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Abstract: The Unruh effect can be considered a source of particle production. The idea has been
widely employed in order to explain multiparticle production in hadronic and heavy-ion collisions at
ultrarelativistic energies. The attractive feature of the application of the Unruh effect as a possible
mechanism of the multiparticle production is the thermalized spectra of newly produced particles. In
the present paper, the total entropy generated by the Unruh effect is calculated within the framework
of information theory. In contrast to previous studies, here the calculations are conducted for the
finite time of existence of the non-inertial reference frame. In this case, only a finite number of
particles are produced. The dependence on the mass of the emitted particles is taken into account.
Analytic expression for the entropy of radiated boson and fermion spectra is derived. We study also
its asymptotics corresponding to low- and high-acceleration limiting cases. The obtained results can
be further generalized to other intrinsic degrees of freedom of the emitted particles, such as spin and
electric charge.

Keywords: multiparticle production; Unruh effect; information theory

1. Introduction

As was demonstrated by Unruh [1], the observer comoving with the non-inertial
reference frame (RF) with the acceleration a will detect particles thermalized at temperature

T =
a

2π

in Planck units, whereas the observer in any inertial RF will see bare vacuum. If the
acceleration a equals the surface gravity of some Schwarzschild black hole (BH), when the
observer is at the horizon, T coincides with the temperature TBH of the Bekenstein–Hawking
radiation [2–4] of the horizon.

This peculiar non-invariance of the vacuum has raised a lot of interest in the topic
(for review see, e.g., [5] and references therein). Recall that the Unruh effect was initially
derived for scalar particles. Here, the change in the ratio between the negative and positive
frequency modes of scalar fields in the noninertial RF was considered [1]. Generalizations
to arbitrary trajectories of the observer is discussed in [6,7], whereas the generalization to
the accelerated reference frames with rotation can be found in [8,9]. The emergence of the
Unruh effect in the Rindler manifold of an arbitrary dimension and its relationship to the
vacuum noise and stress are investigated in [10]. Various methods and approaches have
been employed. For instance, an algebraic approach was used to extend the Unruh effect to
theories with arbitrary spin and with interaction [11,12], whereas the path integral approach
was applied to derive the effect for fermions within the framework of quantum field
theory [13]. Among the recent studies, one can mention the relativistic quantum statistical
mechanics approach [14–16] based on the application of Zubarev’s density operator [17,18].
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Within this approach, the Unruh effect was obtained first for the scalar particles [14] and
then generalized to the gas of massless fermions [16]. In the present study, we employ the
approach based on the application of the information theory, which is a promising tool to
study the black hole information dynamics, as one may see in [19] or reviews [20,21].

Usually, the non-inertial observer is assumed to accelerate forever. However, such an
assumption implies the availability of an infinite energy supply and ever-lasting particle
emission. The more sophisticated scenario, which considers the Unruh effect at finite time
interval, is analyzed in papers [22–25].

There are a lot of proposals for the detection and application of the Unruh effect, see,
e.g., [26–28]. The paper [29] discusses the possibility of eavesdropping in the non-inertial
reference frame. The production of the entangled photon pairs from the vacuum with the
help of the Unruh effect was investigated in [30], whereas, in [31], the creation of accelerated
black holes by means of the Unruh effect was studied. In [32], the authors discuss the
possibility of using accelerated electrons as thermometers; more on the topic can be found
in Refs. [33,34]. Generated bosons and fermions were considered to be produced via the
quantum tunneling mechanism at the Unruh horizon in [35,36].

The Unruh effect can be considered as a source for the creation of new particles. This
idea has been widely employed [37–44] in order to explain multiparticle production in
hadronic and heavy-ion collisions at ultrarelativistic energies. The attractive feature of
the application of the Unruh effect as a possible mechanism of multiparticle production is
the thermalized spectra of newly produced particles. Experiments with ultrarelativistic
hadronic and heavy-ion collisions and their theoretical interpretations indicate that the
produced matter seems to reach equilibrium extremely quickly, see, e.g., [45,46] for the
present status of the field. The mechanism of this fast equilibration is still debated; therefore,
the Unruh effect might be of great help. At the same time, since the Unruh source is
thermal, it results in the observer-dependent entropy generation [47]. In the present paper,
we also consider the Unruh horizon as a thermal source of particles. These particles are
characterized by thermal distribution. Our aim is to estimate the entropy of the distribution
and to define its dependence on any intrinsic degrees of freedom of the emitted particles.

