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Abstract: Dirac’s theory is not a unique theory consistent with the physical principles specific of
a free spin-one-half particle. In fact, we derive classes of theories of an elementary free particle
from the principle of Poincaré’s invariance and from the principle of the covariance of the position.
The theory of Dirac is just one of these theories, characterized by singular predictions, namely, the
zitterbewegung. Yet, the class here derived contains families of consistent theories without singular
predictions. For the time being, the experimental verifiability of these alternative theories is restricted
to the predictions of free-particle theories for ideal experiments.
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1. Introduction

The quantum theory of spin-one-half particles formulated by Dirac [1,2] suffered
several problems, effectively reviewed in [3]. The difficulty encountered in trying to solve
these problems has its roots in the features of the method Dirac used to build up his
theory, the method of canonical quantization. This method prescribes to start from the
classical theory of the system under investigation, e.g., for a particle, from the Hamiltonian
formulation of its theory with conjugate dynamical variables qj and pj and Hamiltonian
h(q, p, t); then, it is dictated to replace the variables qj and pj with operators Qj and Pj of a
Hilbert space and the Poisson brackets { f (q, p), g(q, p)} with the operator commutators
i[ f (Q, P), g(Q, P)] in the equations of the classical theory, obtaining as a result the equations
of the quantum theory of the system, such as, for instance, the equation dQ

dt ≡ Q̇ =
i[h(Q, P, t), Q]. Hence, canonical quantization is a procedure to build up models of specific
quantum theories, rather than a method that deductively derives the theory from sound
basic principles.

The lack of a deductive path makes it ultimately very hard to identify the causes
of the difficulties encountered by Dirac’s theory. One extensively debated problem is
the fact that Dirac’s theory implies a very singular prediction: the time derivative Q̇j of
each component Qj of the position operator has its absolute value equal to the speed of
light. Moreover, detailed studies of the solutions of the free Dirac equation predict violent
oscillations of the particle, a phenomenon called the zitterbewegung [4,5], which is a very
singular behaviour for a free particle, though it does not affect the consistency of the theory.
Many investigations were carried out to clarify the features of this predicted phenomenon
consistently with special relativity [6–10].

In the present work we take a different attitude; given that the zitterbewegung is yet
to be experimentally observed directly on a free particle, we ask the following question:
is the zitterbewegung a necessary feature of the physics of a spin-one-half particle? In
other words, it is asked whether Dirac’s theory is the unique possible theory for this kind
of particle. This question is particularly interesting in relation to the fact that there is an
approach for developing the quantum theory of a free particle, an alternative to canonical
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quantization, which makes use of group-theoretical methods. Differently from canonical
quantization, this alternative method deductively develops the theory from two basic
principles: the invariance of the theory and the covariance of the position with respect
to relativistic transformations. A theory developed according to this method does not
suffer the problems of canonical quantization: the validity of its predictions is implied by
the validity of the basic principles (The eventual occurrence of an inconsistency would
imply the failure of one of the basic principles, whose validity should be consequently
questioned.), and therefore, inconsistencies, such as the negative probabilities of the Klein–
Gordon theory, should be avoided. For these reasons, our work strictly complies with this
epistemically grounded method.

A first important implication obtained by this alternative approach is that the Hilbert
space of the quantum theory of a free particle must admit a transformer triplet (U, /S, /T)
formed by a unitary representation U of the universal covering P̃↑+ of the proper or-
thochronous Poincaré group P↑+, which realizes the transformations of quantum observ-
ables implied by the transformations of P↑+ in the quantum theory of the system ; /S and /T
are operators realizing the quantum transformations implied by the space-inversion and
time-reversal transformations.

Outstanding researchers, such as Wigner and Bargmann [11–13], were the pioneers of
this alternative method, pursued until recent times [14–18]. However, these approaches are
not adequate to deal with Dirac’s theory, because they exclude transformer triplets with /S
antiunitary or with /T unitary; instead, as argued in remark 4.1, the triplet of a quantum
theory for a free Dirac particle, i.e., for an elementary free particle with positive mass, spin
one-half and four-component wave functions, must have /S antiunitary or /T unitary. In
the present work, the quantum theories of interest are deductively derived from the basic
principles without a priori preclusions about the features of /S or /T.

Our results ascertain that Dirac’s theory is just one particular theory for a free Dirac
particle. The class of possible quantum theories for free Dirac particle is explicitly de-
termined. A special subclass is identified whose theories are free from singular features,
such as luminal velocity for massive particles and the zitterbewegung. Each theory is
characterized by a particular transformation property of position with respect to boosts.
Dirac’s theory is completely characterized by such a peculiar transformation property.

A necessary condition of validity for every one of the possible theories is that the
experimentally successful predictions include all the predictions of Dirac’s theory confirmed
by experiment. The identification of the valid theory is attained if all its predictions are
experimentally confirmed, while any different theory has at least one prediction that differs
from the corresponding prediction of the first one, hence falsified by experiment. Since
many predictions of Dirac’s theory refer to an interacting particle, the comparison of the
predictions requires the availability of possible alternative theories for interacting particle
derived according to our approach. These nonfree-particle alternative theories are yet to be
accomplished [19], so for the time being, the comparison can be carried out only among
the predictions of different free-particle theories. We identify an ideal experimental test
for a free Dirac particle, such that the predictions of the results by Dirac’s theory and one
of the alternative theories are different. In Section 2 the concept of an isolated system
is introduced as a system whose physical theory satisfies the invariance principle under
relativistic transformations. Then, it is shown how this principle implies that the Hilbert
space of the quantum theory of the system must contain a transformer triplet (U, /S, /T)
realizing the quantum transformations.

Section 3 specializes to a particular kind of isolated system, the elementary free par-
ticle, i.e., an isolated system whose quantum theory admits a unique position operator
Q satisfying the covariance properties of the position with respect to relativistic transfor-
mations, such that the system (U, /S, /T; Q) is irreducible. The classes of possible theories
are identified.

Section 4 synthetically formulates Dirac’s theory and the implied concept of a Dirac
particle is introduced. The singular predictions of luminal velocity for massive particles
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and of the zitterbewegung are highlighted. However, it is also proven that according to
the present approach the class of possible theories for Dirac particles contains much more
theories than Dirac’s one.

