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Abstract: In the collision of two heavy ions, the strong repulsion coming from the Coulomb field is
enough to produce e+e− pair(s) from vacuum fluctuations. The energy is provided by the kinetic
energy of the ions and the Coulomb interaction at the production point. If, for instance, the electron
is located at the center of mass (C.M.) of the two ions moving along the z-axis, and the positron is
at a distance x from the electron, the ions can be accelerated towards each other since the Coulomb
barrier is lowered by the presence of the electron. This screening results in an increase in the kinetic
energy of the colliding ions and may result in an increase in the fusion probability of light ions above
the adiabatic limit.
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1. Introduction

The exchange of a virtual photon is responsible for the Coulomb force. In this process
virtual electron-positron pairs can be created and annihilated. These virtual charges po-
larize the vacuum, resulting in a correction to the 1/r potential. Uehling was the first to
derive the vacuum polarization correction to first order in the fine structure constant α [1],
important in the analysis of p− p scattering data [2]. In [3], we showed that the vacuum
polarization correction is of the order of one percent of the Coulomb energy in nuclear
collision systems. This value seems small, but the strong fields in fission processes can
be of the order of 200 MeV. A correction of the order of 2 MeV could noticeably affect the
height of the Coulomb barrier, where the nuclear and Coulomb energies roughly cancel. A
lower/higher Coulomb barrier increases/decreases the cross-section of sub-barrier fusion.
In particular, carbon-carbon fusion in the cores of stars has been studied extensively, both
theoretically [4–8] and experimentally [9–14].

The vacuum polarization is not just a perturbative effect; production of real e+e− pairs
can occur during the dynamics in the presence of strong fields, when the available energy
exceeds twice the electron mass [15–19]. In this paper, we discuss the non-perturbative
calculation of pair production for light nuclei. We show that in opportune conditions, the
pair may screen the Coulomb repulsion between the ions giving them an extra acceleration
towards each other. This effect may increase the fusion cross-section above the adiabatic
limit [20–25].

2. Schwinger Mechanism

For the positron to become a real particle, it must tunnel from the vacuum through the
Coulomb barrier and leave the electron behind. We compute the probability of tunneling
through this barrier. We have two nuclei, each with charge +Ze (for simplicity), a distance
R apart (Figure 1). We assume that the electron is at the center of mass of the two nuclei
and the positron is tunneling on a line perpendicular to the beam axis. Notice that the pair
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could be placed anywhere and the corresponding probabilities can be easily calculated.
Their values will be smaller than the chosen geometry. The distance from the electron to
the positron is labeled by the coordinate x. The Coulomb energy of the positron is (in units
where 4πε0 = 1)

V+(R, x) =
2Ze2√(
R
2

)2
+ x2

− S(x)
e2

x
, (1)

where S(x) is a screening factor to be discussed in the sequel. When the positron emerges
from the barrier, it can have a momentum pT perpendicular to the x-axis, and the electron
will have momentum −pT . To a good approximation [15,16], the positron satisfies the
Klein–Gordon (K.G.) equation with energy E+,[

(E+ −V+(R, x))2 − p2
x −m2

T

]
ψ = 0, (2)

where mT =
√

m2 + p2
T is the transverse mass of the positron. The Dirac equation leads

to the K.G. equation with an extra term α · ∇V, which comes from the spinor nature of
the fermion wave function and gives only high-order effects in the tunneling probability;
thus, it is neglected in this paper [16]. Following Wong [16], we divide Equation (2) by
−2mT to obtain [

p2
x

2mT
+

mT
2
− (E+ −V+(R, x))2

2mT

]
ψ = 0. (3)

+Ze+Ze
e-

e+

Rcm

R

x

Figure 1. (Color online) Geometry of the pair production.