In this paper, we consider Unruh radiation at some fixed energy E, which is assumed
to be a parameter. It can be argued that such an analysis is incorrect because we should
have taken into account the all-energy modes Ei via the product ∏Ei

in the corresponding
density matrix, see, e.g., [5]. This approach implies an independent emission of modes
at different energies. In other words, in that case, one deals with the energy modes via
the tensor product of the corresponding subspaces. However, such a generalization is not
mandatory for the Unruh effect. For instance, in [35,36], the authors demonstrate that one
can obtain the Unruh effect for some fixed energy without any need to take a product of all
the modes to encompass the all-Unruh thermal bath states. This circumstance allows us
to consider energy E of the mode as a parameter and, therefore, to take into account any
correlations between the modes originating from the finite energy supply and restrictions
imposed by energy conservation.

The paper is organized as follows. Section 2 presents the necessary basics from the
probability theory and the information theory. Section 3 briefly describes the Unruh effect
and the density matrix of the emitted quanta. The total entropy of the Unruh source is
estimated in Section 4. Here, the general expression for the entropy of fermion and boson
radiation is derived, as well as its analytic series expansion. In Section 5, one is dealing with
the analysis of temperature asymptotics of the entropy. Two limiting cases corresponding to
low and high temperatures, or, equivalently, the acceleration of the observer, are considered.
Section 6 is devoted to the contribution of intrinsic degrees of freedom of the produced
particles. Final remarks and conclusions can be found in Section 7.
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2. Probability and Entropy

Let us consider some distribution {X} with the unnormalized distribution probability
d(x). In other words, d(x) is a number of events in which x is being observed. Shannon
entropy H(X) may be written as

H(X) = −∑
x

d(x)
DX

ln
d(x)
DX

= lnDX −
1
DX

∑
x

d(x) ln d(x) , (1)

where DX = ∑x d(x). H(X) encodes the amount of information we need in order to
completely describe {X}, i.e., this is amount of information we are lacking. Therefore, we
should deal with the distribution {X}. It is scale-invariant, so it does not change under the
transformations d(x)→ αd(x) for any α = const.

Similarly, for joint distribution {X, Y} with the unnormalized distribution probability
d(x, y), one can write down Shannon entropy H(X, Y) as

H(X, Y) = −∑
x,y

d(x, y)
DX,Y

ln
d(x, y)
DX,Y

= lnDX,Y −
1
DX,Y

∑
x,y

d(x, y) ln d(x, y), (2)

where DX,Y = ∑x,y d(x, y).
In the joint case, one may define the conditional probability d(x|y) as

d(x|y) = d(x, y)
d(y)

, d(y) = ∑
x

d(x, y). (3)

It defines the amount of events with x from the set of events in which y occurs. Using
Equation (1), Shannon entropy H(X|y) becomes

H(X|y) = lnDX|y −
1
DX|y

∑
x

d(x|y) ln d(x|y) = −∑
x

d(x|y) ln d(x|y), (4)

where DX|y = ∑x d(x|y) = 1, as follows from Equation (3).
Finally, substituting Equations (3) and (4) into Equation (2), one obtains

H(X, Y) = H(Y) + 〈H(X|y)〉Y = H(X) + 〈H(Y|x)〉X , (5)

where averaging taken over X or Y reads

〈A〉Z =
1
DZ

∑
z

d(z)A , Z ≡ X, Y.

Recall that all the formulae above are valid for the discrete distributions only. In the
continuous case, one should use the probability density function (PDF) p(x) instead of d(x).
Shannon entropy becomes dimensionally incorrect and should be re-defined, as shown
in [48,49].

For the distribution {X} with the PDF p(x), the entropy given by Equation (1) is
generalized to

H
(
Xp
)
= lnDXp −

1
DXp

∫
p(x) ln p(x)dx− 〈ln dx〉Xp

, (6)

where DXp =
∫

p(x)dx is the norm and

〈A〉Xp
=

1
DXp

∫
p(x)Adx.

