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Abstract: We generalize a recently proposed confining relativistic density-functional approach to the
case of density-dependent vector and diquark couplings. The particular behavior of these couplings is
motivated by the non-perturbative gluon exchange in dense quark matter and provides the conformal
limit at asymptotically high densities. We demonstrate that this feature of the quark matter EoS is
consistent with a significant stiffness in the density range typical for the interiors of neutron stars. In
order to model these astrophysical objects, we construct a family of hybrid quark-hadron EoSs of cold
stellar matter. We also confront our approach with the observational constraints on the mass–radius
relation of neutron stars and their tidal deformabilities and argue in favor of a quark matter onset at
masses below 1.0 M�.
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1. Introduction

Modern multi-messenger observations of neutron stars (NSs) and their mergers pro-
vide new measurements of their masses and radii. These data are important constraints on
the equation of state (EoS) of cold, dense matter in a region of the QCD phase diagram which
is inaccessible to ab initio simulations of QCD on the lattice or heavy-ion collision experi-
ments. The results of the analysis give at a mass of 1.4 M� a radius R1.4 = 11.7+0.86

−0.81 km [1]
and at 2.0 M� a radius of R2.0 = 13.7+2.6

−1.5 km [2]. These results imply that the neutron
star matter EoS should not be too stiff at densities below twice the saturation density
n0 = 0.15 fm−3 (roughly corresponding to the central density of an NS with M = 1.4 M�),
but has to be stiff enough at higher densities to allow for a maximum mass above 2.0 M�.
These new constraints on the NS mass–radius relation can be fulfilled within the purely
nucleonic scenario for the NS interiors [3]. At the same time, approaches based on realis-
tic nuclear interactions imply appearance of hyperons in the NS interiors, which softens
EoS of nuclear matter and lowers the NS maximum mass Mmax. For example, ab initio
Brueckner–Hartree–Fock and cluster variational methods with the microscopic interaction
potentials fitted to the nucleus–nucleus scattering data and properties of hypernuclei yield
Mmax barely reaching 2.0 M� [4]. The analysis performed within a set of EoSs derived
from relativistic density functional theory constrained by the results of chiral effective field
theory, terrestrial experiments, astrophysical observations and reproducing hyperon poten-
tials in the symmetric nuclear matter at saturation density provides marginal agreement
with the NICER constraints on the NS maximum mass [2,5]. Stiffer hadronic EoSs provide
better agreement even in the presence of hyperons, e.g., DD2 EoS with hyperons yields
Mmax = 2.1 M� [6]. However, stiff hadronic EoSs are discriminated by the requirement
that tidal deformability of a 1.4 M� NS falls within the range Λ1.4 = 70–580 extracted
from the analysis of GW170817 [7]. These complications are naturally removed when the
scenario with a low onset density for the transition to stiff quark matter in the NS core is
considered, so that all the above conditions can be fulfilled simultaneously. It is important
to note that recent model agnostic statistical analyses report the viability of EoSs without
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a strong first order phase transition [8,9]. In this case the sharp interface between quark
and hadron matter is smoothened, e.g., by inhomogeneous pasta structures [10]. Moreover,
an early onset of deconfinement for star masses around 0.5 M� could at present not be
discriminated observationally from a sequence without a phase transition, even with the
recent measurement of a strangely light neutron star [11]. This spectacular measurement is
in excellent agreement with the scenario of an early onset of deconfinement.

As has been discussed in detail in the recent review by Baym et al. [12], an NS EoS with
stiff quark matter requires a repulsive vector meanfield and strong color superconductivity
with sufficiently large diquark pairing gap for the early onset of the deconfinement transi-
tion. When one aims at a sufficiently general formulation of the quark matter EoS which
should also be suitable for the description of systems at finite temperatures like in super-
nova explosions or neutron star mergers, a confining relativistic density functional approach
has proven successful [13]. The model developed in [13] has recently been generalized
in [14] so that its Lagrangian obeys chiral symmetry and describes color superconductivity.

However, in these approaches, the vector meanfield persists at high densities and thus
the quark matter EoS remains stiff with a squared sound speed well exceeding the conformal
limit value of c2

s = 1/3. Many authors do not recognize this situation as a problem since the
densities at which perturbative QCD (pQCD) provides a reliable EoS model are about one
order of magnitude larger than the central densities in the most massive NSs. Nevertheless,
it has been shown recently [15] that pQCD actually can constrain the EoS at NS densities,
just by demanding thermodynamic stability and causality. Therefore, in the present work
we want to present a possible generalization of the RDF approach to dense quark matter
which recovers the conformal limit at high densities.

The organization of the paper is as follows. In the next section, we generalize the
RDF approach developed in Ref. [14] to the case of density-dependent vector and diquark
couplings. The EoS of cold, color-superconducting quark matter is modelled in Section 3.
Its convergence to the conformal limit is analyzed in the same section. Section 4 is devoted
to application of the developed EoS to modelling compact stars with quark cores. The
results are summarized and discussed in Section 5.

2. Confining RDF Approach with Density-Dependent Vector and Diquark Couplings

A generalization of the RDF approach for the description of color-superconducting
quark matter to the case of density-dependent vector and diquark couplings can be per-
formed within the Lagrangian formalism developed in Refs. [14,16]. In the case of two
quark flavors, the fundamental dynamical variables of the approach are quark fields rep-
resented by the flavor spinor qT = (u, d). We note that a first application of the present
approach to the three-flavor case was given in Ref. [17]. The interaction terms are chosen
in the contact current–current form (qΓ̂q)2 with Γ̂ being an interaction vertex. In the case
of scalar (Γ̂ = 1) and pseudoscalar (Γ̂ = iγ5~τ) channels the corresponding quark bilinears
are composed into the chirally symmetric combination (qq)2 + (qiγ5~τq)2, providing the
corresponding symmetry of interaction. The model Lagrangian can be written as

L = q(i/∂ −m)q−U + LV + LD, (1)

where m is the current mass of the two light quark flavors. The potential U accounts for the
attractive chirally symmetric interaction in scalar and pseudoscalar channels

U = D0

[
(1 + α)〈qq〉20 − (qq)2 − (qiγ5~τq)2

] 1
3 , (2)

where constants D0 and α control the interaction strength and constituent quark mass in
the vacuum [14,16], respectively, while 〈qq〉0 is the vacuum value of the chiral condensate.
In what follows the subscript index “0” denotes the quantities defined in the vacuum.
The present parameterization of U is motivated by the string-flip model (SFM) [18,19],
which assumes that the interparticle interaction energy is proportional to mean separation
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between quarks. The model Lagrangian includes terms representing vector repulsion and
diquark pairing interactions

LV = −GV(qγµq)2 + ΘV , (3)

