with the spherical electromagnetic density
ρ̃(r) follows from Equation (19), which relates (p⊥ + ρ) with the spherical density and its
derivative [6]

(p⊥ + ρ) =
2r2

Σ2

(
rΣ
4
|ρ̃′| − ρ̃a2 cos2 θ

)
. (55)

Calculating the partial derivatives of (p⊥ + ρ) from (55), we introduce their relation
with the spherical density ρ̃(r)

∂(p⊥ + ρ)

∂r
=

4r
Σ3 (r

2 − a2 cos2 θ)ρ̃a2 cos2 θ +

[
r4

Σ2 −
3r2

2Σ
− 2r2a2 cos2 θ

Σ2

]
ρ̃′ − r3

2Σ
ρ̃′′; (56)

∂(p⊥ + ρ)

∂θ
=

r2a2 sin 2θ

2Σ3

[
−rΣρ̃′ + 4ρ̃(r2 − a2 cos2 θ)

]
; (57)

∂2(p⊥ + ρ)

∂r∂θ
=

a2 sin 2θ

2Σ4

[
−r3Σ2ρ̃′′

+r2Σ(5r2 − 7a2 cos2 θ)ρ̃′ − 8r
(
(r2 − a2 cos2 θ)2 − 2r2a2 cos2 θ

)
ρ̃

]
. (58)
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Applying the relation (55) in Equation (53), we transform it to the equation for the density

Σ2r(rρ̃′′ + 5ρ̃′) = 0 (59)

which is satisfied on the disk due to Σ = 0 and r = 0, and gives the first equation for the
electromagnetic density ρ̃(r) outside the disk

rρ̃′′ + 5ρ̃′ = 0. (60)

Second equation for the density ρ̃ follows from (54), with taking into account (55) and
(56)–(58)

[4a2 cos2 θρ̃ + rΣρ̃′][4(r2 − a2 cos2 θ)ρ̃− rΣρ̃′] =

2ρ̃[8a2 cos2 θ(r2 − a2 cos2 θ)ρ̃− rΣ(Σ + 6a2 cos2 θ)ρ̃′ − r2Σ2ρ̃′′]. (61)

In the equatorial plane it reduces to

2rρ̃ρ̃′′ + 6ρ̃ρ̃′ − r(ρ̃′)2 = 0. (62)

Introducing for convenience ρ̃ = y, r = x in Equations (60) and (62), we write them in the
standard form

xy′′ + 5y′ = 0; (63)

2xyy′′ + 6yy′ − 2(y′)2 = 0. (64)

To solve these equations, we apply the standard approach introducing

y′ = p; y′′ = p
dp
dy

(65)

and transform Equations (63) and (64) to the form

p
dp
dy

+
5
x

p = 0; p
dp
dy
− p2

2y
+

3p
x

= 0.

Here, we can cancel p, since it corresponds to y′ = ρ̃′, which can vanish only on the disk,
according to Equation (23). As a result, Equations (63) and (64) take the form

dp
dy

+
5
x
= 0 (66)

dp
dy
− p

2y
+

3
x
= 0. (67)

Applying Equation (66) in Equation (67), we transform it to

dp
dy
− 5

4
p
y
= 0.

The solution to this equation is given by

p = Cy5/4 → y′ = Cy5/4 (68)

where C is an arbitrary constant.
It is easily to see that the function p(y) in (68) satisfies both Equations (66) and (67).

Second integration yields

y =
44

(Cx + C1)4 (69)
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where C1 is the second arbitrary integration constant.
Two arbitrary constants can be introduced in such a way to rewrite the density profile

ρ̃(r) (denoted above as y(x) for convenience in dealing with the differential equations) in
the form, involving the regularization parameter, and, at the same time, leading to the
Maxwell density in the weak field limit. Transforming y(x) as

y =
44

(Cx + C1)4 =

(
4
C

)4 1
(x + C1/C)4 =

A
(x + rq)4 ; A =

(
4
C

)4
; rq =

C1

C
(70)

we obtain the density profile

ρ̃(r) =
A

(r + rq)4 . (71)

The integration constant A is identified from Equation (47) in the weak field limit
LF → 1. According to Equation (23), in the equatorial plane p⊥(r, θ) + ρ(r, θ) = p̃⊥(r) +
ρ̃(r) = −rρ̃′(r)/2,; putting this in the denominator in Equation (47), we obtain

LF =
q2

4π( p̃⊥ + ρ̃)r4 =
q2

8πA
(r + rq)5

r5 . (72)

Normalization of LF in the Maxwell weak field limit to LF = 1 at r → ∞ yields A = q2/8π,
and the electromagnetic density takes the form

ρ̃(r) =
q2

8π(r + rq)4 =⇒ ρ(r, θ) =
r4

Σ2
q2

8π(r + rq)4 =
r4

(r2 + a2 cos2 θ)2
q2

8π(r + rq)4 . (73)

The spherical density ρ̃(r) provides the proper behavior of the axially symmetric electro-
magnetic density ρ(r, θ), related with ρ̃(r) by Equation (22), the finite self-interaction at
approaching the disk, ρ(r, θ) = ρ̃0 = q2/(8πr4

q), and the proper behavior in the Maxwell
limit, ρ→ q2/(8πr4), characteristic of the Coulomb law.