The last term in Equation (6) is related to the limiting density of discrete points and takes into
account the amount of information encoding a discrete-continuum transition (see [48,49] for
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details). The term originates from the fact that the PDF p(x) is not dimensionally invariant
compared to the discrete probability d(x). The last one can be set to be dimensionless—see
the explanation below Equation (1)—while p(x) cannot. In any realistic computational task,
the term determines the contribution of the bin widths dx of the distribution to the entropy.
Note that one may formally reduce H

(
Xp
)

to H(X) by substituting
∫

p(x)dx into ∑x d(x)
and setting 〈ln dx〉Xp

to zero; the same procedure is valid in the opposite direction.

3. Unruh Effect

From here, we will use Planck (or natural) units, c = G = h̄ = kB = 1. Furthermore, we
restrict our analysis to 1 + 1-dimensional space-time because two other spatial dimensions
play no role and, therefore, can be neglected.

As was already mentioned in Section 1, vacuum is non-invariant with respect to the
reference frame [1]. In the non-inertial RF determined with the acceleration a, one meets
the appearance of horizon that separates space-time into the inside and outside domains.
As a result, the non-inertial observer detects the radiation going out from the horizon,
while the inertial one detects the Minkowski vacuum state |0〉 only. For bosons, the latter
reads [5,35,36]

|0〉 =

√
1− exp (−E/T)

1− exp (−NE/T)

N−1

∑
n=0

exp (−nE/2T)|n〉in|n〉out , (7)

whereas, for fermions, one obtains

|0〉 = 1√
1 + exp (−E/T)

1

∑
n=0

exp (−nE/2T)|n〉in|n〉out (8)

Here, E is the energy of the quanta emitted at the Unruh horizon with the temperature
T = a/(2π). The denominator for bosons stands for the normalization reasons. Parameter
N, as can be seen from Equation (7), encodes the maximum amount of quanta at energy E
plus 1. Loosely speaking, N is the number of dimensions of the corresponding Fock space
at the given energy E and temperature T of the source. The subscripts in and out denote
the components of the field (Rindler modes) with respect to the horizon.

Usually, N is assumed to be infinite. One may argue that the finiteness of the parameter
N in the boson case is incorrect from a mathematical point of view since one deals with
the incomplete basis then. However, in any real physical situation, one is dealing with the
finite number of produced particles, bosons and fermions. Taking N → ∞ in Equation (7),
as it is widely used in the literature on the topic, seems to be too strong of an assumption
because the source produces an infinite amount of energy, (N − 1)E→ ∞. This is valid in
the case of everlasting acceleration or the non-zero probability of detecting N → ∞ amount
of particles at some finite time interval; both scenarios can be provided with the infinite
energy supply only. This is because the infinite sum for bosonic modes—see Equation (7)—
contains an arbitrary amount of particles: despite being exponentially suppressed, the
probability for any n 6= ∞ in the sum for bosons is non-zero. Such a scenario seems to
be rather unlikely from the physical point of view, especially when one considers the
application of the Unruh effect for the description of particle production in relativistic
hadronic or heavy ion collisions. Therefore, we assume the maximum number of particles
to be finite in all calculations below.

Furthermore, let us consider only boson production in what follows because the
expression for the fermions given by Equation (8) can be derived from Equation (7) by
setting N = 2.

Expression (7) is the Schmidt decomposition [50]. The outgoing radiation is described
by the density matrix
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ρout = Trin|0〉〈0| =
1− exp (−E/T)

1− exp (−NE/T)

N−1

∑
n=0

exp
(
−nE

T

)
|n〉out〈n|out , (9)

where we have traced over the inaccessible degrees of freedom (in- modes). Thus, the pure
vacuum state from the inertial RF has transformed into the mixed one in the non-inertial
RF. Here, the geometric origin of the Unruh effect appears. Namely, finiteness of the speed
of light leads to the appearance of the horizon dividing the all modes in Hilbert space
into the accessible (out-) and non-accessible (in-) ones. The complete state is obviously
pure and follows unitary evolution. However, because one has limited access to it in the
non-inertial RF, it looks like a decoherence. The eigenvalues of the density matrix ρout
define the emission probability of a certain number of particles at energy E and temperature
T. Therefore, Equation (9) describes the conditional multiplicity distribution {n|N, E, T} at
any given N, E and T.