LD = GD(qiγ5τ2λAqc)(qciγ5τ2λAq)−ΘD, (4)

where charge conjugated quark field is qc = iγ2γ0qT and A = 2, 5, 7 labels the antisymmet-
ric generators λA/2 of the SU(3) color group, so that the ansatz (4) for the diquark current
fulfills the Pauli principle for the quark pair. These interaction channels are important for
compact star phenomenology [12]. In Refs. [14,16,20] the couplings GV and GD were set
to be constants. Here, we consider them as medium dependent functions. This section
presents a general treatment, while the specific parameterization of the vector and diquark
couplings adopted in this work is considered in Section 3. The naive introduction of a
medium dependence for GV and GD can break thermodynamic consistency by violating
thermodynamic identities similarly to the case of the naive introduction of a medium
dependent dispersion relation [21]. In order to circumvent this problem we follow the
strategy of Ref. [22] and introduce the so-called rearrangement terms ΘV and ΘD into
Equations (3) and (4). Similar to GV and GD, they are some medium dependent functions
which should be defined in agreement with the corresponding couplings. These rearrange-
ment terms vanish at constant vector and diquark couplings. Their signs in Equations (3)
and (4) are conventional. The present choice is motivated by the fact that the corresponding
terms in the Lagrangian represent repulsive and attractive interactions.

Expanding the potential U around the mean-field expectation values 〈qq〉 6= 0 and
〈qiγ5~τq〉 = 0 up to the second order terms and inserting the result to Equation (1) yields an
effective Lagrangian. At this order, the only non-vanishing expansion coefficients are

ΣMF =
∂UMF
∂〈qq〉 , (5)

GS = −1
2

∂2UMF

∂〈qq〉2 , (6)

GPS = −1
6

∂2UMF

∂〈qiγ5~τq〉2 . (7)

Hereafter, the subscript index “MF” denotes the quantities defined by the mean field
approximation. The resulting effective Lagrangian has the current–current interaction form
of the NJL type models,

Leff = q(i/∂ −m∗)q + GS(qq− 〈qq〉)2 + GPS(qiγ5~τq)2,

+ LV + LD −UMF + 〈qq〉ΣMF, (8)

where m∗ = m + ΣMF is the constituent quark mass. It follows from this effective La-
grangian that ΣMF is nothing else than scalar self-energy of the quarks at the mean-field
level, while GS and GPS correspond to the effective couplings of quark interaction in the
scalar and pseudoscalar channels, respectively. These couplings do not coincide in the
general case. This corresponds to an explicit violation of chiral symmetry which results
from expanding the Lagrangian L around the mean-field solution, which is known to be
chirally broken. At the same time, the dynamical restoration of chiral symmetry at high
temperatures and densities leads to the asymptotic coincidence of GS and GPS [14,16]. With
the effective Lagrangian Leff, the partition function can be represented as a functional
integral over quark fields

Z =
∫
Dq Dq exp

[∫
dxE(Leff + q+µ̂q)

]
, (9)
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where integration over the Euclidean space-time is limited to the inverse temperature
1/T ≡ β =

∫
dτ and the volume V =

∫
dx. The diagonal matrix µ̂ = diag(µu, µd) stands

for the quark chemical potentials. They can be expressed through the baryonic µB and
electric µQ chemical potentials as µ f = µB/3+ Q f µQ, where subscript index f = u, d labels
quark flavors and Q f is their electric charge.

The next step corresponds to bosonizing the partition function by means of the
Hubbard–Stratonovich transformation. This introduces collective scalar (σ), pseudoscalar
(~π), vector (ωµ) and complex scalar diquark (∆A) fields. They are coupled to the corre-
sponding bilinears of quark fields, qq− 〈qq〉, qiγ5~τq, qγµq and qiγ5τ2λAq, respectively. It is
worth noticing that the medium dependence of the couplings GS, GPS, GV and GD does not
affect this procedure since none of them includes any dynamical variable. It is convenient
to treat the bosonized partition function within Nambu–Gorkov formalism. Here, we just
outline the main aspects of the formalism and summarize the results. The interested readers
are referred to Refs. [14,23]. In this case, quark fields are collected to the Nambu–Gorkov
bispinor QT = (q qc)/

√
2, while the partition function becomes

Z = exp
[

βV
(
−UMF + 〈qq〉ΣMF + ΘV −ΘD

)]∫
DQ DQ Dσ D~π Dωµ D∆A D∆∗A

× exp
[∫

dxE

(
Q S−1Q+ σ〈qq〉 − σ2

4GS
− ~π2

4GPS
+

ωµωµ

4GV
−

∆∗A∆A
4GD

)]
. (10)

Here, the propagator of the Nambu–Gorkov bispinors reads

S−1 =

(
S−1
+ − σ− iγ5~τ · ~π i∆Aγ5τ2λA

i∆∗Aγ5τ2λA S−1
− − σ− iγ5~τ

T · ~π

)
, (11)

with S−1
± = i/∂ ± /ω − m∗ ± γ0µ̂. The exponential in the second line of Equation (10) is

nothing else than the quark-meson part of the bosonized action. The quark fields enter this
action quadratically and can therefore be integrated out analytically yielding Tr ln

(
βS−1)/2

in the exponential. The trace Tr hereafter is performed over the color, flavor, Dirac, three-
momentum and Matsubara indices. The last ones appear after going over to the momentum
representation, which yields S−1

± = /k −m∗ with k0 = izn ± µ̂∗, zn = (2n + 1)πT, defining
a fermionic Matsubara frequency and µ∗f = µ f + ω being effective chemical potential
of quarks.

The action in Equation (10) gives direct access to the Euler–Lagrange equations of
the scalar, pseudoscalar, vector and diquark fields. Averaging these equations for the
vector and diquark fields, one obtains 〈ωµ〉 = −2GV〈qγµq〉 and 〈∆A〉 = 2GD〈qciτ2γ5λAq〉,
respectively. By a proper Lorentz transform, the vector field average attains the form
〈ωµ〉 = gµ0ω with ω = −2GV〈q+q〉. Furthermore, there exists a global color rotation
which leaves ∆2 as the only diquark field with a nonvanishing expectation value at the
mean field level. We note that only its modulus ∆ = |∆2| appears in the expression
for thermodynamic potential. Averaging the Euler–Lagrange equations for scalar and
pseudoscalar fields shows that 〈σ〉 and 〈~π〉 vanish at mean field [14]. Thus, σ and ~π have
beyond mean-field nature and represent the corresponding mesonic correlations of quarks.
Within the Gaussian approximation, the back-reaction of these correlations on the quark
propagator is neglected [23]. This allows to expand Tr ln