We have implicitly factored out the transverse plane wave part of the wave function.
This is formally equivalent to the (time-independent) Schrödinger equation(

p2
x

2mT
+ Ve f f

)
ψ = Ee f f ψ, (4)

for a particle of mass mT in an effective potential of

Ve f f (x) =
mT
2
− (E+ −V+(R, x))2

2mT
, (5)



Particles 2022, 5 582

with energy Ee f f = 0. The classical turning points are where Ve f f = 0, or

E+ −V+(R, x) = ±mT . (6)

The maximum occurs when E+ = V+(R, x) and the barrier height is given by mT/2.
Considering a positron in an occupied negative energy state at x = 0, by definition,

it has energy E+ ≤ V+(R, 0)−mT . In order to tunnel into the positive energy region, its
energy must be E+ ≥ mT . Taking these conditions together, we obtain a constraint on V+

for pair production, namely,
V+(R, 0) ≥ 2mT . (7)

This result confirms the intuition that pair production is possible for electrostatic
energies exceeding twice the mass of the electron.

3. Cross Section of Pair Production

The total energy before e+e− production is

Ecm = Ek + VI I(R) =
P2

2µ
+

Z2e2

R
, (8)

where µ is the reduced mass of the colliding ions and we assume R ≥ R1 + R2, the nuclear
radii, i.e., beam energies below the Coulomb barrier. The e+e− are produced with transverse
mass mT at a relative distance xe, which will be discussed below. The potential energy seen
by the positron is

V+(R, xe) =
2Ze2√(
R
2

)2
+ x2

e

− S(xe)
e2

xe
. (9)

The energy of the positron is the sum of its mass, kinetic energy, and potential energy,

E+ = mT + V+(R, xe). (10)

We have introduced a dynamical screening factor S(x) = 1− exp(−x/xs). The choice
xs = e2

2mT
, sometimes called the classical screening value, implies that, for x → 0, the

e+e− are on top of each other and the mass is given by the Coulomb screened interaction,
S(x)e2/x → 2mT , which is the energy needed from an external source (the Coulomb
field of the ions) to produce the pair, see Equation (7). This assumption ensures energy
conservation, avoiding the ultraviolet divergence of the Coulomb field. This screening
could come from the virtual particles in the vacuum. For instance, we imagine the vacuum
as containing a density of pairs proportional to the energy density of the Coulomb field,
which, in our units, is

u =
1

8π
E2. (11)

A typical value for the electric field in our system is

E =
Ze

(R/2)2 . (12)

We divide the energy density u by 2mT to get the number density of e+e− pairs

np =
Z2e2

πR4mT
=

2Z2xs

πR4 . (13)

The pairs we consider in our model originate in the region between the two nuclei,
which we model as a cylinder of radius xs and length R. Multiplying the volume of this
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cylinder by the density of pairs obtained previously, we obtain the expected number of
virtual pairs available to tunnel

Np =
2Z2x3

s
R3 . (14)

For two uranium nuclei with their surfaces touching, Np ≈ 14; for carbon in the
same configuration, Np ≈ 1.2. This low value for light ions barely justifies a perturbative
treatment of the production.

Since the total energy must be conserved, after production, we have:

Ecm = E′k + VI I(R) + V+(R, xe)−
4Ze2

R
+ 2mT . (15)

The system is completely symmetric, but a small fluctuation will push the e+ away
from the e− due to the Coulomb repulsion between the positron and the ions. The positron
tunnels through the Coulomb barrier and exits at xe where its (and the electron’s) momen-
tum along the x-direction is zero (Figure 1). At xe, the total energy is given by Equation (15).
If the positron is very fast compared to the ion motion, then we can assume the ions do not
move much.

A microscopic calculation is needed to determine the final energy distribution between
the electron and the positron. Our approximation is good if mT is large so that the pair has
a good amount of kinetic energy when it is created. Notice that, in the case of very large
mT , the e+ and e− emerge at about 180◦ in the center of the mass frame. Comparing our
various expressions for the energy, Equations (8) and (15), we find the kinetic energy of the
ions changes by an amount

E′k − Ek = −
(

V+(R, xe)−
4Ze2

R
+ 2mT

)
. (16)

Since V+(R, xe) = E+ −mT , we can also rewrite this as

∆Ek = E′k − Ek = −
(

E+ + mT −
4Ze2

R

)
. (17)

And

E+ =
4Ze2

R
−mT − ∆Ek ≥ mT . (18)

The last condition gives

R ≤ 4Ze2

2mT + ∆Ek
, (19)

that is the largest distance for which the production may occur. The condition E+ ≤
V+(R, 0)−mT implies ∆Ek ≥ 2mT . We stress again that other pair configurations are, of
course, possible, for instance, by exchanging the positron and the electron in Figure 1.
Different configurations cost more energy and are less probable, but calculations can be
easily performed for any configuration.