One may assume that once we have the distribution, it is possible to calculate the
corresponding Shannon entropy due to the formulae presented in Section 2. However, to
deal with the density matrix ρ, one should use the von Neumann entropy H(ρ) instead,
which is defined as

H(ρ) = −Trρ ln ρ.

The key difference of the von Neumann entropy from its classical analog, Shannon entropy,
is related to its meaning: H(ρ) defines the amount of information encoded with the
correlations between the system described by ρ and the rest of the world. From this
point of view, the density matrix ρ defines the projection of some larger system, which
was determined in the larger Hilbert space, to the space in which the observed system
is being defined. The projection might result in a loss of information encoded with the
corresponding correlations between the Hilbert subspaces. The von Neumann entropy is
the quantity to estimate the amount of this information. Due to its origin, it can be equal to
zero for the entire space and non-zero for its subspace. This is not the case for the Shannon
entropy because classical entropy of the whole system cannot be less than that of some part
of it. However, the von Neumann entropy can be set as equal to its Shannon counterpart
provided that the Schmidt decomposition coincides with the basis of the detector [51].

4. Unruh Entropy

For the emission probability ρout from Equation (9), the von Neumann entropy is
defined as

H(ρout) = −Trρout ln ρout = H(n|N, E, T) = σ(qE/T)
∣∣∣q=1

q=N
, (10)

where we use the following notations

σ(qE/T) =
qE/T

exp (qE/T)− 1
− ln

[
1− exp

(
− qE

T

)]
, (11)

f (x)
∣∣∣x=a

x=b
= f (a)− f (b) . (12)

As one may notice, H(n|N, E/T) is an even function of E/T, i.e., H(n|N, E/T) =
H(n|N,−E/T). The asymptotic behavior of the entropy (10) with respect to E/T is
the following

lim
E/T→0

H(n|N, E, T) = ln N = max(H) lim
E/T→∞

H(n|N, E, T) = 0 . (13)

Expression (10) defines the entropy of the emitted quanta, as well as the quanta inside
the horizon, for some mode of the radiated field only, which is determined by parameter N,
energy E and temperature T. Parameter N depends on the amount of time during which
the observer is being described by the non-inertial reference frame. It follows from the fact
that the longer one is observing the horizon, the more particles at any fixed energy may
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be detected. Therefore, we conclude that N should increase with time. Temperature T is
completely determined by the acceleration a, see [1]. However, E cannot be considered
as a fixed parameter. The non-inertial observer is expected to detect particles at different
energies. The energy range for the particles may be written as

m ≤ E ≤ M , (14)

where m is the invariant mass of the particles, and M is the maximum energy to be observed,
respectively. We assume M to be limited by the acceleration a since the observation of the
high-energy particles is very unlikely due to energy conservation law: one cannot extract
more energy from the vacuum than is being spent to sustain the observer’s acceleration.

Unfortunately, the definition of the energy range does not mean we know the spectrum
distribution {E}. It is determined by the unnormalized PDF p(E) of the emission of a
particle from the vacuum at energy E.

In order to figure out p(E) somehow, we use the following procedure. As can be
noticed from Equation (9), for any particle number n > 0, the emission probability is
proportional to the factor exp (−E/T). The case with n = 0 means no emission at all.
Therefore, one should expect exponential behavior for p(E)

p(E) = C exp (−E/T) , (15)

where prefactor C is responsible for any corrections that might depend on the particle type
and its quantum numbers. For the sake of simplicity, we assume C = const and, therefore,
drop it due to normalization reasons (see Section 2) in what follows. It is worth noting that
such assumption results in Schwinger-like mechanism of particle production [52]. Thus,
we recovered Schwinger-like particle production from the properties of Hilbert space and
space-time only. Recall, however, that this result is generated by the Unruh effect after
neglecting all possible corrections.