(
βS−1) up to the second order in

σ and ~π. The second order terms are quadratic in the mean-field quark propagator SMF
and thus represent one-loop polarization operators of (pseudo)scalar mesons. The latter
can be used in order to construct mesonic propagators and to extract the corresponding
masses from the position of the propagator poles. Within the generalized Beth–Uhlenbeck
approach, mesonic propagators also can be used in order to obtain beyond mean-field
contributions to the thermodynamic potential [16,23]. In the present work, however, they
are neglected because we restrict ourselves to the mean-field approximation. For this, we
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replace scalar, pseudoscalar, vector and diquark fields in Equation (10) by their expectation
values and reduce the corresponding functional integrals. This yields

Ω = − lnZ
2βV

= Ωq + UMF − 〈qq〉ΣMF −
ω2

4GV
+

∆2

4GD
−ΘV + ΘD. (12)

The first term in this expression is due to the contribution of quark quasiparticles

Ωq = − T
2V

Tr ln(βS−1
MF) = −2 ∑

f ,c,a=±

∫ dk
(2π)3

[ gk
2

εa
k f c − T ln

(
1− f a

k f c

)]
. (13)

It includes the single particle energies shifted by the effective chemical potential and
distribution functions, i.e.,

ε±k f c = sgn(εk f ∓ µ∗f )
√
(εk f ∓ µ∗f )

2 + ∆2
c and f±k f c =

[
eβε±k f c + 1

]−1
. (14)

Here, εk f =
√

k2 + m∗2 and the subscript index c = r, g, b labels quark color states.
The color vector ∆c = (∆, ∆, 0) is introduced in order to unify the notations and a = ±
distinguishes particles and antiparticles. The dispersion relation (14) can be obtained by
solving det(S−1

MF) = 0 with respect to the zeroth component of quark four momentum k. It
shows that only red and green quarks are paired exhibiting the gap ∆ in their one-particle
energy spectrum, while blue quarks are unpaired. The zero point terms in the expression
for Ωq are regularized by smooth cut-off in the Gaussian form

gk = exp
[
− k2

Λ2

]
. (15)

In Ref. [14], such a form was chosen in order to prevent a discontinuous behavior of various
thermodynamic quantities which would have been obtained for the 2SC phase of quark
matter with a sharp cutoff as gk = θ(Λ− |k|).

The thermodynamic definition of the number density of a given quark flavor corre-
sponds to the thermodynamic identity 〈 f+ f 〉 = −∂Ω/∂µ f , which should be used carefully
since vector and diquark couplings are medium dependent functions. On the other hand,
the statistical definition of this quantity implies 〈 f+ f 〉 = −∂Ωq/∂µ f . The thermodynamic
consistency of the present approach is provided when these two definitions coincide. Thus,
we require

∂Ω
∂µ f
−

∂Ωq

∂µ f
=

ω2

4G2
V

∂GV
∂µ f
− ∆2

4G2
D

∂GD
∂µ f
− ∂ΘV

∂µ f
+

∂ΘD
∂µ f

= 〈q+q〉2 ∂GV
∂µ f
− ∂ΘV

∂µ f
− |〈qciτ2γ5λ2q〉|2 ∂GD

∂µ f
+

∂ΘD
∂µ f

= 0, (16)

where the mean-field equations ω = −2GV〈q+q〉 and ∆ = 2GD|〈qciτ2γ5λ2q〉| were used
on the second step. Fulfilment of this condition requires the rearrangement terms ΘV
and ΘD to be defined in accordance with the couplings GV and GD. The corresponding
relations can be easily found by assuming that ΘV , GV , ΘD and GD are functions of 〈q+q〉
and |〈qciτ2γ5λ2q〉|, respectively. In this case, Equation (16) leads to

ΘV =

〈q+q〉∫
0

dn n2 ∂GV(n)
∂n

and ΘD =

|〈qciτ2γ5λ2q〉|∫
0

dn n2 ∂GD(n)
∂n

. (17)

From these relations, it is seen that the rearrangement terms, indeed, vanish if the
couplings are constant. Using these relations number density of a given quark flavor, chiral
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condensate and modulus of the diquark, one can be found from the quark part of the
thermodynamic potential as

〈 f+ f 〉 = −
∂Ωq

∂µ f
= 2 ∑

c,a=±
a
∫ dk

(2π)3

(
f a
k f c −

gk
2

)(
2∆cδ(εa

k f b) +
εa

k f b

εa
k f c

)
, (18)

〈qq〉 =
∂Ωq

∂m
= 2 ∑

f ,c,a=±

∫ dk
(2π)3

(
f a
k f c −

gk
2

)(
2∆cδ(εa

k f b) +
εa

k f b

εa
k f c

)
m∗

εk f
, (19)

|〈qciτ2γ5λ2q〉| = −
∂Ωq

∂∆
= 2 ∑

f ,c,a=±

∫ dk
(2π)3

( gk
2
− f a

k f c

) ∆c

εa
k f c

. (20)

We note that the Dirac delta-function in Equations (18) and (19) appears due to differ-
entiating the sign-function from the dispersion relation (14). It is also worth mentioning that
the definitions of the rearrangement terms given by Equation (17) along with the mean-field
equations ω = −2GV〈q+q〉 and ∆ = 2GD|〈qciτ2γ5λ2q〉| are sufficient in order to obtain the
number density of a given quark flavor, the chiral condensate and the modulus of the di-
quark one in the form (18)–(20). This holds for any functional dependence of the couplings
GV and GD on their arguments. With Equations (18) and (20), the mean-field equations
for the vector field and diquark pairing gap can be given an explicit form. Furthermore,
Equation (19) should be understood as another mean-field equation with respect to chiral
condensate. Its solution along with the solutions of the mean-field equations for vector field
and pairing gap minimize the thermodynamic potential. For the reader’s convenience, in
Appendix A we explicitly analyze the conditions providing the minimum of Ω and derive
from them the mean-field equations mentioned above as well as Equations (18)–(20).

Once these mean-field equations are consistently solved, pressure, entropy and energy
density can be found using the thermodynamic identities p = Ω0 −Ω, s = ∂p/∂T and
ε = ∑ f µ f 〈 f+ f 〉 + Ts − p, while squared speed of sound is defined as the derivative
c2

S = dp/dε calculated at constant entropy. Below we also analyze the dimensionless
interaction measure δ = 1/3 − p/ε being nothing other than the trace of the energy
momentum tensor scaled by the conformal limit for the pressure which is 3ε.