Within the already identified class of theories able to describe a free Dirac particle,
Section 5 completely identifies the special subclass characterized by a “diagonal” position
operator. It is proven that for all theories of this subclass the singular features of Dirac’s
theory are absent.

Different theories of elementary free particles predict different transformation proper-
ties of position with respect to boosts, in general. Section 6 argues that within the class able
to describe free Dirac particles, Dirac’s theory is completely characterized by its peculiar
transformation property.

Section 7 argues that the experimental verification of the validity of the theories could
be implemented, at least in principle.

2. General Implications of Poincaré Invariance

After fixing the notation and the basic prerequisites in Section 2.1, in this section,
we show that the principle of invariance with respect to Poincaré transformations is a
sufficient condition for identifying the general structure of the quantum theory of any
isolated system; in particular, this principle implies that the Hilbert space of the quantum
theory of an isolated system must contain

- A unitary representation of the universal covering group P̃↑+ of the proper orthochronous
Poincaré group P↑+ that realizes the quantum transformations of quantum observables,
implied by transformations in P↑+;

- Two operators /T and /S that realize the quantum transformations implied by time
reversal and space inversion.
The operators of the system (U(P̃↑+), /S, /T) so obtained must be related by the specific

constraints shown in Section 2.3, implied by the specific group’s structural properties.

2.1. Basic Prerequisites
2.1.1. The Formalism of a Quantum Theory

The basic mathematical structures of the general formalism of the quantum theory of
a physical system based on a Hilbert spaceH are

- The set Ω(H) of all self-adjoint operators representing observables;
- The set S(H) of all density operators ρ identified with quantum states; a quantum state

ρ is pure if and only if it is a one-dimensional projection operator, i.e., if ρ = |ψ〉〈ψ|,
where ψ ∈ H and ‖ψ‖ = 1; in this case, ψ is called the state vector of the system;

- The group U (H) of all unitary operators;
- The larger set V(H) of all unitary or antiunitary operators.

For the present work, a very important mathematical concept is the Poincaré group P ,
because it is the symmetry group of a free particle.

2.1.2. Poincaré Group

The Poincaré group P is the group generated by {P↑+, /t, /s}, where P↑+ is the proper
orthochronous Poincaré group, and by /t and /s, which are the time-reversal and space-
inversion transformations.

The proper orthochronous group P↑+ is a connected group generated by 10 one-
parameter subgroups, namely, the subgroup T0 of time translations, the three subgroups Tj
(j = 1, 2, 3) of spatial translations, the three subgroupsRj of spatial rotations and the three
subgroups Bj of Lorentz boosts, relative to the three spatial axes xj. Time reversal /t and
space inversion /s are not connected with the identity transformation e ∈ P . Given any
vector x = (x0, x) ∈ IR4, where x0 is called the time component of x and x = (x1, x2, x3) is
called the spatial component of x, time reversal /t transforms x = (x0, x) into (−x0, x) and
space inversion /s transforms x = (x0, x) into (x0,−x).
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The universal covering group of P↑+ is the semidirect product P̃↑+ = IR4©s SL(2, IC) of
the time–space translation group IR4 and the group SL(2, IC) = {Λ ∈ GL(2, IC) | det Λ = 1}.
Accordingly, P̃↑+ is simply connected and there is a canonical homomorphism h :
P̃↑+ → P

↑
+, g̃ → h(g̃) ∈ P↑+, which becomes an isomorphism when restricted to small

enough neighbourhoods of the identity (0, 1I
IC2 ) of P̃↑+. Within P̃↑+, the subgroups that corre-

spond to the subgroups T0, Tj,Rj, Bj, L↑+ of P↑+, respectively, through the homomorphism

h, are denoted by T̃0, T̃j, R̃j, B̃j and L̃↑+; they are all one-parameter additive subgroups; to
be precise, B̃j is additive with respect to the parameter ϕ(u) = 1

2 ln 1+u
1−u , not with respect to

the relative velocity u.

2.2. Derivation of the Theory of Isolated System

A free particle is a particular kind of isolated system. Therefore, it is worth beginning
with the derivation of the general structure of the quantum theory of an isolated system.

By F , we denote the class of the (inertial) reference frames that move uniformly with
respect to each other; if Σ belongs to F , then Σg denotes the frame related to Σ by such
g, for every g ∈ P . An isolated system is a system for which the following invariance
principle holds.

IP The theory of an isolated system is invariant with respect to changes of frames within
the class F .

Given an observable represented by a self-adjoint operator A, letMA be a procedure
to perform the measurement of this observable; then the invariance principle implies that
another measuring procedureM′

A must exist, which is with respect to Σg identical to what
MA is with respect to Σ, otherwise, the principle IP would be violated. Hence, IP implies
the existence of a mapping

Sg : Ω(H)→ Ω(H) , A→ Sg[A] ,

where Sg[A] is the self-adjoint operator that represents the observable measured byM′
A.

The mapping Sg is called the quantum transformation associated to g [19].
To every element g̃ of the covering group P̃↑+, we can associate the quantum trans-

formation Sh(g̃) ≡ Sg̃ through the canonical homomorphism h. By making use of group-
theoretical methods, in [19] it is proven that

– A continuous unitary representation U of P̃↑+ exists such that Sg̃[A] = Ug̃ AU−1
g̃ .

– Two operators /S and /T, each of them unitary or antiunitary, exist such that (The
unitarity of /S and /T cannot be proven in general because /s and /t ar not connected
with the identity element of P [19].)
S/s[A] = /SA/S−1 and T/s[A] = /TA/T−1.

Thus, the principle IP has the following fundamental implication.