The spherical electromagnetic density (73) determines the mass functionM(r), the to-
tal mass m and the regularization parameter rq as

M(r) = 4π
∫ r

0
ρ̃(x)x2dx =

q2

6rq

r3

(r + rq)3 . m =
q2

6rq
; rq =

q2

6m
. (74)

For r � rq the mass function M(r) → m − q2/2r, and the metric (7) approaches the
Kerr–Newman metric.

Regular solutions, describing rotating objects, are most frequently obtained by apply-
ing the Newman–Janis algorithm (1) for the spherical solutions (5) with the spherical mass
functionM(r), chosen in some physical model. Here we have shown that the original
spherical mass function (74) for electrically charged rotating objects is determined uniquely
in the frame of nonlinear electrodynamics minimally coupled to gravity, which describes
these objects in a general setting, in the self-consistent, and model-independent way, i.e., the
mass function (74) comes from the dynamical equations without any additional special
assumptions. This is the key point that distinguishes it from the models of mass function
presented in the literature as chosen ad hoc.

The electromagnetic density profile (73), uniquely determined by NED-GR for regular
rotating electrically charged objects, allows us to obtain the explicit form of the Lagrange
derivative LF, of the dielectric and magnetic permeability, and the exact general solution
for the components of the electromagnetic tensor Fµν, as we shall see below.

The function (p⊥ + ρ), calculated for the electromagnetic density (73) from the basic
Equation (55), takes the form

p⊥ + ρ =
q2

4πΣ2
r2(r3 − rqa2 cos2 θ)

(r + rq)5 . (75)



Particles 2023, 6 659

It vanishes at infinity and goes to zero as (p⊥ + ρ) ∝ r/r5
q at approaching the disk.

Applying Equation (75) in Equation (47) we present the Lagrange derivative for the
density profile (73) as

LF =
(r + rq)5

r2(r3 − rqa2 cos2 θ)
(76)

which evidently has the proper asymptotic behavior: it goes to infinity on the disk, and ap-
proaches LF = 1 as r → ∞.

By using the expression for the Lagrange derivative (76) in the general solution (46)
and taking into account Equation (13), we obtain four non-zero components of the electro-
magnetic tensor, which describe the electromagnetic field of regular rotating electrically
charged objects

F10 =
qr2(r2 − a2 cos2 θ)(r3 − rqa2 cos2 θ)

Σ2(r + rq)5 ;

F20 = −
qa2r3(r3 − rqa2 cos2 θ) sin 2θ

Σ2(r + rq)5 ;

F31 =
qar2(r2 − a2 cos2 θ)(r3 − rqa2 cos2 θ) sin2 θ

Σ2(r + rq)5 ;

F23 =
qar3(r2 + a2)(r3 − rqa2 cos2 θ) sin 2θ

Σ2(r + rq)5 . (77)

In the weak field limit r → ∞ they coincide with the known solution [3,77].
In the equatorial plane, the field components (77) take the form

F10 =
qr3

(r + rq)5 ; F20 = − qa2r2

(r + rq)5 ; F31 =
aqr3

(r + rq)5 ; F23 =
qar2(r2 + a2)

(r + rq)5 . (78)

On approaching the disk F10 and F31 decrease as r3, and F20 and F23 decrease as r2.
Applying the expression for the Lagrange derivative (76) in (21), we obtain the explicit

expressions for the eigenvalues of the tensors of the dielectric and magnetic permeability
given by

εr
r =

(r2 + a2)(r + rq)5

∆r2(r3 − rqa2 cos2 θ)
, εθ

θ =
(r + rq)5

r2(r3 − rqa2 cos2 θ)
;

µr
r =

r2(r2 + a2)(r3 − rqa2 cos2 θ)

∆(r + rq)5 , µθ
θ =

r2(r3 − rqa2 cos2 θ

(r + rq)5 (79)

We see that the electromagnetic density profile (73) provides the proper behavior of
the Lagrange derivative (76) and of dielectric and magnetic permeability, the regularity of
electromagnetic fields in the strongly nonlinear regime on the disk, as well as the proper
asymptotic behavior in the weak field limit, and makes sure that the density profile (73)
guarantees the proper behavior of geometry and of the electromagnetic field.