It is worth noticing that the present approach with density-dependent vector and
diquark couplings is equivalent to a density functional approach in the spirit of Ref. [13].
In the case of vector repulsion and diquark pairing, the corresponding density functionals
depend on the quark bilinears q+q and qciτ2γ5λ2q, qiτ2γ5λ2qc, respectively. Consistency
with the present approach with medium dependent vector and diquark couplings is
provided by

UV =

(q+q)2∫
0

dn2 GV(n) and UD =

|qciτ2γ5λ2q|2∫
0

dn2 GD(n). (21)

Expanding these potentials around the mean-field solutions up to the first order terms
produces the vector and diquark self-energies of quarks

ΣV ≡
∂UV,MF

∂〈q+q〉 and Σ̂D ≡ antidiag
(

∂UD,MF

∂〈qiτ2γ5λ2qc〉 ,
∂UD,MF

∂〈qciτ2γ5λ2q〉

)
, (22)

where Σ̂D is an antidiagonal matrix in the Nambu–Gorkov space due to the fact that UD
depends on two dynamical variables qciτ2γ5λ2q and qiτ2γ5λ2qc. The vector self-energy
shifts the quark chemical potential by exactly the same amount as ω = −2GV〈q+q〉. The
corresponding pressure term −UV,MF + 〈q+q〉ΣV also coincides with ω2/4GV + ΘV . The
diquark self-energy coincides with the non-diagonal terms in the inverse Nambu–Gorkov
propagator if the diquark fields in Equation (11) are replaced by their expectation values
discussed above. In this case, the pressure term coming from the expansion of the diquark
potential −UD + 〈Qiτ2γ5λ2Σ̂DQ〉 coincides with −∆2/(4GD)−ΘD.
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The present model has four parameters relevant to the QCD phenomenology, which
are m, D0, α and Λ [14]. The pion mass Mπ and decay constant Fπ are the most important
observables in this context. An analysis of the scalar mode mass Mσ also was performed
despite the fact that its experimental status is far from being clear. Our approach allows
Mσ in a wide interval covering the masses of all the experimental candidates. Typically,
the lightest state f0(500) is considered as a candidate for the scalar meson role. It, however,
has a large decay width of about 500–1000 MeV [24] and should be considered rather
a tetraquark state than a traditional quark–antiquark meson [25]. Therefore, it is not
appropriate to fit the vacuum parameters of the low-energy QCD model using the f0(500)
state as a quark–antiquark meson. Our analysis uses instead the f0(980) state as a scalar
meson. Our approach does not fit the vacuum value of chiral condensate per flavor
|〈ll〉1 GeV

0 |1/3 = 241 MeV found from QCD sum rules at the renormalization scale 1 GeV [26].
This problem is typical for most of the chiral quark matter models [27]. Therefore, within the
present approach we allowed the chiral condensate to have a somewhat larger value in
order to have a reasonable value of the pseudocritical temperature TPC = 163 MeV defined
by the peak position of chiral susceptibility. The model parameters defined using the above
strategy along with the resulting physical quantities are presented in Table 1. This parameter
set yields m∗ = 718 MeV in the vacuum, which provides an efficient phenomenological
confinement of quarks due to their high masses at low temperatures and densities.

Table 1. Parameters of the present model and resulting observables.

m (MeV) Λ (MeV) α D0Λ−2 Mπ

(MeV)
Fπ

(MeV)
Mσ

(MeV)
|〈ll〉0|1/3

(MeV)

4.2 573 1.43 1.39 140 90 980 267

The parameterization of the vector coupling adopted in this work is motivated by the
analysis of the quark repulsion energy due to non-perturbative gluon exchange of QCD
in the Landau gauge [28]. In the normal phase of symmetric quark matter, this implies
GV ∝ (9M2

g + 8k2
F)
−1, with Mg and kF = (π2〈q+q〉/2)1/3 being the non-perturbative gluon

mass and the quark Fermi momentum, respectively. With this, we introduce

GV =
GV0

1 + 8
9M2

g

(
π2〈q+q〉

2

)2/3 , (23)

GD =
GD0

1 + 8
9M2

g

(
π2|〈qciτ2γ5λ2q〉|

2

)2/3 . (24)

At Mg → ∞, this parameterization corresponds to constant vector and diquark cou-
plings. At the same time, the solution of the gluon Schwinger–Dyson equations in the Lan-
dau gauge implies Mg = 300–700 MeV [29,30]. The value of Mg can also be estimated based
on the Shifman, Vainshtein and Zakharov expansion of the two-point current correlation
functions within massive gauge invariant QCD [31]. For the frozen QCD structure constant
αs = 0.2 and transferred momentum Q2 = 10 GeV2 that approach yields Mg = 750 MeV.
At αs = π, which is expected for the non-perturbative regime [32], the effective gluon mass
becomes 516 MeV. At the same time, for the transferred momentum coinciding with the
ultraviolet cut-off Λ from Table 1, i.e., for Q2 = Λ2, one obtains Mg = 942 MeV at αs = 0.2
and Mg = 792 MeV at αs = π. Below, we consider several values of the non-perturbative
gluon mass, covering a range that contains the values mentioned above. This allows us to
demonstrate continuous convergence to the conformal limit at all finite Mg.

We treat the vacuum values of the vector GV0 and diquark GD0 couplings as free pa-
rameters. They are parameterized as dimensionless ratios defined with the vacuum value of
the scalar coupling GS0 = 18.1 GeV−2 through ηV ≡ GV0/GS0 and ηD ≡ GD0/GS0. In what
follows, pairs of numbers (ηV , ηD) are used in order to label different EoS parmetrizations
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obtained within the present model. It is necessary to stress that the physical values of ηD
are limited from above by the value ηmax

D = (3/2)(GPS0/GS0)m∗0/(m∗0 −m), beyond which
the vacuum state would already become color superconducting [14], see also [33,34]. For
the chosen values of the model parameters ηmax

D = 0.78. In order to not go to the marginal
values of the diquark coupling, we constrain the consideration to the range ηD < 0.77.

3. Cold Quark Matter

Studying cold quark matter at vanishing temperatures is of practical interest for
modeling compact stars. At T = 0, the single particle distribution functions of quarks
reduce to unit step-functions, i.e., f+k f c = θ(−ε+k f c) and f−k f c = 0. Therefore, the antiquark
terms are absent at T = 0, while for the quark ones the integration over k is limited by the
Fermi momentum defined by the condition ε+k f b = 0.