(FI) In the quantum theory of an isolated system, a triplet (U, /S, /T) must exist, called
the transformer triplet of the theory, formed by a continuous representation U of P̃↑+
and by two operators /S, /T ∈ V(H) such that

Sg̃[A] = Ug̃ AU−1
g̃ , /SA/S−1 = S/s[A] , /TA/T−1 = S/t[A], for all A ∈ Ω(H). (1)

2.3. Constraints for the Transformer Triplet

According to Stone’s theorem [19,20], the representation U of the transformer triplet
(U, /S, /T) of the quantum theory of an isolated system is completely determined by ten
self-adjoint operators P0, Pj, Jj and Kj, called self-adjoint generators, such that if g̃ is an
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element of the one-parameter subgroup T̃0 (resp., T̃j, R̃j and B̃j) identified by the value t
(resp., a, θ and u) of the parameter, then

Ug̃ = eiP0t, (resp., Ug̃ = eiPja, Ug̃ = eJjθ , Ug̃ = eiKj ϕ(u). (2)

The generator P0 relative to time translations rules over quantum dynamics is according to
the equations

(i) Ȧt = i[P0, At], (ii) i
∂ψt

∂t
= P0ψt. (3)

The group’s structural properties of P imply that the self-adjoint generators and the time-
reversal and space-inversion operators /S and /T can always be chosen so that relations
(4)–(9) hold [11,14].

(i) [Pj, Pk] = IO, (ii) [Jj, Pk] = iε̂jkl Pl , (iii) [Jj, Jk] = iε̂jkl Jl ,
(iv) [Jj, Kk] = iε̂jklKl , (v) [Kj, Kk] = −iε̂j,k,l Jl , (vi) [Kj, Pk] = iδjkP0, (4)
(vii) [Pj, P0] = IO, (viii) [Jj, P0] = IO, (ix) [Kj, P0] = iPj,

where ε̂jkl is the Levi-Civita symbol εjkl restricted by the condition j 6= l 6= k.

If /S is unitary, then its arbitrary phase factor can be chosen so that /S2 = 1I, and
[/S, P0] = IO, /SPj = −Pj/S, [/S, Jk] = IO, /SKj = −Kj/S; (5)

If /S is antiunitary, then /S2 = c1I, so /S−1 = c/S, where c = 1 or c = −1, and
/SP0 = −P0/S, [/S, Pj] = IO, /SJk = −Jk/S, /SKj = Kj/S; (6)

If /T is unitary, then its phase factor can be chosen so that /T2 = 1I, and
/TP0 = −P0

/T, [/T, Pj] = IO, [/T, Jk] = IO, /TKj = −Kj
/T; (7)

If /T is antiunitary, then /T2 = c1I, so /T−1 = c/T, either c = 1 or c = −1, and
/TP0 = P0

/T, /TPj = −Pj
/T, /TJk = −Jk

/T, /TKj = Kj
/T; (8)

/S/T = ω/T/S, with ω ∈ IC and |ω| = 1 (9)

The helicity operator is defined by λ̂ = J·P
P , where P =

√
P2

1 + P2
2 + P2

3 . The following
relation

/Sλ̂/S−1 = −λ̂ (10)

is implied by (5) but also by (6). Therefore, it holds independently of the unitary or
antiunitary character of /S.

By making use of (4)–(8), it can be proven that the following relations hold.

[V, P2
0 − P2] = IO, [V, W2

0 −W2] = IO, for all V ∈ U(P̃↑+) ∪ {/T, /S}, (11)

where W0 = J · P and W = P0J + P ∧K form the Pauli–Lubański four-operator (W0, W).

3. Theories of Elementary Free Particles

This section derives the structures of the possible quantum theories of a particular
kind of isolated system, the elementary free particle. Following [19], it is shown how
the triplets of the quantum theories of an elementary free particle can be classified with
respect to a mass parameter µ and a spin parameter s. The classes of theories of interest are
then identified.

A free particle is an isolated system whose quantum theory is endowed with a unique
position observable, that is to say with a unique three-operator Q ≡ (Q1, Q2, Q3), with all
Qj self-adjoint, satisfying the following conditions

(Q.1) [Qj, Qk] = IO, for all j, k = 1, 2, 3. This condition establishes that a measurement of
position yields all three values of the coordinates of the same specimen of the system.
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(Q.2) For every g ∈ P , the three-operator (Q1, Q2, Q3) ≡ Q and the transformed position
operator Sg[Q] ≡ (Sg[Q1], Sg[Q2], Sg[Q3]) satisfy the specific relations implied by
the transformation properties of position with respect to g.

An elementary free particle is a free particle for which the system (U(P̃↑+), /S, /T; Q) is
an irreducible system of operators. As proven in [19], the transformer triplet (U, /S, /T) of the
quantum theory of an elementary free particle must be irreducible. Thus, the identification
of all possible theories of an elementary free particle can be carried out in two steps: first
by identifying all irreducible triplets (U, /S, /T), i.e., by (2), all irreducible operator systems
(P0, Pj, Jj, Kj, /S, /T), j = 1, 2, 3, such that (4)–(9) hold, and then selecting those systems for
which a unique position operator Q exists.

3.1. The First Step for Positive-Mass Elementary Particle

If the triplet (U, /S, /T) is irreducible, then, by a straightforward application of Schur’s
lemma, from (11), we imply that the quantum theory of an elementary free particle is
characterized by two numbers µ ∈ IC, v ∈ IR, with µ2 ∈ IR, such that

P2
0 − P2 = µ21I, W2 ≡W2

0 − (W2
1 + W2

2 + W2
3 ) = v1I . (12)

Parameter µ is called mass. The present work is interested with positive-mass particle
theories, i.e., with triplets with µ > 0. For these triplets, the relation v = −µ2s(s + 1) holds,
where the value s is called spin and it is an integral or half-integral number: s ∈ 1

2 IN. For
any pair (µ, s) ∈ IR+× 1

2 IN, there is at least an irreducible triplet.
It can be proven that for every triplet with mass µ, the spectrum σ(P0) has three

mutually exclusive possibilities:

σ(P0) = (−∞,−µ] ;
σ(P0) = [µ, ∞) ;
σ(P0) = (−∞,−µ] ∪ [µ, ∞).

In particular, the following characterization holds [19].

Theorem 1. σ(P0) = (−∞,−µ] ∪ [µ, ∞) if and only if /T is unitary or /S is antiunitary.