Now, we have the spectrum distribution {E} as given by Equation (15). Without
any loss of generality, we assume energy to be defined within the range m ≤ E ≤ M
(Equation (14)). From Equations (5) and (6), one obtains

H(n, E|N, T) = −〈ln dE〉Ep
+ lnDEp −

1
DEp

∫ M

m
p(E) ln p(E)dE

+
1
DEp

∫ M

m
p(E)H(n|N, E, T)dE , (16)

where the subscript Ep implies that the energy distribution is not discrete but rather a
continuous one, i.e., it is defined with some PDF—see the text concerning Equation (6).
In order to obtain the analytic expression, we substitute Equations (15) and (10) into
Equation (16) and obtain, after the straightforward calculations, the total Unruh entropy
H(n, E|N, T) in a form

H(n, E|N, T) = −〈ln dE〉Ep
+ 1 + lnDEp +

m exp (−m/T)−M exp (−M/T)
DEp

+
T
DEp

∞

∑
k=1

{[
2kq + 1

k(kq + 1)
+ q

E
T

]
× exp [−(kq + 1)E/T]

kq + 1

∣∣∣∣E=m

E=M

}∣∣∣∣∣
q=1

q=N

, (17)

where

DEp =
∫ M

m
p(E)dE = T

[
exp

(
−m

T

)
− exp

(
−M

T

)]
(18)
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and σ(qE/T) from Equation (10) is represented by the following series

σ(qE/T) =
∞

∑
k=1

(
1
k
+ q

E
T

)
exp

(
− kqE

T

)
. (19)

The first term in Equation (17) is responsible for encoding the discrete-continuum
transition, see [48,49]. It is expected to depend neither on any quantum numbers of outgoing
particles nor on the reference frame. Therefore, we assume 〈ln dE〉Ep

to be constant.
Expression (17) defines entropy for the distribution {n, E|N, T} of the particles being

detected by the observer associated with non-inertial RF moving with acceleration a = 2πT.
Recall that in the case of fermions, one should use N = 2. For the bosons, N may take any
positive integer value obeying the energy conservation law. The entropy calculated for the
Unruh radiation of fermions and bosons is presented in Figures 1 and 2, respectively. One
can see the distinct maximum in the region of small values of the m/T ratio. The maximum
increases with rising the M/T ratio and becomes more pronounced with the increase in
radiated particles (see Figure 2).

Figure 1. (Color online) The entropy H(n, E|N, T) of Unruh radiation given by Equation (17) for
fermions (N = 2) as function of m/T and M/T.

The considered example seems to be straightforward. However, one should keep in
mind that the whole analysis above is valid for 1 + 1-dimensional space-time. Other spatial
dimensions do not contribute to the density matrix ρout or to its von Neumann entropy
because the corresponding subspaces of the Hilbert space contribute to ρout via the direct
tensor product and, therefore, can be traced out with no consequences to the analysis above.
This simple direct extension to additional spatial dimensions for the Unruh effect may lead
to the widely spread conclusion that the Unruh effect results in the appearance of thermal
bath all over the space. In our opinion, this conclusion needs to be clarified. Namely, in the
last case, the non-inertial observer, as well as the horizon itself, should be considered as an
infinite plane in the additional spatial dimensions being accelerated alongside the normal
to the plane. However, the observer should be finite and, therefore, cannot detect particles
from the half-space defined by the horizon. Otherwise, it would lead to faster-than-light
speed communication and causality violation because the transition to inertial RF cannot
cause the immediate disappearance of the Unruh radiation from the horizon occupying
the half-space.
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Figure 2. (Color online) The same as Figure 1 but for bosons. The spectrum of bosons contains
(a) N = 100 and (b) N = 1000 particles.

To overcome the difficulties, we have to assume that

• In order to obey, the energy conservation law N should be finite;
• In the case of (2 + 1) or (3 + 1)-dimensional space-time, the Unruh horizon should be

considered as a radiation source of finite size.

Due to the axial symmetry of the non-inertial reference frame, the horizon should
be a disk shape with some radius r. The radius can be determined by the observer’s size
and causality, i.e., the finiteness of light speed. Such an assumption leads to an observer-
dependent size of r. The problem may be cured, e.g., if one considers the observer’s
acceleration a as a surface gravity of the corresponding black hole and obtain some efficient
scale r = (4πT)−1.