Constructing the EoS of quark matter requires solving mean-field equations for chiral
condensate, vector field and diquark pairing. Solutions of these equations give direct access
to the single quark energies ε+k f c, which are needed in order to calculate the thermodynamic
quantities mentioned in the previous section. Before considering these quantities in detail,
we would like to analyze the high density asymptotics of our approach and show that it is
consistent with the conformal limit of strongly interacting matter. At high densities, the
zero point terms, the quark masses as well as all terms related to U can be neglected. In
order to analyze the behavior of the pairing gap, we notice that in the considered regime
GD ∝ |〈qciτ2γ5λ2q〉|−2/3. Therefore, using the pairing gap equation ∆ = 2GD|〈qciτ2γ5λ2q〉|
and Equation (20), we obtain

∆ ' 2GD0
9M2

g

8

(
2

π2

)2/3
|〈qciτ2γ5λ2q〉|1/3 =

9GD0M2
g

(2π)4/3

[
−4∆ ∑

f

∫ dk
(2π)3

f+k f r

ε+k f r

]1/3

, (25)

where the summation over the color index was performed explicitly in the second step. For
∆ � µ∗f , the single particle energy of paired quarks can be approximated as ε+k f r ' −∆

and the bracket on the right hand side of this relation behaves as ∼ ∑ f µ∗3f . This leads

to ∆ ∼ (∑ f µ∗3f )1/3, which contradicts the original assumption. At ∆ ∼ µ∗f or ∆� µ∗f ,

the bracket in Equation (25) ∼ ∆ ∑ f µ∗2f . Thus, the high density asymptotic of the pair-

ing gap is ∆ ∼ (∑ f µ∗2f )1/2. The corresponding contribution to the pressure behaves as

pD ≡ −∆2/4GD − ΘD ∼ ∆4. In order to show that pD scales as the vector field term
pV ≡ ω2/4GV + ΘV ∼ 〈q+q〉4/3, we consider the quark number density

〈q+q〉 = 2 ∑
f ,c

∫ dk
(2π)3 f+k f c

(
2∆cδ(ε+k f b) +

ε+k f b

ε+k f c

)
. (26)

The first term in the bracket of this expression contributes ∼ ∑ f ∆µ∗2f to the quark
number density. Following the above analysis of the pairing gap, this contribution is of the
same order as the second term in the brackets in Equation (26), i.e., ∼ ∑ f µ∗3f ∼ ∆3. With

this, we conclude that pD ∼ 〈q+q〉4/3. Similarly, for the zero temperature quark pressure at
high densities, we obtain

pq ' −Ωq ' −2 ∑
f ,c

∫ dk
(2π)3 f+k f cε+k f c ∼∑

f
µ∗4f ∼ 〈q

+q〉4/3. (27)

Thus, the total pressure at high densities is proportional to n4/3
B with nB = 〈q+q〉/3

being the baryon charge density. Along with the thermodynamic identity nB = ∂p/∂µB, this
leads to the high density scaling p ∼ µ4

B, which respects the conformal limit. Convergence
to this limit is shown in Figure 1. At small values of the baryonic chemical potentials, chiral
symmetry is broken, quark masses are high and the paring gap vanishes. The pressure also
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vanishes in this regime, leading to a vanishing speed of sound and an interaction measure
equal to one third. At a certain µB, the quark mass discontinuously drops to some small
value, while the pairing gap becomes finite. This discontinuous change signals a first order
transition from chirally broken quark matter to the 2SC phase. At this transition, the speed
of sound jumps to some finite value, while the interaction measure exhibits a kink. In the
general case, δ experiences a jump of the amplitude pc(1/ε1 − 1/ε2), where pc is pressure
at the phase transition and ε1 and ε2 are energy densities of the coexisting low and high
density phases. At zero temperature, this jump of the interaction measure degenerates to
kink with δ = 1/3 since pc = 0 in this case. Above the transition c2

S decreases and δ has a
minimum with some negative value. Position of this minimum can be found by requiring
dδ/dε = p/ε2 − c2

S/ε = 0 or, equivalently, c2
S = p/ε. This condition can be fulfilled only

if p > 0 just because c2
S are ε and are positively defined. This explains why the minimum

of δ is located in the region with positive pressure, i.e., above the transition from chirally
broken quark matter to the 2SC phase. Qualitatively identical behavior of c2

S and δ in the
density range with positive pressure is exhibited by the parametric model of the quark matter
EoS from Ref. [35]. At any finite value of the non-perturbative gluon mass and for µB → ∞,
the squared speed of sound and the interaction measure converge to their values in the
conformal limit, c2

S = 1/3 and δ = 0, respectively. It is important to stress that vanishing of
the interaction measure at finite µB does not signal reaching the conformal limit, which also
requires ∂δ/∂µB = 0. Note, these two conditions necessarily lead to c2

S = 1/3 not being the
case of finite values of the baryonic chemical potential. The smaller the Mg, the faster this
convergence is. In other words, the non-perturbative gluon mass defines the scale at which the
quark–quark interaction effects cease. It is also worth mentioning that within the considered
model c2

S → 1/3 from above and δ→ 0 from below. This means that vector repulsion between
quarks dominates the attractive pairing interaction even at high densities. An alternative
scenario with c2

S approaching the conformal limit from below and δ approaching it from above
requires domination of the attractive (pairing) interactions at high µB. Such a case can be
provided, e.g., if the common gluon mass parameter Mg in Equations (23) and (24) is replaced
by two independent vector (MgV) and diquark (MgD) masses with MgV < MgD. In this case,
the repulsive vector interaction ceases before the attractive pairing one. An analysis of this
scenario is beyond the scope of the present work. It is also important to note that for finite Mg
the variation of c2

S in the density region typical for NSs is much more pronounced than for
Mg → ∞, which corresponds to the case of constant vector and diquark couplings considered
in Ref. [14]. As is seen from Figure 1, in symmetric quark matter this variation within the
interval of µB from 1 GeV to 2 GeV is about 10%.
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Figure 1. Squared speed of sound c2
S (left panel) and interaction measure δ (right panel) as functions

of baryonic chemical potential µB. The black dashed line on the left panel represents c2
S = 1/3.

Calculations are performed for cold symmetric quark matter at ηV = 0.32 and ηD = 0.71.
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Qualitatively the same behavior of c2
S and δ is observed at any values of ηV and ηD

and in the case of electrically neutral β-equilibrated quark matter, which is important for
modelling NSs. Electric neutrality requires a proper amount of electrons with chemical
potential µe = µu − µd providing β-equilibrium. At small densities where quarks are
confined, we construct a phase transition of the quark matter EoS with the hadron one. We
use DD2 EoS with hyperons, which agrees with the low density calculations of the chiral
effective field theory from Ref. [36] and is referred to as DD2npY-T [6]. The quark and
hadron EoSs are matched by means of the Maxwell construction corresponding to the first
order phase transition. Such a hybrid EoS is shown in Figure 2. It is worth mentioning
that the hadron-to-quark matter transition happens above the transition from chirally
broken phase to the 2SC one in pure quark matter. Therefore, the quark matter branch of
hybrid EoS is already color superconducting. For the considered values of Mg diquark
coupling strongly influences the onset density of quark matter decreasing with ηD. The
stiffness of the quark matter EoS is regulated by the vector coupling. A correlated variation
of ηV and ηD allows us to generate a family of quark-hadron EoSs consistent with the
constraints obtained within the multipolytrope analysis of the observational data of PSR
J1614+2230 [37] and PSR J0740+6620 [2] as well as the statistical analysis from Ref. [38].