Therefore, denoting by I(µ, s) the class of all positive mass irreducible triplets with param-
eters (µ, s), we have

I(µ, s) = I+(µ, s) ∪ I−(µ, s) ∪ I−+(µ, s). (13)

where I−(µ, s) (resp., I+(µ, s), I−+(µ, s)) is the class of irreducible triplets with
σ(P0) = (−∞,−µ] (resp., σ(P0) = [µ, ∞), σ(P0) = (−∞,−µ] ∪ [µ, ∞)).

3.1.1. The Classes I+(µ, s) and I−(µ, s)

The representation U of a triplet in I+(µ, s) can be irreducible or not. With modulo
unitary isomorphisms, fixing (µ, s), there is only one triplet (U, /S, /T) in I+(µ, s) with U
irreducible, identified by the following Hilbert space and operators:

– The Hilbert space isH = L2(IR3, IC2s+1, dν), where dν(p) = dp1dp2dp3√
µ2+p2

;

– The generators are defined by (Pjψ)(p) = pjψ(p), (P0ψ)(p) = p0ψ(p),

Jk = J(0)k + Sk and Kj = ip0
∂

∂pj
− (S∧p)j

µ+p0
, with J(0)k = −i

(
pl

∂
∂pj
− pj

∂
∂pl

)
; (14)

– The space-inversion and time-reversal operators are /S = Υ, /T = τKΥ,

where p0 =
√

µ2 + p2, S1, S2, S3 are the spin operators of IC2s+1, τ ∈ U (IC2s+1) is a matrix
such that τSjτ

−1 = −Sj, K and Υ are defined by Kψ(p) = ψ(p) and (Υψ)(p) = ψ(−p).

Analogously, there is only one irreducible triplet in I−(µ, s) with U irreducible, It
differs from that of I+(µ, s) by P0 = −p0 and Kj = −Kj.
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Moreover, irreducible triplets in I±(µ, s) with U reducible exist. They were identified
in [19].

3.1.2. The Class I−+(µ, s)

The representation U of a triplet in I−+(µ, s) turns out to be always reducible, namely,
U = U+ ⊕U− where U± belongs to a triplet in I±(µ, s). Moreover, U+ is irreducible if
and only if U− is irreducible.

Fixing (µ, s), there are six inequivalent triplets in I−+(µ, s) with U+, and hence U−,
irreducible. All these triplets have the same Hilbert space and the same generators:

H = L2(IR3, IC2s+1, dν)⊕ L2(IR3, IC2s+1, dν);

if ψ ∈ H, then ψ ≡ ψ1 ⊕ ψ2 ≡
[

ψ1
ψ2

]
, ψ1, ψ2 ∈ L2(IR3, IC2s+1, dν)).

Pj =

[
pj 0
0 pj

]
, P0 =

[
p0 0
0 −p0

]
, Jk =

[
Jk 0
0 Jk

]
, Kj =

[
Kj 0
0 −Kj

]
. (15)

The six triplets (U, /Sn, /Tn), n = 1, 2, . . . , 6, differ for the different pairs (/Sn, /Tn):

/T1 = τKΥ
[

1 0
0 1

]
, /S1 =

[
0 τ
τ 0

]
K; /T2 = τKΥ

[
1 0
0 1

]
, /S2 =

[
0 τ
−τ 0

]
K;

/T3 =

[
0 1
1 0

]
, /S3 =

[
0 τ
τ 0

]
K; /T4 =

[
0 1
1 0

]
; /S4 =

[
0 τ
−τ 0

]
K; (16)

/T5 =

[
0 1
1 0

]
, ; /S5 = Υ

[
1 0
0 1

]
; /T6 =

[
0 1
1 0

]
, /S6 = Υ

[
1 0
0 −1

]
.

The search for irreducible triplets in I−+(µ, s) with U+, and hence U−, reducible is
not of interest in the present work; in fact, we shall see that Dirac’s theory is based on
triplets with U+ irreducible. A partial account was given in [19].

3.2. Second Step

In order to complete the identification of the theories of an elementary free particle, the
transformer triplets that admit a unique commutative three-operator Q = (Q1, Q2, Q3) for
which (Q.2) holds must be selected. Condition (Q.2) for spatial translations and rotations,
i.e., for Ug̃ = e−iPja and Ug̃ = e−i Jjθ , holds if and only if the following commutation
relations hold [19]:

[Qk, Pj] = iδjk and [Jj, Qk] = iε̂jklQl . (17)

For space inversion /s and time reversal /t, condition (Q.2) is S/t[Q] = /TQ/T−1 = Q and
S/s[Q] = /SQ/S−1 = −Q, i.e.,

(i) /TQ = Q/T and (ii) /SQ = −Q/S. (18)

Relations (17) and (18) are general conditions to be satisfied in any theory of elementary
free particle.

The next step should be to determine the conditions implied by the transformation
properties of the position with respect to boosts, i.e., the relations for [Kj, Qk]. Unfortunately,
these relations are not available. Let g = h(g̃) be a boost characterized by a relative velocity
u = (u, 0, 0). The present concept of quantum transformation entails that the explicit
relation between Sg̃[Q] and Q must identify, if x is the position outcome at time t = 0 with
respect to Σ, the corresponding position yx with respect to Σg but at time t′ = 0 with respect
to Σg. Special relativity does not provide such a correspondence. Indeed, if the outcome of
position is x = (x1, x2, x3) at time t = 0 in Σ, then according to Lorentz’s transformations
the position with respect to Σg is y =

(
x1√

1−u2 , x2, x3

)
, but at time t′ = −ux1√

1−u2 , not at t′ = 0!
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An attempt to solve the problem could be to introduce a four-position Q = (Q0, Q),
where Q0 is just the time quantum observable, i.e., the time when the measurement of the
spatial coordinates represented by Q takes place. Then, special relativity would imply the
following transformation properties of the four-position with respect to boosts: Sg[Q0] =
Q0−uQ1√

1−u2 , Sg[Q1] =
Q1−uQ0√

1−u2 , Sg[Q2] = Q2, Sg[Q3] = Q3. However, in any quantum theory
of localizable particles, such a time cannot be a quantum observable [19].