For illustration, we enforce the condition Ve f f = 0 at x = 0. There can be two solutions
corresponding to

E+ =
4Ze2

R
− 2mT ±mT . (20)

Thus, according to Equations (17) and (18), the ions either gain 2mT of kinetic energy, or
there is no change in kinetic energy at the moment of production. This situation is very
interesting, especially in the sub-barrier fusion of light nuclei since, even in the case of zero
kinetic energy gain from the ions, the presence of the electron in the middle of the two ions
lowers the Coulomb barrier, thus enhancing the fusion probability [20,25]. We are interested
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in unbound positrons with E+ > mT . This requirement, together with Equation (20), gives
a maximum transverse mass for dynamical pair production

mT,max =
2Ze2

R
. (21)

Since our model only includes the Coulomb force between the ions, we only consider
R > R1 + R2, where the nuclear force is not as important. For two 12C nuclei with their
surfaces touching, Equation (21) gives a maximum transverse mass of 3.14 MeV. For 238U
in the same condition, mT,max = 17.8 MeV. The corresponding effective potential for the two
solutions is

V(1)
e f f (R, x) =

mT
2
−

[mT + V+(R, x)− 4Ze2

R ]2

2mT
, (22)

V(2)
e f f (R, x) =

mT
2
−

[3mT + V+(R, x)− 4Ze2

R ]2

2mT
. (23)

In Figure 2, we plot the effective potential (bottom panel) and the potential (±mT—top
panel) vs. the relative distance between the pair for the case discussed above. The only
acceptable solution is the lowest one given by the red line. A simple inspection of the
top panel shows that the positron for this case is initially in the negative energy region
and tunnels to the positive one. The other solution gives the positron already in the
positive energy region (green line); thus, is not allowed by our proposed mechanism. Other
possible solutions can be found if Ve f f (R, x = 0) < 0. From this discussion, we learned
that the two ions can gain kinetic energy because of the location of the electron (in the
middle) and the positron (away from the ions) (Figure 1), and may enhance the sub-barrier
fusion probability.
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Figure 2. (Color online) An illustrative example when Ve f f (R, 0) = 0. In the bottom panel we plot
Ve f f vs. x and the corresponding potential with full line (±mT = me—top panel, dashed and dotted
lines) seen by the positron. The calculations are performed for 12C+12C collisions.
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The tunneling probability for the positron is given by:

Πt = [1 + exp(2A)]−1, (24)

where A is the imaginary action integrated between the turning points of the effective
potential (see for instance Figure 2-bottom). The action can be calculated numerically; some
case results are displayed in Figure 3 with mT = me. In the calculations, different values of
∆Ek = E′k − Ek (see Equation (18)) have been assumed. The lowest value of R is given by
the classical turning point, i.e.,:

Ri =
Z2e2

Ec.m.
. (25)

Figure 3. (Color online) Tunneling probability for the positron as a function of the relative distance of
the two C ions and Ec.m.= 9.4 MeV and different values of ∆Ek.

Since E+ ≥ mT , we can easily estimate the value of R where the probability becomes
zero:

Rx =
4Ze2

∆Ek + 2mT
, (26)

which is consistent with Equation (19). It is easy to show that Rx ≥ Ri if:

Ec.m. ≥
Z
4
(∆Ek + 2mT). (27)

From these results and Figure 3, we can safely assume that Πt = 0.5 for Ri < R < Rx.
It should not be surprising that the probability is of the order of 0.5 since the maximum

height of the barrier is mT/2 (see Equation (5)), and the barrier width is of the order of
10 fm. The probability goes to zero when E+ → mT and x → ∞. This also agrees with
our estimate of the number of pairs produced in the cylinder of radius xs, which, for C+C,
is of the order of one. For heavier nuclei, this calculation must be performed for each
distance and all the created pairs must be followed microscopically since barriers may
be modified by the presence of previously created pairs and there may not be enough
energy to produce another pair after the first one. The probability cutoffs in the figure are
essentially determined by energy conservation for each value of ∆Ek.