Figure 2. Hybrid EoS of cold electrically neutral quark-hadron matter at β-equilibrium in the plane
of energy density ε and pressure p. Empty circles on the hadronic curves indicate the hyperon onset.
The shaded areas represent the nuclear matter constraints from Refs. [2,36–38] discussed in the text.
The curves corresponding to hybrid EoSs are labeled with pairs of numbers (ηV , ηD).

We want to point out that different values of the non-perturbative gluon mass lead to
qualitatively different properties of the resulting EoS. At Mg = 500 MeV, the onset density
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of quark matter is limited from below by about 450 MeV fm−3 corresponding to ηV = 0
and ηD = 0.77. Smaller onset densities can be obtained only if going to the unphysical
region ηD > ηmax

D . At physical values of the diquark coupling, the onset of quark matter
for Mg = 500 MeV always occurs after the hyperonization of the matter. As a result,
the lower limit for the NS maximum mass can be reached only marginally, while the tidal
deformability is outside the observational bounds. Already at Mg = 600 MeV, the onset
density of quark matter is not limited from below, which provides positive feedback to the
problem of fulfilling the observational constraints.

For the considered values of the vector and diquark couplings and the lower value of
the gluon mass, Mg = 500 MeV, the quark-hadron mixed phase is located at
ε = 500–900 MeV fm−3. For Mg ≥ 600 MeV, however, the mixed phase lies at lower energy
densities ε = 180− 500 MeV fm−3. As shown below, small values of the non-perturbative
gluon mass are inconsistent with the observational constraints on the NS mass–radius
relation and the bound on the tidal deformability. Based on this, we conclude that our
approach predicts the quark-hadron transition at energy densities below 500 MeV fm−3.
This range coincides with the lattice QCD results related to the chiral crossover region
at vanishing chemical potential [39]. More recent analyses of the modern NS mass and
radius constraints from multi-messenger observations using hybrid EoS with color su-
perconducting quark matter do also find the hadron-to-quark matter transition at energy
densities below 500 MeV fm−3; see [40,41]. Such a coincidence of energy density domain
for the phase transformation in two very different regions of the QCD phase diagram
has already been observed in [42]. However, the mechanism of this transformation at
finite temperatures and finite densities can substantially differ. This makes a theoretical
interpretation of the above “universality” of the transition energy density challenging.

It is worth mentioning that for Mg ≥ 600 MeV our approach is able to generate
EoSs, which at high densities are significantly stiffer than the hadronic EoS DD2npY-T. At
the same time, this feature is consistent with approaching the conformal limit c2

S → 1/3.
Indeed, as can be seen in Figure 3, after the hadron-to-quark matter transition, the squared
speed of sound has a value of ∼0.5 and then decreases, approaching the conformal value at
asymptotically high densities. Such a decrease of c2

S in the density range typical for NSs was
recently reported based on the model agnostic statistical analysis [43]. Within our approach,
the speed of sound reaches its maximal value at the quark boundary of the quark-hadron
mixed phase. In other words, c2

S peaks in the color superconducting 2SC phase right after
the hadron-to-quark matter transition. For the EoSs providing the best agreement with the
observational constraints discussed below (red and purple curves in the upper right and
lower panels in Figure 3), this maximum is located at ε ' 300–400 MeV fm−3. Remarkably,
this range of energy densities corresponding to the speed of sound maximum is in very
good agreement with the results of Ref. [44] obtained within the model agnostic statistical
analysis, which also respects the conformal limit. A similar peak of c2

S was also reported in
Ref. [8] for the scenario of a first order phase transition FOPT-1 with the Group 1 of EoS.

For Mg ≥ 600 MeV and energy densities interesting for the phenomenology of NSs,
c2

S varies around 0.45–0.55. Such values have been obtained for color superconducting
quark matter within the nonlocal Nambu–Jona–Lasinio model with covariant [45] and also
with instantaneous formfactors [41]. At the same time, for a given EoS of quark matter,
the relative variation of c2

S is about 10%, being in tension with the assumption of the constant
speed of sound (CSS) parameterization of the quark matter EoS [46,47].
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Figure 3. Squared speed of sound c2
S of cold electrically neutral quark-hadron matter at β-equilibrium

as a function of energy density ε calculated with the EoS shown in Figure 2. Empty circles on the
hadronic curves indicate the hyperon onset. The curves corresponding to hybrid EoSs are labeled
with pairs of numbers (ηV , ηD).

4. Compact Stars with Quark Cores

Observational data on the masses and radii of NSs give important constraints on their
EoS. These constraints include the measurement of the lower limit of the TOV maximum
mass 2.01+0.04

+0.04 M� for the pulsar PSR J0348+0432 in a binary system with a white dwarf
companion [48], the results of the Bayesian analysis of the observational data from PSR
J0740+6620 [2,5] and PSR J0030+0451 [49,50], as well as the constraints on the masses and
radii obtained from the gravitational wave signal and the kilonova light curve of the binary
neutron star merger GW170817 [7,51,52]. We confronted these constraints with the mass–
radius relations obtained by solving the problem of relativistic hydrostatic equilibrium,
i.e., the TOV equation supplemented with the necessary boundary condition. The family of
hybrid quark-hadron EoSs presented in Figure 2 was used as an input for this task. The
corresponding mass–radius relations are shown in Figure 4. For Mg = 500 MeV, the quark
matter onset mass is rather high, while the TOV maximum masses reach the observational
limit, if at all, only marginally. A similar problem arises when one compares the value
for R1.4, the radius for an NS with a mass of 1.4 M�, with the constraint R1.4 = 11.75+0.86

−0.81
km that was derived in [1] from available multi-messenger observations. This constraint
cannot be fulfilled by the models based on Mg = 500 MeV.
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Figure 4. Mass–radius relation of hybrid NSs with the quark-hadron EoS presented in Figure 2. The
empty circle on the hadronic curves indicates the hyperon onset. The blue filled circles represent
the special points with the mass MSP found according to the fitting procedure described in the text.
The astrophysical constraints from Refs. [2,5,7,48–52] depicted by the colored bands and shaded areas are
discussed in the text. The curves corresponding to hybrid EoSs are labeled with pairs of numbers (ηV , ηD).

Increasing the effective gluon mass diminishes the reduction of the vector and diquark
couplings at high densities. This leads to a stiffening of the quark matter EoS and increases
the maximum mass of the corresponding NS sequences. As we have shown in the previous
section, increasing the gluon mass lowers the NS mass where the onset of deconfinement
occurs. Therefore, these masses appear to be anticorrelated.

Lowering the onset mass of quark matter for the models with Mg ≥ 600 MeV
also provides agreement of our approach with the constraint on R1.4. Thus, for all
Mg ≥ 600 MeV, the vector and diquark couplings can be adjusted so that all the above
constraints on the mass–radius relation of NSs are respected. We also would like to stress
that the best agreement with the observational data is provided for low quark matter
onset masses.