Therefore, the second step can be carried out only partially, by selecting the triplets
that admit a solution Q of (17) and (18). In so doing, it has been found [18,19] that for zero
spin, i.e., within the classes of triplets with s = 0, there are subclasses that admit a unique
solution of (17) and (18). Namely, every triplet in I+(µ, 0) and every triplet in I−(µ, 0)
have a unique solution Q = F, where

Fj = i
∂

∂pj
− i

2p2
0

pj (19)

are the Newton–Wigner operators [21]. In the class I−+(µ, 0), two inequivalent triplets

have been identified [19] for which there is a unique solution Q =

[
F 0
0 F

]
of (17) and

(18). These particular triplets give rise to possible theories of elementary free particles with
zero spin. In each such theory, the transformation properties of the position with respect
to boosts are determined by simply computing the commutator [Kj, Qk]. In all cases, this
computation yields

[Kj, Qk] = −
i
2
(QjQ̇k + Q̇kQj). (20)

The uniqueness of solutions of (17) and (18) always fails for triplets with s > 0,
i.e., for nonzero spin. In general, different solutions give rise to different relations for
the commutators [Kj, Qk]; they correspond to different transformation properties of the
position with respect to boosts.

If any of these properties is valid, this is not a question that can be settled on a purely
theoretical ground.

4. Dirac’s Theory

In this section Dirac’s theory with its peculiar and singular features is outlined. In
particular, the class of theories of our approach is identified, where the theory of a free
Dirac particle must be formulated.

4.1. Dirac Theory and Zitterbewegung

Let us synthetically formulate Dirac’s theory [1,2] for spin-one-half free particle.

– The state vectors are four-component complex functions on IR3: ϕ(x) =

[
ϕ(1)(x)
ϕ(2)(x)

]
,

with ϕ(n)(x) ∈ L2(IR3, IC2).
– The position operator QD is defined by QD

j ϕ(x) = xj ϕ(x), i.e., QD = x;

– The self-adjoint generators relative to spatial translations are PD
j = −i ∂

∂xj
;

– The operator PD
0 = µβ + α1PD

1 + α2PD
2 + α3PD

3 ≡ (µβ + α · PD) is the self-adjoint
generator relative to time translation, where β and αj are the Dirac matrices [2].

Hence, denoting the state vector of the system at time t by ϕt, the dynamical equation
of Dirac’s theory is Dirac’s equation:

i
∂ϕt

∂t
= (µβ + α · PD)ϕt. (21)
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Perhaps the most important result of Dirac’s theory is the prediction of the existence
of antiparticles. However, Dirac’s theory encountered several criticisms, reviewed for
instance in [3]. A particularly debated feature is the fact that if any component of the
“velocity” operator is computed according to the general law (3) of quantum theory, i.e.,
if Q̇D

j = i[PD
0 , QD

j ] is computed, then the result is Q̇D
j = −αj; since α2

j = 1 we have to
conclude that the possible value of this velocity is ±1, which in the present treatment is the
speed of light.

This singular prediction of Dirac’s theory received great attention in the scientific
literature [4–8]. A lot of papers were devoted to recovering consistency with special
relativity, at the cost of assigning the particle a very complicated kinematic behaviour
[5,9,10]. The detailed study [4,5] of the behaviour of solutions of Dirac’s equation proved
that the position operator at time t turns out to be

Q(t) = A0 +
PD

PD
0

t +
i

2PD
0

B0e2iPD
0 t, (22)

where A0 and B0 are constant three-operators. This complicated oscillatory behaviour has
been called the zitterbewegung. The problem addressed in the present work is different
from that faced by these studies. Our aim is to identify quantum theories of nonzero-spin
particles, which can be consistently derived from the physical principles specifying an
elementary free particle and which are not affected by singular predictions such as the
zitterbewegung.

4.2. The Class of Dirac’s Theory in the Present Approach

Dirac proved that his theory for spin-one-half particles [1,2] turns out to be consistent
with Poincaré invariance; moreover, the system of self-adjoint generators is irreducible.
Therefore, Dirac’s theory must be unitarily equivalent to one particular solution of (17) and
(18) in a triplet with s = 1/2. Thus, the triplet must belong to I−+(µ, 1/2), to I+(µ, 1/2)
or to I−(µ, 1/2).

According to the results of Foldy and Wouthuysen [22] and Jordan and Mukunda [23],
there is a unitary isomorphism that allows one to equivalently reformulate Dirac’s theory in
such a way that in the reformulated version, the state vectors are four-component functions

ψ(p) =

[
ψ1(p)
ψ2(p)

]
, with ψn ∈ L2(IR3, IC2, dν), and the self-adjoint generators take the

canonical form (15) with s = 1/2.
Thus, the genuine Dirac theory must be based on triplets in I−+(µ, 1/2).

Definition 1. A free Dirac particle is an elementary free particle whose quantum theory is based
on a triplet of I−+(µ, 1/2).

Remark 1. The pioneers of our method of developing the theory deductively from invariance
and covariance principles were outstanding researchers, such as Wigner, Bargmann, Wightmann,
Mackey and Jauch [11–13,15,17]. However, these approaches turned out to be unable to encompass
theories based on triplets of I−+(µ, s), because they rejected the triplets with /T unitary or with /S
antiunitary, i.e., by (16), all triplets of I−+(µ, s), and therefore, these approaches were not adequate
to develop Dirac’s theory. The reason put forward for such an exclusion was the fact that /T unitary
or /S antiunitary implied both positive and negative values of the spectrum σ(P0), as implied by
Theorem 1; this feature was deemed contradictory, because for a free particle, P0 was identified with
the kinetic energy operator, which should be positive. However, as we shall see, in quantum theories
based on I−+(µ, s), the operator P0 does not coincide with the kinetic energy operator. Thus, there
is no effective motivation for ruling out unitary /T and antiunitary /S.

5. Consistent Alternatives to Dirac Theory

Dirac’s theory is not the unique consistent theory of nonzero-spin particle based on
triplets of I−+(µ, s). In Section 5.1, we explicitly identify another class of consistent theories
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for Dirac particles. Then, in Section 5.2, we show that this class contains subclasses that are
free from singular features.