Since this is a dynamical process, times are important. A characteristic time for pair
production is given by the Heisenberg principle:
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∆τ =
h̄

2mT
, (28)

thus, the rate at which a given virtual pair can attempt to tunnel is ∆τ−1.
There is a second characteristic time for the tunneling process. A simple inspection

of Figure 2 (bottom), shows that the positron may be trapped by the Coulomb barrier up
to the inner turning point. This is analogous to the number of assaults per unit time in
the theory of alpha decay, fission, etc. This quantity may be estimated by the ratio of the
distance traveled by the positron before hitting the inner barrier (of the order of a few
Fermis from Figure 2) divided by its average speed. For transverse masses equal to the
rest mass of the electron, the corresponding time is smaller than the time obtained from
the Heisenberg uncertainty principle, and we will use the value given in Equation (28)
for an estimate of the cross-section. Microscopic dynamical calculations are needed for
heavier systems when more than one pair may be produced and energy conservation
must be fulfilled.

Here, we use simple and transparent physical arguments to estimate the value of the
cross-section for pair production. We write the cross-section as:

σ(Ec.m.) =
πh̄2

2µEc.m.

n

∑
l=0

(2l + 1)Πl PH . (29)

Since we are interested in sub-barrier reactions, we only consider the l = 0 case and
we fix Π0 = Πt = 0.5, as discussed above, and PH = 1− exp(−τ/∆τ) (see Equation (28)).
Thus, in order to estimate the cross-section, we need the τ it takes for the ions to travel
from Rx to Ri (Equations (25) and (26)). For the case of the zero impact parameter, this can
be computed exactly. With mT = me, the cross-section is:

σ0(Ec.m.) =
πh̄2

2µEc.m.
0.5
(

1− exp
[
− τ

∆τ

])
τ =

√
2µ

(
Rx

Ecm

√
Ecm −

Z2e2

Rx
(30)

+
Z2e2

E3/2
cm

arctanh

√
1− Z2e2

RxEcm

)
.

Equation (30) gives a lower limit for Ecm. For 12C+12C, we find the maximum num-
ber of pairs produced in the collisions by summing over the trajectory without taking
into account the energy loss after a pair is produced. The maximum is attained near
Ec.m.= 4 MeV (∆Ek = 2me) in Figure 4. Clearly, the maximum number of pairs produced in
the collisions, and the relative cross-section of Figure 4, critically depends on the ultraviolet
cutoff xs discussed above and it must be confirmed or modified by future experimental
data. Furthermore, microscopic calculations following the heavy ion trajectory and the
dynamics of one or more pairs created during the time evolution must be implemented
in order to make predictions for heavier colliding nuclei and collisions of different mass
number nuclei.
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Figure 4. (Color online) Upper limit for the integrated cross-section for e+e− production in 12C+12C
scattering below the Coulomb barrier for different values of ∆Ek. We stress that ∆Ek ≥ 0.

4. Summary

In conclusion, we have discussed pair production from a vacuum within the Schwinger
formalism. We have shown the conditions for tunneling and the possibility that, if the
electron is situated at the c.m. of the colliding nuclei, extra screening may occur. This
screening may enhance sub-barrier fusion of light nuclei above the adiabatic limit. For
12C+12C collisions, we predict Ec.m. ≥ 1 MeV for this effect to occur. The cross-sections are
of the order of mb or less. These predictions call for detailed experimental investigation
of pair production for this system, and also their energies, in coincidence with fusion
fragments to be able to extract correlation functions. An enhancement may be shown by
performing a correlation between fusion events with and without pair production.
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