A remarkable feature of the mass–radius relation of NSs with quark cores corresponds
to existence of the so-called “special point” (SP), that being a narrow region of intersection of
the mass–radius curves [53]. In Refs. [53–57], it was reported and thoroughly studied within
the CSS parameterization of the quark-matter EoS. As can be seen from Figure 4, the SP also
appears within the present approach, which cannot be phenomenologically caught by the
CSS parameterization. Therefore, we conclude that the SP is likely to be a rather general
feature of solutions of the TOV equation not limited to a given class of EoS of hybrid NSs.
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The analysis of the gravitational wave signal from the inspiral phase of the binary
neutron star merger gives direct access to the dimensionless tidal deformability Λ = 2

3 k2C−5

expressed through the second Love number k2 and the stellar compactness C = M/R.
The measurement of the signal from the merger event GW170817 allowed to constrain the
tidal deformability of a 1.4 M� NS to the range Λ1.4 = 190+390

−120 [7]. Figure 5 shows the
dependence of Λ on M. At small values of the non-perturbative gluon mass, the agreement
with the observational constraint is never achieved due to late onset of quark matter. At
larger values of Mg, it is always possible to adjust the vector and diquark couplings in
order to provide a tidal deformability in the range Λ = 70–580. Similar to the case of the
mass–radius relation, the observational data prefer the values of the vector and diquark
couplings corresponding to an early onset of quark matter.

Figure 5. Dimensionless tidal deformability Λ as a function of stellar mass M with the quark-hadron
EoSs presented in Figure 2. The error bar corresponds to the observational constraint discussed in the
text. The curves corresponding to hybrid EoSs are labeled with pairs of numbers (ηV , ηD).

The possibility of conformal or near conformal behavior of matter in the cores of heavy
NSs was recently discussed in Refs. [38,43]. We check this possibility within our model,
which by construction respects the conformal limit at asymptotically high densities. As
outlined above, the smaller the non-perturbative gluon mass, the earlier the conformality is
reached. Therefore, we present an analysis for Mg = 600 MeV. We also consider only those
parameterizations of the hybrid EoS labeled by pairs of numbers (ηV , ηD), which provide
consistency with the above-mentioned constraints on the NS mass–radius relation and tidal
deformability. Figure 6 shows profiles of energy density and squared speed of sound for



Particles 2022, 5 528

NSs of several masses obtained for the EoSs fulfilling these selection criteria. The highest
NS masses correspond to the maximum ones supported by the corresponding hybrid EoSs.
Both ε and c2

S exhibit a discontinuous change at the sharp interface between quark core and
hadron envelope due to the strong first order phase transition. The mixed quark-hadron
phase is absent since its pressure remains constant for increasing density so that there
is no pressure gradient that could balance the gravitational force which compresses the
matter. We note that at M = 0.6 M� for the EoS with ηV = 0.330 and ηD = 0.750 (left
panels of Figure 6) ε and c2

S are continuous since quark matter does not occur in this stellar
configuration. In the case of softer EoS (left panels) the energy density reached in the center
of the heaviest stars is higher compared to the case of stiffer EoS (right panels). In both
cases, this central ε does not exceed 1200 MeV fm−3, which is well below the range of
energy densities where quark matter approaches the conformal limit.
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Figure 6. Profiles of energy density ε (upper panels) and squared speed of sound c2
S (lower panels).

The calculations are performed for NSs of several masses M indicated in legends, ηV = 0.330,
ηD = 0.750 (left panels), ηV = 0.370, ηD = 0.770 (right panels) and Mg = 600 MeV. The NS masses
are limited by the maximum values provided by the corresponding hybrid EoSs.

It is important to note that at higher Mg > 600 MeV the central value of the energy
density is expected to be even smaller due to a stiffening of the quark matter EOS caused
by the slower melting of the vector and diquark couplings. The behavior of c2

S supports
the conclusion that quark matter inside the hybrid NSs does not reach the conformal limit.
Indeed, despite decreasing towards the NS center, c2

S does not get much smaller than 0.5
even in the cores of the heaviest NSs.
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Now a comment with respect to the compression modulus is in order. It quantifies
the curvature of the density-dependent energy per nucleon E/A = ε/nB −mN of nuclear
matter, where mN is the nucleon mass. Thus, the compression modulus reads [58,59]

KNM = 9n2
B

∂2

∂n2
B

E
A

= 9n2
B

∂2

∂n2
B

ε

nB
. (28)

Using the thermodynamic identity p = n2
B∂(ε/nB)/∂nB, we can replace the derivative

∂(ε/nB)/∂nB and arrive at KNM = 9(∂p/∂nB − 2p/nB). Furthermore, the density deriva-
tive of the pressure in this relation can be replaced using the relation c2

S = µ−1
B ∂p/∂nB,

which is provided by the thermodynamic identity µB = ∂ε/∂nB and definition of c2
S. Finally,

utilizing nB = (p + ε)/µB, we obtain

KNM = 9µB

(
c2

S −
2p

p + ε

)
= 9µB

(
c2

S −
2− 6δ

4− 3δ

)
, (29)

where in the second step the pressure was expressed as p = (1/3− δ)ε. Equation (29)
relates the compression modulus to the speed of sound and interaction measure, making
KNM a quantity useful for analyzing the possibility of reaching the conformal limit in
NSs. At small densities, where quark matter has δ ' 1/3 (see Section 3), the compression
modulus attains a positive value KNM ' 9µBc2

S. This signals a convex energy per baryon
E/A = ε/nB − mN . At high densities, close to the conformal limit c2

S → 1/3, δ → 0
and KNM → −3µB/2 indicating a concave ε/nB ∝ n1/3

B . This scaling follows from the
fact that in the conformal regime ε ∝ µ4

B and nB ∝ µ3
B. Thus, KNM is a monotonously

decreasing function of density changing from positive to negative values. Its vanishing,
i.e., KNM = 0, indicates the inflection point of ε/nB, which is a precursor of the conformal
regime providing KNM < 0.