5.1. A Special Class of Theories

In order to identify the theories of elementary free particle based on triplets of
I−+(µ, s), the possible commutative position operators Q that satisfy (17) and (18) must be

determined. The candidate Q for position operator can be written as Q =

[
Q(11) Q(12)

Q(21) Q(23)

]
,

where the entries Q(nm) are operators of L2(IR3, IC2s+1, dν) with Q(nm) = (Q(mn))∗, where ∗

denotes the adjoint operation. In general, the nondiagonal entries Q(12), Q(21) are not zero.
Here, we investigate the special class of possible theories for which the solutions Q of (17)
and (18) such that Q(12) and hence Q(12) are zero, i.e., the subclass for which Q is diagonal:

Q =

[
Q(11) 0

0 Q(22)

]
. (23)

In so doing, we make use of the following constraint found out by Jordan [18].

(JC) In the Hilbert space L2(IR3, IC2s+1; dν), let us consider the operators Jj defined by
(14). A commutative three-operator R = (R1, R2, R3) of self-adjoint operators of
L2(IR3, IC2s+1; dν) satisfies [Rj, pk] = iδjk and [Jj, Rk] = iε̂jkl Rl if and only if

Rj = η(p0, ẑ)r ∧ (r ∧ S) + γ(p0, ẑ)r ∧ S, (24)

where η(p0, ẑ) and γ(p0, ẑ) are self-adjoint operators of L2(IR3, IC2s+1, dν) functions
of p0 and of the “reduced” helicity ẑ = r · S, with r = p√

p2
1+p2

2+p2
3
.

By making use of (15), the condition (17) applied to a triplet Q satisfying (23) holds if
and only if [Q(nn)

j , pk] = iδjk and [Jj, Q(nn)
k ] = iε̂jklQ

(nn)
l . Therefore, by (JC), Q(nn)

j =

F + ηn(p0, ẑ)r ∧ (r ∧ S) + γn(p0, ẑ)r ∧ S, n = 1, 2. Thus, any solution of the kind in (23),
which satisfies (17) in I−+(µ, s), has the form

Q =

[
F + η1r ∧ (r ∧ S) + γ1r ∧ S 0

0 F + η2r ∧ (r ∧ S) + γ2r ∧ S

]
. (25)

Each particular solution is determined by the particular quadruple η1, γ1, η2 and γ2. Since
Q must also be a solution of (18), we determine the relative further conditions on η1, γ1,
η2 and γ2. These conditions are explicitly derived as implications of /TnQ = Q/Tn and
/SQ = −Q/Sn for each triplet in (16). This derivation can be easily carried out by making
use of the following directly verifiable relations:

(i) τSkτ−1 = −Sk, (ii) Υr = −rΥ; (iii) ΥS = SΥ; (iv) ΥF = −FΥ;

(v) Υηn(p0, ẑ) = ηn(p0,−ẑ)Υ, Υγn(p0, ẑ) = γn(p0,−ẑ)Υ; (26)

(vi) KF = −FK; (vii) τKΥF = FτKΥ; (viii) τKS = −SτK;

(ix) τKẑ = −ẑτK; (x) τKηn = ηnτK, τKγn = γnτK.

In so doing, the following results are found.

Theorem 2. A three-operator Q of the form in (25) satisfies /TnQ = Q/Tn and /SnQ = −Q/Sn if
and only if

(i) η1 = η2 = 0 and γ1 = γ2 = γ for n = 1, 2, 3, 4;

(ii) η1 = η2 = η, and γ1 = γ2 = γ, where η and γ are, respectively, odd and even with respect to
ẑ, for n = 5, 6.
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5.2. No Singular Features

Every theory of the classes identified in Section 5.1, characterized by (23), is not affected
by the singular predictions of Dirac’s theory. Indeed, the “velocity” operator, according to
(3) and (15), is given by

Q̇ = i
[

[p0, F + η1r ∧ (r ∧ S) + γ1r ∧ S] 0
0 −[p0, F + η2r ∧ (r ∧ S) + γ2r ∧ S]

]
. (27)

Now, since [p0, r] = [p0, S] = 0, [p0, ẑ] = 0 and [p0, η] = [p0, γ] = 0 hold as well, so that

Q̇ = i
[

[p0, F] 0
0 −[p0, F]

]
=

[ p
p0

0
0 − p

p0

]
. (28)

Therefore, Q̇2 = p2

p2
0
, where p0 =

√
µ2 + p2, so Q̇2 = p2

p2
0

and thus 0 < Q̇2 < 1.

Moreover, by solving Equation (3) for Q(t), the solution

Q(t) = Q +

[ p
p0

0
0 − p

p0

]
t (29)

is obtained, which is free from singular behaviours.

Remark 2. With regard to Remark 1, we see that (28) leads to the relativistic kinetic energy operator

EKin = µ√
1−Q̇2

≡ p0, which is different from P0 =

[
p0 0
0 −p0

]
. Thus, negative values of σ(P0)

do not entail a negative kinetic energy.

6. Characterization of Dirac’s Theory by Peculiar Transformation Properties

Theorem 2 implies that, fixing µ > 0 and any positive spin s, including s = 1/2 as
in Dirac’s theory, there are six classes of possible inequivalent theories of elementary free
particles satisfying (23), one for each inequivalent triplet identified by (16). A particular
theory in each class is characterized by a particular choice of the pair η, γ satisfying the
conditions established by Theorem 2.

In correspondence with a particular theory there is a different relation for the trans-
formation properties of the position with respect to boosts, i.e., a different relation for
the commutators [Kj, Qk]. The validity of each theory depends on the validity of such a
relation.

Example 1. Let us consider the possible theory based on a triplet of I−+(µ, s) with /T1 and /S1
in (16) as time-reversal and space-inversion operators. According to theorem 5.1, if γ = 0 is
chosen, then

Q =

[
F 0
0 F

]
. (30)

This means that in this particular theory,

[Kj, Qk] =

[
[Kj, Fk] 0

0 −[Kj, Fk]

]
. (31)

The explicit relation for [Kj, Fk] can be computed by making use of (14) and (15), with the following
result, where (j, k, l) is a cyclic permutation.

[Kj, Fk] = −
pj pk

p2
0

1
p0

+ pk
p0

∂
∂pj

+ i Sl
µ+pj

− i Sl pk−Sk pl
(µ+p0)2 p0

, if j 6= k, if j, k;

[Kj, Fj] =
1

2p0
−

p2
j

p2
0

1
p0

+
pj
p0

∂
∂pj
− i

Sk−Sl)pj pk
(µ+p0)2 p0

.
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This theory is valid if and only if these relations are valid.