One might be confused by the fact that since the Unruh effect describes the thermal
bath, its entropy should be maximal. As can be easily noticed from the eigenvalues of the
density matrix (9), all of them exponentially depend on the total energy of the emitted
number of particles and thus generate a well-known partition function. Note, however, that
ρout is defined for some fixed value of energy. Therefore, E can be considered a parameter
of the conditional distribution {n|N, E, T}. Dealing with the joint distribution {n, E|N, T}
over multiplicity n and energy E of the emitted quanta, one should take into account
energy conservation. It results in some correlations between the possible number of emitted
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particles and their energy. Thus, the entropy H(n, E|N, T) describes not a completely
thermal source but some other one.

5. Asymptotics of Unruh Entropy

Let us analyze the asymptotic behavior of the total Unruh entropy in Equation (16)
for (i) small and (ii) large acceleration of the observer. The case of small acceleration is
analogous to T → 0; therefore, we will drop all but the leading term in Equation (16). At
small temperatures, Equation (18) transforms into

DEp

∣∣∣
T→0
≈ T exp (−m/T) , (20)

where we have neglected the term exp (−M/T) since M is the upper bound for the energy
spectrum; therefore, M > m. The Unruh entropy becomes

H(E)
∣∣∣
T→0

= lnDEp −
1
DEp

∫ M

m
p(E) ln p(E)dE ≈ ln T − m

T
+ 1 +

m
T

= ln T + 1 . (21)

Because the entropy H(n|N, E, T) equals zero when N = 1, we consider the case
with N > 1 for T → 0. Neglecting all the higher-order exponents, one obtains from
Equation (10) that

H(n|N, E, T)
∣∣∣
T→0
≈ E

T
exp (−E/T) . (22)

Substituting Equations (21) and (22) into Equation (16), we obtain

H(n, E|N, T)
∣∣∣
T→0
≈ −

〈
ln

dE
T

〉
Ep

+ 1 +
1
4

(
1 +

2m
T

)
exp (−m/T) , (23)

where all the higher-order exponents are omitted. This distribution is displayed in Figure 3.
The entropy reaches a quite distinct maximum at m/T ≈ 0.5 and quickly drops to unity at
larger values of this ratio.

Figure 3. (Color online) Asymptotic behavior of entropy H(n, E|N, T) given by Equation (23) at
T → 0 as function of m/T.

In the case of large acceleration a→ ∞⇔ T → ∞, one obtains from Equation (18)

∫ M

m
p(E)

∣∣∣
T→∞

dE =
∫ M

m

(
1− E

T
+

E2

2T2

)
dE +O

(
1/T3

)
= (M−m)

(
1− M + m

2T
+

M2 + Mm + m2

6T2

)
+O

(
1/T3

)
, (24)
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and, therefore,

H(E) = lnDEp −
1
DEp

∫ M

m
p(E) ln p(E)dE = ln (M−m)− (M−m)2

24T2 +O
(

1/T3
)

. (25)

Thus, the conditional entropy H(n|N, E, T) from Equation (10) becomes

H(n|N, E, T)
∣∣∣
T→∞

= ln N − N2 − 1
24T2 E2 +O

(
1/T4

)
, (26)

which, together with Equation (24), gives us

1
DEp

∫ M

m
p(E)H(n|N, E, T)dE = ln N − M2 + Mm + m2

72T2

(
N2 − 1

)
+O

(
1/T3

)
. (27)

Finally, substituting Equations (25) and (27) into Equation (16), we obtain the desired
asymptotics at high acceleration (or temperature)

H(n, E|N, T)
∣∣∣
T→∞

= − 〈ln dE〉Ep
+ 1 + ln (M−m) + ln N

−
(

N2 + 2
)(

M2 + m2)+ (N2 − 7
)

Mm
72T2 +O

(
1/T3

)
. (28)

The entropy asymptotics at T → ∞ calculated according to Equation (28) is presented
in Figure 4 for fermions (N = 2) and in Figure 5 for the boson spectra with N = 100 and
1000 particles, respectively. At high temperatures, the entropy weakly depends on m and
quickly increases with an increase in the value of M. The larger the number of particles, the
steeper the rising slope. For N = 1000, the entropy seems to saturate at M ≥ 5.

Figure 4. (Color online) High-temperature asymptotics of the entropy H(n, E|N, T) of Unruh radia-
tion given by Equation (28) for fermions (N = 2) as a function of m and M.
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Figure 5. (Color online) The same as Figure 4 but for bosons with (a) N = 100 and (b) N = 1000 par-
ticles in the spectrum.