Figure 7 shows profiles of the compression modulus for several NS masses obtained
for the hybrid EoSs with Mg = 600 MeV, which respect the observational constraints
mentioned above. These profiles exhibit a discontinuous change of KNM due to the first
order phase transition. It can be seen in Figure 2 that for the considered EoSs p � ε
at the phase transition leading to KNM ' 9µBc2

S. This explains the high values of the
compression modulus of quark matter in the vicinity of the deconfinement transition since
the corresponding c2

S is almost an order of magnitude larger than in the case of nuclear
matter at the saturation density. At small M, the energy density of NS matter remains
small and the quark part of the profiles is quite flat. In the case of heavy NSs, the range
of ε extends to higher values and decrease of the compression modulus toward the NS
center becomes prominent. This decrease is more pronounced for softer EoSs. In other
words, the smaller the NS maximum mass provided by a given hybrid EoS, the smaller the
values of the compression modulus reached in its center. At the same time, observational
constraints on the NS mass–radius relation require quite stiff EoS. As a result, KNM barely
vanishes, if at all, even in the centers of the heaviest NSs. For example, the heaviest stellar
configuration presented on the left panel of Figure 7 yields KNM = −49 MeV, which
is negligible compared to the value of 4.9 GeV on the quark matter side of the quark
deconfinement transition. Thus, within the range of densities typical for NSs ε/nB remains
convex or marginally reaches the inflection point, meaning that quark matter remains far
from the conformal limit.
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Figure 7. Profiles of the compression modulus KNM calculated for NSs of several masses M indicated
in legends when ηV = 0.330, ηD = 0.750 (left panel) and when ηV = 0.370, ηD = 0.770 (right panel)
for Mg = 600 MeV. The NS masses are limited by the maximum values provided by the corresponding
hybrid EoSs.

5. Discussion and Conclusions

The problem of restoring the conformal limit within effective models of quark matter
was given a treatment within the recently proposed relativistic density functional approach.
In addition to mimicking quark confinement by a rapid growth of the quark self-energy
in the confining region, the pseudo-scalar sector of this approach is equivalent to a chiral
quark model with medium dependent coupling constants. In order to provide its confor-
mal behavior at high densities, we generalized the vector repulsion and diquark pairing
channels to the case when the corresponding couplings decrease with the density. We also
demonstrated that a quark model with density-dependent vector and diquark couplings
can be formulated within the relativistic density functional approach. The particular be-
havior of the vector and diquark couplings was motivated by an analysis of the quark
repulsion energy due to non-perturbative gluon exchange in QCD in the Landau gauge.
We showed that the conformal limit is asymptotically reached within the present approach
at any finite value of the non-perturbative gluon mass.

The developed approach was applied in order to Maxwell-construct a family of
hybrid quark-hadron EoSs used to model NS. We found that observational data prefer
the non-perturbative gluon mass exceeding a value above 500 MeV. Another general
conclusion of our analysis is that color superconductivity lowers the onset density of
quark matter and that such early quark deconfinement is favoured by the observational
constraints on the mass–radius relation and tidal deformability of NSs. More precisely,
our analysis supports the hadron-to-quark matter transition at energy densities within the
range 180–500 MeV fm−3. We also report that energy density reached in the cores of the
heaviest NSs is far from the region of conformality of quark matter.
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Appendix A

In order to analyze the minimum of the thermodynamic potential with respect to chiral
condensate, vector field and diquark pairing gap, we notice that Ω given by Equation (12)
explicitly depends on seven variables, i.e., µu, µd, 〈q+q〉, 〈qq〉, |〈qciτ2γ5λ2q〉|, ω and ∆. The
part of quark quasiparticles is a function of all these variables except the quark number
density and diquark condensate. Therefore, its full differential can be written as

dΩq = ∑
f

∂Ωq

∂µ f
(dµ f + dω) +

∂Ωq

∂m
∂ΣMF
∂〈qq〉 d〈qq〉+

∂Ωq

∂∆
d∆. (A1)

Here, we accounted for the fact that the vector field and the chiral condensate enter Ωq
through the effective chemical potential µ∗f = µ f +ω and the effective mass m∗ = m+ΣMF,
respectively. The second and the third terms in Equation (12) depend only on 〈qq〉 yielding

d(UMF − 〈qq〉ΣMF) = −〈qq〉∂ΣMF
∂〈qq〉 d〈qq〉, (A2)

where we used definition of the quark mean-field self-energy given by Equation (5). The
fourth term in the expression for the thermodynamic potential (12) is a function of ω and
〈q+q〉, entering it through the vector coupling. Thus

d
(
− ω2

4GV

)
= − ω

2GV
dω +

ω2

4G2
V

∂GV
∂〈q+q〉d〈q

+q〉. (A3)

Similarly, for the fifth term we obtain

d
(

∆2

4GD

)
=

∆
2GD

d∆− ∆2

4G2
D

∂GD
∂|〈qciτ2γ5λ2q〉|d|〈q

ciτ2γ5λ2q〉|. (A4)

Finally, differentials of the rearrangement terms ΘV and ΘD are directly found from
Equation (17)

dΘV = 〈q+q〉2 ∂GV
∂〈q+q〉d〈q

+q〉, (A5)

dΘD = |〈qciτ2γ5λ2q〉|2 ∂GD
∂|〈qciτ2γ5λ2q〉|d|〈q

ciτ2γ5λ2q〉|. (A6)

The next step corresponds to considering the total differential of the thermodynamic
potential at constant quark chemical potentials (dµu = dµd = 0). We note that in this case
the differentials d〈q+q〉 and d|〈qciτ2γ5λ2q〉| do not necessarily vanish due to variation of
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chiral condensate, vector field and diquark pairing gap. Thus, using Equations (A1)–(A6)
differential of the thermodynamic potential can be written as

dΩ =

(
∑

f

∂Ωq

∂µ f
− ω

2GV

)
dω

+

(
ω2

4G2
V
− 〈q+q〉2

)
∂GV

∂〈q+q〉d〈q
+q〉

+

(
∂Ωq

∂m
− 〈qq〉

)
∂ΣMF
∂〈qq〉 d〈qq〉

+

(
∂Ωq

∂∆
+

∆
2GD

)
d∆

−
(

∆2

4G2
D
− |〈qciτ2γ5λ2q〉|2

)
∂GD

∂|〈qciτ2γ5λ2q〉|d|〈q
ciτ2γ5λ2q〉|. (A7)

The conditions to minimize the thermodynamic potential can be found by requiring
zero values of the coefficients near the differentials of the above mentioned variables of Ω.
The second line of Equation (A7) yields the mean-field equation for the vector field, i.e.,
ω = −2GV〈q+q〉. With this result and 〈q+q〉 = ∑ f 〈 f+ f 〉, we conclude from the first line
of Equation (A7) that 〈 f+ f 〉 = −∂Ωq/∂µ f . Direct differentiation of Equation (13) with
respect to µ f yields the expression for number density of a given quark flavor (18). It is seen
from the third line of Equation (A7) that the mean-field equation for chiral condensate is
〈qq〉 = ∂Ωq/∂m. One arrives at Equation (19) by directly calculating the partial derivative of
Ωq with respect to the current quark mass. From the fourth and fifth lines of the expression
for dΩ we immediately recover the pairing gap equation ∆ = 2GD|〈qciτ2γ5λ2q〉| and
the diquark condensate |〈qciτ2γ5λ2q〉| = −∂Ωq/∂∆. The latter can be given the form of
Equation (20) by finding the partial derivative of the thermodynamic potential of quark
quasiparticles with respect to the diquark paining gap.
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