Moreover, Dirac’s theory is characterized by a peculiar transformation property of the
position with respect to boosts. Since the zitterbewegung is a peculiar feature of Dirac’s
theory, expressed by (22), Dirac’s theory cannot belong to the alternative classes identified
in Section 4 for which (29) holds. Therefore, we expect that the transformation properties of
QD with respect to boosts are different from those of the alternative theories. Let us show
that this is in fact the case.

Jordan and Mukunda [23] indeed proved that in a triplet of I−+(µ, 1/2), the position
operator of Dirac’s theory is

QD =

 F + p∧S
p0(µ+p0)

−i (p·S)p
p2

0(µ+p0)
+ i S

p0

i (p·S)p
p2

0(µ+p0)
− i S

p0
F + p∧S

p0(µ+p0)

. (32)

If the commutator [Kj, QD
k ] is computed, then the following result is found.

[Kj, QD
k ] = −

i
2
(QD

j Q̇D
k + Q̇D

k QD
j ). (33)

It is very interesting that (33) completely characterizes Dirac’s theory; indeed, in [19], it
was proven that a commutative three-operator Q satisfying (17) and (18) in a theory based
on a triplet of I−+(µ, s), with s > 0, also satisfied (33) if and only if it had the form (32).
Thus, Dirac’s theory is the unique theory that satisfies IP and the covariance properties
with respect to translations and rotations, /t and /s, whose transformation properties of the
position with respect to boosts are expressed by (33).

7. The Problem of the Experimental Comparison of the Theories

Our purely theoretical investigation is not able to establish which of the possible
theories for Dirac particles here identified is the “right” theory. In fact, we have no further
theoretical criterion that helps the choice; in particular, a general explicit condition establish-
ing the transformation properties of the position with respect to boosts is not available. This
indeterminacy could be solved by experiments; this option entails identifying experiments
such that the results predicted for each of them by the different theories considered are
different. Then, the performance of these experiments would allow to single out which
theory, if any, predicts the actually obtained outcome, i.e., the empirically valid theory.

Very often, the derivation of these predictions cannot be obtained when working
within a theory of free particles. As a historical example, the first success of Dirac’s theory
can be pointed out, i.e., the experimental discovery of the positron, the antiparticle of
the electron, whose existence is predicted by Dirac’s theory as a Dirac particle with state

vector
[

0
ψ

]
in our representation based on I−+(µ, 1/2). Now, a positron differs from an

electron by the positive sign of its electrical charge, so that it can be distinguished from the
electron because their paths have opposite curvatures in a cloud chamber in the presence
of a uniform magnetic field. In order to theoretically, as well as quantitatively, predict these
behaviours, the theory of a particle interacting with an electromagnetic field is needed.
Dirac attained this theory by replacing the operator i ∂

∂t with i ∂
∂t + eφ(QD) and PD with

PD − eA(QD) in his Equation (21), where φ and A are the electromagnetic potentials; for
a uniform magnetic field φ = 0 and A = (B0x3, 0, 0). The theory so obtained predicted
curvatures that turned out to be confirmed by experimental observation.

The analogous prediction within one of the alternative theories derived by the present
approach cannot be carried out, because they are theories of free particles; in fact, the theory
of a particle interacting with an electromagnetic field should be derived by complying with
the present methodological commitment that requires a strictly deductive development
from the basic principles. This development was successfully achieved for the nonrelativis-
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tic case [24,25], but it is yet to be accomplished for a relativistic theory. The Dirac method,
i.e., to replace i ∂

∂t with i ∂
∂t + eφ(QD) and P with P − eA(QD) in one of the alternative

free-particle theories, for instance in the theory of example 6.1, leads to the wave equations

i ∂ψt
∂t =

√
µ2 + (p1 − eB0x3)2 + p2

2 + p2
3ψt and i ∂ψt

∂t = −
√

µ2 + (p1 − eB0x3)2 + p2
2 + p2

3ψt

for electron states
[

ψt
0

]
and positron states

[
0
ψ

]
, respectively. These are standard equa-

tions for a charge in a uniform magnetic field, whose nondifficult solutions predict the
observed values of the curvatures. We have to reiterate, however, that the equations used
are not derived according to the methodological commitment adopted in the present work.

For an experiment that involves an interacting particle, since a theory of an interacting
Dirac particle alternative to Dirac’s theory is missing, there is no alternative prediction to
be experimentally tested. Therefore, the empirical domain allowing for a comparison is
restricted to experiments with a free particle. For a free particle, the difference between the
predictions of Dirac’s theory and those of an alternative one, say the theory of Example 1,
is the existence of the zitterbewegung denied by the alternative theory. Now, it has been
theoretically evaluated [5,9,26] that the oscillatory behaviour of the zitterbewegung has an
amplitude of the order of the Compton wavelength, while its characteristic frequencies are
numerically about 2m0c/h̄ (m0 is the rest mass of the electron). These extreme values make
the experimental observation of the zitterbewegung directly on a free particle extremely
difficult. However, different physical consequences, observable at least in principle, can be
derived by the two different theories. In Section 7.1, we set up the formalism where the
different predictions can be derived. In Section 7.2, the conditions are identified, which
lead to different predictions observable at least in principle.