4. Conclusions

Nonlinear electrodynamics minimally coupled to gravity describes the electromag-
netic field of regular rotating electrically charged objects by the system of four dynamical
equations for two independent components of the electromagnetic field Fµν. The dynamical
system is restricted by two constraints, which guarantee the fulfillment of the full system of
dynamical equations. The Lagrange derivative LF, which depends on the spherical electro-
magnetic density ρ̃(r) and its derivative, satisfies the necessary and sufficient compatibility
condition for the dynamical system of four equations for two field functions. It follows
that two independent components of the electromagnetic field and the spherical electro-
magnetic density ρ̃(r) are uniquely determined by three independent dynamical equations.
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In consequence, additionally, the mass function M(r) = 4π
∫ r

0 ρ̃(x)x2dx is determined
uniquely from the compatibility condition, not leaving any freedom in choosing it ad hoc.

The density profile ρ̃(r) allows us to obtain the explicit form of the Lagrange derivative,
the exact form of the general solution for the electromagnetic field in all regions, as well as
the explicit form of the dielectric and magnetic permeability.

The basic constituent of all rotating compact objects in the axially symmetric geometry
is the interior equatorial disk (10). In regular geometry the disk (10) is filled with the de
Sitter vacuum p = −ρ, which is the fundamental generic feature of all regular rotating elec-
trically charged NED-GR objects. Regularity is provided by the behavior of the Lagrange
derivative on the disk, LF → ∞, which leads to zero magnetic permeability, µ = LF

−1 = 0,
and the infinite dielectric permeability, ε = LF → ∞, and identifies the disk as the perfect
conductor and ideal diamagnetic.

The strongly nonlinear behavior of the electromagnetic field on the disk represents
the realization ([71] and references therein) of the underlying hypothesis of non-linearity
replacing a singularity [57].

The current on a surface layer is defined as 4π jk = [eα
(k)]Fαβnβ, where eα

(k) are the
base vectors of the intrinsic coordinate system on the layer, nα is the unit normal to it,
directed upward, [. . .] denotes the jump across the layer, and Fαβ is the electromagnetic
tensor. On the equatorial disk the intrinsic coordinate system is t, φ, 0 ≤ ξ ≤ π/2, eα

(φ)
= δα

3 ,

and the vector nα = εδ1
α(1 + q2/a2)−1/2 cos ξ , where ε = +1 and ε = −1 on the upper and

lower faces, respectively [78]. On the equatorial disk 4π jφ = [F1
3 ε(1 + q2/a2)−1/2 cos ξ].

Applying the expression for F31 given in (46) to explicitly introduce the magnetic
permeability, we obtain the surface current [79]

jφ =
qc sin2 ξ

2πa
√

1 + q2/a2

µ

cos3 ξ
. (80)

Due to µ = 0 this current vanishes over the disk, except the ring ξ = π/2, where each
term in the second fraction takes zero value independently, and the current (80) can take
any non-zero value, which satisfies the basic criterion for transition to a superconducting
state [75].

The superconducting current (80) flows within the perfect conductor region without
resistance, and thus represents a non-dissipative electromagnetic source, which powers
a regular rotating electrically charged compact object and provides its, in principle, an
unlimited lifetime [79].

In the Kerr–Newman geometry, the ring (11), confining the equatorial disk (10), com-
prises the ring singularity. In the regular geometry, its place takes the superconducting
current (80), which presents the source of the electromagnetic field, and, in consequence,
of the gravitational field generated by the stress-energy tensor of this electromagnetic field.
This source originates from its own nonlinear electromagnetic field because the dynamical
Equations (31) and (32) are source-free.

As any circular current, the current (80) produces the magnetic momentum
µin = c−1 jφS where S is the disk area, which is, in essence, intrinsic, because the dy-
namical Equations (31) and (32) are source-free [80]. Introducing in (80) an uncertain
coefficient U, we write jφ as jφ = −(qc/2πa)

√
1 + q2/a2U, and obtain for the magnetic

momentum
µin = −(qS/2πa

√
1 + q2/a2U.

In the case, when the intrinsic magnetic moment µin of an object is known, we can restore
the uncertain coefficient U.

For the electron, visualized as a spinning electromagnetic soliton, this gives
jφ = 79.277 A [80]. This current powers the electron for, in principle, an unlimited lifetime
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and generates its electromagnetic field, which, for a distant observer, r � λe = h̄/mec,
reads [79]

Er = −
e
r2

(
1− h̄2

m2
e c2

3 cos2 θ

4r2

)
; Eθ =

eh̄2

m2
e c2

sin 2θ

4r3 ; Br = − eh̄
mec

cos θ

r3 ; Bθ = − eh̄
mec

sin θ

2r4

Nonlinear electrodynamics, minimally coupled to gravity, describes the regular ro-
tating electrically charged objects in a self-consistent and model-independent way since
minimal coupling implies no additional assumptions. Obtained here, spherical electro-
magnetic density is generic, as uniquely defined by the NED-GR dynamical equations. It
allowed us to obtain the exact form of a general solution for the electromagnetic field and
the explicit generic form of the dielectric and magnetic permeability. We plan to continue
our series of works on regular rotating electrically charged compact objects, including an
investigation into their stability with respect to external perturbations. Currently we are
working on restoring the Lagrangian L(F) from its derivative LF as the function of the
spatial variables.
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