6. Generalization to Intrinsic Degrees of Freedom

Expression (17) is valid for some mode of the radiated field only, which is defined by
the joint multiplicity-energy distribution {n, E}, temperature T and parameter N. However,
since the emitted particles may have additional degrees of freedom {λ}, such as electric
charge, spin, polarization, etc., they have to be taken into account too. This is equivalent to
the following modification of the total distribution

{n, E|N, T} → {λ, n, E|N, T} .

Using Equation (5), we then obtain

H(λ, n, E|N, T) = H(λ) + 〈H(n, E|N, T, λ)〉λ . (29)

However, such a generalization is not an easy task at all. Let us consider a simple
example, while detecting a particle at some E, one should measure its energy. Such a
process results in the consumption of the particle’s momentum. One may argue that
calorimetry is not required. The observer can build some source of similar particles and
carry out interference experiments to determine the energy of the particle to be detected.
However, any such interference will result in the re-distribution of the momenta during
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the interference and therefore will change the observer’s momentum as well. Thus, one
concludes that measuring the particle’s energy E leads to a change in the observer’s
acceleration a. It implies a change in the Unruh temperature T = a/(2π) of the source the
observer is dealing with.

One may also note that the Unruh effect is being considered within the quasi-classical
approach. It means that the density matrix ρout in Equation (9) is obtained under the
assumption that the outgoing radiation has no influence on the background metric (see
[5,35,36]). Such a remark is correct, but what about other degrees of freedom λ? For instance,
taking into account the spin of the particles emitted by the Unruh horizon may lead to a
change in the observer’s angular momentum. In this case, the observer’s acceleration a can
not be constant due to the conservation of the total angular momentum anyway and thus
implies a change in T in Equation (29) during particle identification.

Thus, the situation seems to be simple only if one neglects any influence of the outgoing
particles during the Unruh effect. In this case the entropy H(n, E|N, T, λ) does not depend
on {λ}, and Expression (29) is reduced to the sum

H(λ, n, E|N, T) = H(λ) + H(n, E|N, T). (30)

7. Conclusions

The Unruh effect is considered from the point of view of the information theory.
We estimated the total entropy of the radiation generated by the Unruh horizon in the
non-inertial reference frame for the state verified as vacuum by any inertial observer.
Usually such a case is treated as von Neumann entropy of the corresponding density
matrix. However, this is just the starting point of our study because the density matrix
of the outgoing radiation describes the conditional multiplicity distribution at the given
energy and Unruh temperature. As a result, it allows one to estimate the total entropy of
the Unruh source by taking into account both the multiplicity and energy distribution of
the outgoing quanta. We show how it can be calculated even without the exact knowledge
of the corresponding Hamiltonian. In particular, such a lack of information results in the
Schwinger-like spectrum of the emission (see Equation (15)).

The case of a finite amount of particle emission is considered. It allows us to utilize the
results for realistic particle emission spectra. The asymptotics of the general expression for
entropy with respect to low and high values of the Unruh temperature are also investigated.
We found that in the case of small acceleration corresponding to a low temperature, the
entropy of the radiation does not depend on the maximal amount of emitted particles in the
leading order (see Equation (23)). The dependence on N is recovered for large accelerations
when T → ∞ (see Equation (28)). It can be explained by the abundant emission of particles
from the hot Unruh horizon when the amount of the emitted quanta may be considered as
an extra degree of freedom contributing to the total entropy.

Another interesting point is that the total entropy H(n, E|N, T) quickly drops to zero
with the increase in the mass m of the quanta. It can be explained by the energy conservation
law: the more energy is being spent on the creation of particle’s mass, the less of it may be
used to generate the total distribution. At the same time, total entropy of the Unruh source
slightly increases with the maximum allowed energy M because the distribution widens
with the increase in M, thus leading to the total entropy increase.

The obtained results can be applied to the analysis of particle distributions in inelas-
tic scattering processes at high energies. Furthermore, they may be generalized to other
degrees of freedom of the emitted particles, such as spin, charges, etc. However, such a gen-
eralization may significantly complicate the analysis. For instance, additional conservation
laws originating from the other degrees of freedom might change the metric. Therefore,
one may be forced to take a distribution {T} into account too.
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