7.1. The Formalism for the Different Predictions

According to Dirac’s theory, as represented in Section 4.1, since Q̇D = α, the time
evolution of the position operator is given by

Q̇D(t) = QD + αt + o(t) = x ++αt + o(t), (34)

where o(t) is an Hermitian three-operator infinitesimal of order greater than one with
respect to time t. The time evolution of the position operator according to the alternative
theory of Example 1 is given by

Q̇(t) = Q +
P
P0

t; (35)

in order to make the comparison with (34) more direct, we reformulate the alternative
theory in the following equivalent form, by means of a unitary transformation operated
by the unitary operator Z : L2(IR3, IC4, dν) → L2(IR3, IC4), with Z = Z1Z2, where Z2 = 1

p0
,

while Z1 is the inverse Fourier–Plancherel operator. In so doing, the Hilbert space of the
reformulated alternative theory coincides with the Hilbert space of Dirac’s theory. The
operators Q and Pj become Q = x = QD and Pj = −i ∂

∂xj
= PD

j . The operator P0 becomes

P0 =

 √
µ2 −∇2 0

0 −
√

µ2 −∇2

. Thus, (35) becomes

Q(t) = x +
P
P0

t. (36)

Single measurements of the position at time t cannot establish whether (34) or (36) is valid,
of course. We show in the next subsection that the validity of (34) or (36) can be settled
through the experimental evaluation of the different expectation values corresponding to
(34) and (36).
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7.2. The Different Ideally Observable Predictions

Let ψD(x) = 1
2

e
− x2

4ς2
0

(2πς2
0)

3
4


1
1
1
1

 = 1
2 ϕ(x)


1
1
1
1

 be the state vector of a free Dirac particle

according to Dirac’s theory, where ϕ(x) = e
− x2

4ς2
0

(2πς2
0)

3
4

is the normalized gaussian wave function

of expectation value zero and standard deviation ς0.

The position probability density is ρD
q (x) = |ϕ(x)|2 = Ne

− x2

2ς2
0 , while the PD probabil-

ity density is ρD
p (p) = |ϕ̂(p)|2 = Me

− p2

2ς2
1 , where ϕ̂ is the Fourier–Plancherel transform of

ϕ, so it is a Gaussian of expectation value zero and standard deviation ς1 = 1
2ς0

, N and M
being normalization constants.

Let us compute the expectation value of QD(t) determined by the state vector ψD.
By making use of (34), we find 〈QD

j (t)〉 = 〈xj〉+ 〈αj〉t + oj(t), where oj(t) is a function

infinitesimal of order grater than 1 with respect to t. Since ρD
q (x) is even, we have 〈xj〉 = 0;

on the other hand 〈αj〉 = 〈ψD | αjψ
D〉 = 1

4 [1 1 1 1]

αj


1
1
1
1


, so since α=

[
0 σj
σj 0

]
,

we have 〈α1〉 = 1, 〈α2〉 = 〈α3〉 = 0. Therefore,

〈QD
1 (t)〉 = t + o1(t), 〈QD

2 (t)〉 = o2(t), 〈QD
3 (t)〉 = o3(t). (37)

In order to compute the expectation value of Q(t) in (36), we need the state vector ψ
that, in the alternative theory, represents the quantum state represented by ψD in Dirac’s
theory. This ψ is unknown. However, the position operator and the self-adjoint generators
of translations coincide in the two theories:

QD = x = Q, PD = −i∇ = P;

moreover, the operators x and −i∇ have the same physical meaning in the two theories;
therefore, the probability densities determined by ψD and the unknown ψ must coincide as
well in the two theories:

ρD
q (x) = ρq(x) = Ne

− x2

2ς2
0 , ρD

p (p) = ρp(p = Me
− p2

2ς2
1 .

The knowledge of ρq and ρp allows us to compute the expectation value of Q(t) in (36);
since both densities are even functions and both terms in (36) are odd, we obtain

〈Q(t)〉 = 0. (38)

We see that that the predictions (37) and (38) are different. In particular, according to (37),
a time t0 > 0 must exist such that 〈QD

1 (t)〉 > 0 for all t such that 0 < t < t0, whereas
〈QD

1 (t)〉 = 0 for all t. Hence, if Dirac’s theory is valid, by measuring the mean values of
QD

1 in correspondence to a sequence of times tn = 1
2n , after a given n0, all mean values

must be coherent with positive expectation values. The alternative theory, on the contrary,
predicts that all mean values must be coherent with a null expectation value. Thus, we
have different predictions that, in principle, can be experimentally tested.

Of course, the experimental test here described has a quite ideal character. In particular,
serious difficulties occur, for instance, in order

(a) To implement the experimental conditions such that the state vector of the particle
is ψD according to Dirac’s theory;
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(b) To perform measurements of the particle coordinate x1 at extremely small, fixed
times tn to evaluate the expectation values, without introducing a noninstantaneous
interaction.

Yet, the present argument shows that there are physical effects that distinguish Dirac’s
theory from alternative theories.

8. Discussion

We have addressed the development of the quantum theory for a Dirac particle fol-
lowing a strictly deductive method, which derives the theory from the basic principles
specifying a free particle, i.e., from a theoretical invariance and position covariance with
respect to the transformation of the Poincaré group P , by making use of effective group-
theoretical methods. In so doing, we have found that Dirac’s theory is not the unique
theory of a Dirac particle consistent with the basic principles; in fact, for every irreducible
transformer triplet (U, /S, /T) in I−+(µ, 1/2), there is a class of consistent possible theories;
each specific theory in one of these classes should be identified by the specific position
operator Q of that theory. Hence, to identify the position operator, Q should be asked to
satisfy the covariance properties according to (Q.2). By requiring the covariance properties
with respect to translations, rotations, time reversal and space inversion, constraints on Q
can be established, but without completely determining it. The transformation properties
with respect to boosts are not available, therefore they cannot be used to better identify Q;
as a consequence, for every triplet in I−+(µ, 1/2), there is a subclass of possible theories;
a theory in one such subclass, identified by a given Q, is valid only if the transformation
property with respect to boosts determined by computing [Kj, Qk] is valid in nature. There-
fore, in example 6.1, if the relations found for [Kj, Qk] are valid, then the theory based on

the first triplet in (16) with Q =

[
F 0
0 F

]
is valid. For Dirac’s theory, if the relation (33) is

valid, then Dirac’s theory is valid with Q given by (32).
Thus, due to the lack of a general transformation property of the position with respect

to boosts, consistency with the basic principles is not sufficient to identify a unique theory of
a Dirac particle. The possible theories identified by (23) have the same “degree of validity”
as Dirac’s theory. The experimental comparison of the theories should help solve this
indeterminacy. For the time being, this comparison can be realized only with respect to
predictions of free-particle theories. At this level, we have derived different predictions by
different theories. The difference, which only concerns the zitterbewegung, is observable in
ideal experiments.
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